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Abstract: Lewy body diseases (LBD) including dementia with Lewy bodies (DLB) and Parkinson dis-
ease (PD) are characterized by alpha-synuclein pathology. DLB is difficult to diagnose and peripheral
biomarkers are urgently needed. Therefore, we analyzed the expression of five alpha-synuclein gene
(SNCA) transcripts, SNCAtv1, SNCAtv2, SNCAtv3, SNCA126, and SNCA112, in 45 LBD and control
temporal cortex samples and in the blood of 72 DLB, 59 PD, and 54 control subjects. The results
revealed overexpression of SNCAtv1 and SNCA112 in DLB, and SNCAtv2 in PD temporal cortices.
In DLB blood, diminution of all SNCA transcripts was observed. SNCAtv1 and SNCAtv2 were
diminished in PD with disease onset before 70 years. SNCAtv3, driven by its own promoter, showed
opposite expression in early DLB and PD, suggesting that its amount may be an early, DLB specific
biomarker. Correlation between blood transcript levels and disease duration was positive in DLB and
negative in PD, possibly reflecting differences in brain alpha-synuclein aggregation rates associated
with differences in disease courses. In conclusion, SNCA transcripts showed a disease-specific
increase in the brain and were diminished in blood of LBD patients. SNCAtv3 expression was
decreased in early DLB and increased in early PD and could be a biomarker for early DLB diagnosis.

Keywords: alpha-synuclein; SNCA transcript variants; dementia with Lewy bodies; Parkinson’s
disease; differential mRNA transcript expression; peripheral biomarker; disease progression

1. Introduction

Dementia with Lewy bodies (DLB) and Parkinson’s disease (PD) are Lewy body
disorders (LBD). They are characterized by Lewy body pathology (LBP) in the brain [1],
and neuropathologically, two forms of LBP can be distinguished. In common LBP, a mixture
of LBP and concomitant Alzheimer disease (AD) pathology can be found, and in pure
LBP, the brain is mainly affected by this type of pathology [2]. LBP consists of abnormal
intraneuronal aggregates of alpha-synuclein (AS), so called Lewy bodies (LBs), and Lewy
neurites [1]. In PD, these appear first in the substantia nigra [3,4], and in DLB an early
widespread distribution throughout the brain is found [5]. Cases with pure or common LBD
cannot be distinguished clinically. In DLB, the first clinical symptoms are linked to dementia
with motor signs appearing concomitantly or less than one year after onset of cognitive
symptoms [6]. Additionally, the disease often progresses rapidly with a duration of between
six to 10 years [6,7]. On the contrary, the cognitive decline in PD develops usually late
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and patients can survive up to 30 years [8,9]. Although DLB and PD dementia (PDD)
share similar biological substrates and may represent subtypes of the LBD continuum,
some neuropathological differences have been identified [10]. These include a more severe
and extended AS load in the cortex and striatum, and higher tau load in the medial
temporal cortex in DLB than in PDD. The AS load in the hippocampus is also different,
and whereas CA 1/2 is severely involved in DLB, CA 2/3 is more frequently affected in
PDD. The pattern of neuronal loss in the substantia nigra also differs between DLB and
PDD, and whereas no pedunculopontine cholinergic loss is observed in DLB, it occurs in
PDD with hallucinations [10]. DLB is also characterized by the clinical overlap with AD
due to the concomitant AD pathology in DLB brains leading to the misdiagnosis of up to
80% of DLB cases [11]. Misdiagnosis results in the administration of incorrect treatments
that can adversely affect cognition of DLB patients [6]. Therefore, the identification of
biomarkers for the differential diagnosis of DLB is of paramount importance. Current fluid
biomarkers for AD are reduced Aβ42 (<600 pg/mL) and elevated total and phosphorylated
tau (>275 pg/mL and >50 pg/mL, respectively) in cerebrospinal fluid (CSF) [12,13]. Their
suitability for differential DLB diagnosis has been also assessed but no conclusive results
have been obtained [14], and no peripheral DLB biomarkers have been identified so far.

As the main component of LBs, AS is now recognized as a key element driving the
development of LBD [15]. It is a small, unfolded, and multifunctional protein [16] and
its increase in vulnerable brain areas has been linked to disease development [17,18]. AS
gene (SNCA) duplication and triplication have been reported as causative factors for the
development of PD [19,20] and this dose duplication is directly responsible for elevated
SNCA expression levels in the brain [21].

The study of AS expression in CSF in PD revealed increased levels of AS, also in
early disease stages [22,23]. Additionally, reduced AS levels have been found in the serum
of DLB patients compared to both AD and controls, and the increase of AS in plasma
associated with the progression of PD has been reported [24].

The SNCA gene undergoes complex splicing events (recently reviewed in [25]). On
one hand it causes variation in the exon content of its 5′-untranslated region (UTR), bearing
transcripts driven by at least four different promoters. On the other hand, additional in-
frame splicing of two exons gives rise to a large number of SNCA transcripts [26]. Moreover,
the length of the 3′UTR comprising the inclusion or not of certain miRNA binding sites has
been also described to vary in the various SNCA transcripts [27].

Only a few studies have addressed the differential expression of the different SNCA
transcripts in both brain and blood. Although the suitability of total SNCA mRNA ex-
pression changes as diagnostic or progression biomarker has been studied for PD, little
information is available for DLB. In the present study, we determined SNCA transcript
variant expression in brain and blood of DLB and PD patients compared to controls with
the aim to find out if (i) the SNCA expression pattern differs between DLB and PD brain
and blood, (ii) there exists a correlation between SNCA transcript expression and clinical
parameters, and (iii) DLB and PD share correlation tendencies or not. Therefore, we ana-
lyzed the differential expression of five SNCA transcript variants (tv), SNCAtv1, tv2, tv3,
SNCA126 and SNCA112 in the temporal cortex and blood of DLB and PD patients, and
control individuals.

2. Results
2.1. Characteristics of Post-Mortem Cases

All 32 cases with neuropathological changes presented neocortical LBs and had been
diagnosed with DLB or PD corresponding to their clinical characteristics. Clinical char-
acteristics including disease onset, disease duration, and male/female ratio are shown in
Table 1. Age at death was significantly lower in control than in patients. However, when
taking into account the disease duration in the other groups, and when comparing the
age at disease onset of LBD and age at death of controls, no significant difference was
found (p = 0.235). The male/female ratio did not show significant differences between
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the three groups. Disease onset was at a significantly younger age and disease duration
was significantly longer in PD than in DLB cases. These differences represent intrinsic
characteristics of both diseases.

Table 1. Clinico-neuropathological characteristics of LBD patients and controls.

DLB (n = 16) PD (n = 16) CTRLs (n = 11) p 1

Mean age at death (age range) 77.2 (60–90) 79.9 (71–88) 69.9 (59–81) 0.004

Gender (male/female ratio) 1.3:1 1:1 1:1.2 0.329

Disease onset 2 70.0 (56–83) 59.9 (49–73) - <0.001

Disease duration (range) 6.1 (2–11) 18.6 (3–29) - <0.001

PM 3, hours (range)
9:00

(3:15–21:00)
8:10

(3:30–17:10)
8:30

(2:15–23:30) 0.571

AD-stage 4 0-IV; A-C 0-IV; A-C

PD-stage 5 Braak 4–6

AS pathol 6 neocortical (n, %) 12 (75)

AS pathol limbic (n, %) 4 (25)

All ages and disease duration are expressed in years. 1 p, obtained by the Kruskal-Wallis test; 2 from the beginning of cognitive symptoms
for DLB, and motor symptoms in the case of PD; 3 post-mortem time; 4 AD stages following Braak and Braak, I-VI: neurofibrillary tangles,
A–C: amyloid plaques [28]; 5 PD stages [29]; 6 presence and distribution alpha-synuclein related by criteria of the third DLB consortium [30].

2.2. Demographic and Clinical Data of Participants

Demographic and clinical data of patients are shown in Table 2. Mean age was similar
in DLB patients and control subjects (CTRLs), according to the inclusion criteria; however,
PD patients were significantly younger (p = 0.021). The male-female ratio was higher
in PD and DLB compared to CTRLs, but no gender-specific expression changes were
observed during data analyses. Similar to post-mortem cases, the age at disease onset was
significantly lower in PD than in DLB. Since these cohorts were being recruited during
routine clinical practice and none of them was an end-stage patient, disease duration was
similar in the patient groups (Table 2). Family history of dementia was reported in 11.1%
of DLB patients and of PD, in 27.2% of PD patients.

Table 2. Demographic and clinical data of the participants of the study.

DLB (n = 72) PD (n = 59) CTRLs (n = 54) p 1

Mean age (age range) 76.0 (58–91) 67.7 (45–84) 71.6 (51–88) 0.014
Gender (male/female ratio) 1.5:1 1.3:1 1:1.5 0.033

Disease onset 71.4 (57–86) 62.3 (40–80) - <0.001
Disease duration 2 (range) 4.7 (0.9–8.7) 5.4 (0.0–18.4) - 0.086

MMSE 3, mean (range) 15.1 (3–28) - - -
UPDRS-III 4, mean (range) - 20.9 (5–39) - -

Parkinsonism, n (%) 47 (79.7%) - - -
Abnormal Dat-Spect imaging, n (%) 55 (93.2%) - - -

All ages and disease duration are expressed in years. 1 p, obtained by the Kruskal-Wallis test; 2 from the beginning
of cognitive symptoms for DLB and AD, and motor symptoms in the case of PD; 3 MMSE, Mini-Mental State
Examination; 4 UPDRs-III, Unified Parkinson’s disease rating scale.

2.3. Relative SNCA Isoform Expression Levels in Different Brain Regions and Blood

To ascertain which of the SNCA transcripts was mostly expressed in frontal and
temporal cortices, caudate nucleus, pons and blood, Ct values obtained by real-time PCR
were compared. After corrections for the different efficiencies and thresholds for each
PCR reaction, the estimation of differences between expression levels was determined
considering the overall SNCA expression as 100% (Table 3). The results revealed that
SNCAtv1 was the main transcript in all brain region and blood, representing about 60%
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of the transcripts analyzed here. SNCAtv2, a transcript that at least in part shares the
SNCAtv1 promoter, showed two to three times less expression than SNCAtv1. The initial
exon of SNCAtv3 is located upstream to the initial exons of SNCAtv1 and SNCAtv2.
Correspondingly, it is driven by different regulatory elements than the two main transcripts
and represents about 15% of SNCA transcripts in the cortex and blood, and less than 10%
in other brain areas. SNCA112 and SNCA126 are transcripts generated by in-frame splicing
and represent only approximately 1% of the SNCA mRNAs analyzed here (Table 3).

Table 3. Relative expression of SNCA isoforms in four different brain regions and blood.

SNCAtv1 SNCAtv2 SNCAtv3 SNCA112 SNCA126

FC 1 65.5% 1 22.3% 10.4% 0.5% 1.3%
TC 2 52.2% 20.9% 20.9% 0.3% 0.7%
Ca 3 63.4% 25.3% 9.5% 0.6% 1.2%
Pt 4 63.1% 31.6% 3.4% 0.7% 1.2%

Blood 60.2% 20.4% 15.7% 1.2% 2.4%
1 FC, frontal cortex; 2 TC, temporal cortex; 3 Ca, caudate nucleus; 4 Pt, pons; blue: SNCA transcripts with different
initial exons; orange: SNCA transcripts generated by in-frame splicing.

2.4. SNCA Transcript Expression in the Temporal Cortex

The expression levels of the five SNCA transcripts were determined in the temporal
cortex of DLB and PD patients, and in controls. The results revealed disease-specific
expression changes, which are shown in Figure 1. SNCAtv1 was significantly overexpressed
in DLB compared to controls, and a slight, but not significant increase was observed in PD
(Figure 1). SNCAtv2 was increased in both DLB and PD, However, it was only significant in
PD; in DLB, because of the high standard deviation range, it did not reach significance. No
significant expression changes were detected for either SNCAtv3 or SNCA126. The levels
of SNCA112 were significantly increased in DLB, although a high standard deviation range
was also detected. In PD temporal cortices, SNCA112 levels did not show a significant
expression change, though a tendency to increase was observed (Figure 1).
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2.5. Correlation between the Expression of SNCA Transcript Variants in Brain

To find out if there was a correlation between the different SNCA transcripts in
the temporal cortex of LBD, all LBD-cases were grouped, and the Pearson R-Score was
determined. The results are shown in Table 4 and reveal a strong positive correlation
(R > 0.7) between the major transcript SNCAtv1 and SNCAtv2, between SNCAtv1 and the
minor transcripts SNCA126 and SNCA112, between SNCAtv2 and the minor transcripts,
and between SNCA126 and SNCA112. On the contrary, the correlation between SNCAtv3
and all other transcripts was negative (Table 4).

Table 4. Correlation SNCA transcript variant expression in LBD temporal cortices.

SNCAtv1 SNCAtv2 SNCAtv3 SNCA126

SNCAtv2 0.745
p < 0.0001

SNCAtv3 −0.266
p = 0.141

−0.007
p = 0.934

SNCA126 0.715
p < 0.0001

0.814
p < 0.0001

−0.202
p = 0.276

SNCA112 0.814
p < 0.0001

0.834
p < 0.0001

−0.262
p = 0.162

0.735
p < 0.0001

Pearson’s R-Scores and their corresponding p-values for each analysis. Significant results are marked in bold.

2.6. SNCA Transcript Expression in Blood

The expression of only four of the five SNCA transcripts could be determined in
blood. SNCA112 had the lowest expression, and the construction of a valid standard
curve failed. Figure 2 shows that compared to controls, the expression of all four SNCA
transcripts was significantly diminished in DLB, and remained unchanged in PD. Down-
regulation of SNCAtv1, SNCAtv2, and SNCA126 was also significant when compared with
PD (Figure 2).
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2.7. Correlation between SNCA Transcript Expression, Disease Duration and Age-at-Onset in Blood

Significant, moderate (R > 0.3) and strong (R > 0.7), positive correlation was observed
between all transcripts in blood of both DLB and PD patients (Table 5).

Table 5. Correlation SNCA transcript variant expression in blood of DLB and PD patients.

Correlation between DLB PD

SNCAtv1 and SNCAtv2 0.81 (p < 0.0001) 0.89 (p < 0.0001)
SNCAtv1 and SNCAtv3 0.44 (p = 0.0005) 0.77 (p < 0.0001)
SNCAtv2 and SNCAtv3 0.46 (p < 0.0001) 0.64 (p < 0.0001)
SNCAtv1 and SNCA126 0.75 (p < 0.0001) 0.57 (p < 0.0001)
SNCAtv2 and SNCA126 0.81 (p < 0.0001) 0.81 (p < 0.0001)
SNCAtv3 and SNCA126 0.81 (p < 0.0001) 0.81 (p < 0.0001)

Pearson’s R-Scores and their corresponding p-values for each analysis.

The analysis of correlation between disease duration and SNCA transcript expression
in DLB revealed that the shorter the duration from DLB onset, the lower the SNCA tran-
script expression levels in the blood (Figure 3a–c). Whereas this positive correlation was
not significant for SNCAtv1 (R = 0.231, p = 0.09), it was the strongest for SNCAtv3 with a
correlation coefficient of almost 0.5 (Figure 3c). To further investigate the effect of disease
duration on SNCAtv3 expression, DLB patients were divided into three groups: (i) patients
with disease duration between 0 and 2.9 years (n = 14), (ii) patients with disease duration
between 3 and 5.9 years (n = 25), and (iii) patients with disease duration of 6 years or
more (n = 20). The results showed that SNCAtv3 levels were significantly lower in patients
who recently debuted with DLB when compared to patients who were suffering from the
disease between 3 and 5.9 years, and even lower when compared with patients with a DLB
course of 6 years or more (Figure 3d).
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3333 
 
4444

 

Figure 3. SNCA transcript expression in blood of DLB patients: (a) correlation between SNCAtv2 and disease dura-
tion; (b) correlation between SNCA126 and disease duration; (c) correlation between SNCAtv3 and disease duration;
(d) comparison of SNCAtv3 expression levels in three DLB groups with different disease duration. ** p <0.01.
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In contrast to DLB, in PD, a negative correlation was found between SNCA transcript
expression and disease duration. This correlation was significant in the case of SNCAtv3
(Figure 4a). When dividing PD patients into three groups: (i) patients with disease duration
between 0 and 2.9 years (n = 23), (ii) patients with disease duration between 3 and 9.9 years
(n = 27), and (iii) patients with disease duration of 10 years or more (n = 6), SNCAtv3
levels were significantly lower in patients with long disease duration compared to patients
with recent disease onset (Figure 4b). Finally, when comparing SNCAtv3 expression levels
of the recent DLB onset group (0.48 + 0.47) with those of the corresponding PD group
(1.62 + 1.37), SNCAtv3 was significantly diminished in DLB (p < 0.001)

1 
 

 
3333 
 
4444

 Figure 4. SNCAtv3 expression in blood of PD patients: (a) correlation between SNCAtv3 expression and disease duration;
(b) comparison of SNCAtv3 expression levels in three PD groups with different disease duration. * p < 0.05.

Although no correlation between SNCA transcript expression and disease onset was
found in DLB, in PD significant weak (R < 0.3) and moderate positive correlations between
age at disease onset and SNCAtv1, SNCAtv2, and SNCAtv3 were identified (Figure 5a–c).
Therefore, we divided the group of PD patients by their age at disease onset: 44 patients
presented with the first disease symptoms before the age of 70 years, and 14 at 70 years
or later. The comparison of SNCA transcript expression levels between both groups and
controls revealed that the expression of SNCAtv1 and SNCAtv2, but not of SNCAtv3,
was significantly higher in PD patients who presented first symptoms before the age of
70 years in comparison with both PD patients who debuted at 70 years or later, and controls
(Figure 5d–f).
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3. Discussion

In the present study we analyzed the expression of five SNCA transcripts in brain
and blood of patients diagnosed with DLB or PD. SNCAtv1 was identified as the major
SNCA transcript representing between 50 and 60% of total SNCA. The initial exon of
SNCAtv2 follows the initial exon of SNCAtv1 without intron in between indicating that
both transcripts are partly co-regulated [25]. The initial exon of SNCAtv3 is located about
1 kb up-stream to the other initial exons and therefore, its independent regulation can be
expected. Two minor transcripts, SNCA112 lacking exon 5, and SNCA126 lacking exon 3
are generated as the result of in-frame splicing.

In the temporal cortex, disease-specific SNCA transcript expression changes were
found. Whereas SNCAtv1 was overexpressed in DLB, SNCAtv2 was increased in PD.
SNCAtv1 is the major SNCA transcript representing about 50% of overall SNCA mRNA
in the temporal cortex, suggesting that the increase of AS and its modified species may
be due to increased expression of SNCAtv1 [31]. In contrast, SNCAtv2 only represents
about 20% of total SNCA mRNA in the temporal cortex. Correspondingly, a much lower
AS increase should be the result. In fact, in PD, the temporal cortex is affected after several
years of disease progression [9,10] and AS overexpression has been reported especially in
early affected areas, such as the sustantia nigra pars compacta [32].

Furthermore, we found a strong positive correlation between SNCAtv1 and SNCAtv2,
as well as between both and the minor transcripts SNCA126 and SNCA112. Instead,
SNCAtv3 expression levels correlated negatively with all other transcripts. These results
confirm, that SNCAtv3 expression is driven by a different promoter than SNCAtv1 and
SNCAtv2, and that the latter share similar regulatory elements. Additionally, the results
indicate that the minor transcripts SNCA126 and SNCA112 are mainly generated from
SNCAtv1 and SNCAtv2, but not from SNCAtv3.

Moreover, SNCA112 was overexpressed in DLB confirming the results we previously
published for frontal cortices from DLB patients. In that study, we showed an important
increase of SNCA112 in DLB cases which presented pure and not common LB pathology
in the brain [33]. As the result of exon 5 splicing out, SNCA112 gives rise to AS112, a
112-amino acid protein lacking C-terminal residues 103–130 [34]. This deletion occurs in
the less organized part of the protein bearing a protein variant with increased aggregation
propensity [35]. Correspondingly, it has been shown that the aggregation rate of alpha-
synuclein increases after the introduction of nucleation seeds composed of AS fibrils into
AS expressing cells [36]. This seeding process is tightly linked to the formation of soluble
intermediates that precedes the formation of toxic AS species, and their propagation
throughout the brain [37,38]. Although SNCA112 represents less than 0.5% of total SNCA
in the temporal cortex, only doubling its concentration might increase the formation of
seeding fibrils, and together with total AS increase initiate and accelerate the aggregation
process. So far, AS112 could not be detected in brains affected with LB pathology, but the
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fact that it only represents a very small fraction of total AS and that it could be sequestered
instantaneously to form seeding fibrils, converts its detection into a challenge.

In blood, all four SNCA transcripts were significantly diminished in DLB compared to
controls. In a recent study, Funahashi and colleagues analyzed SNCA expression levels in
the blood of 20 DLB patients and 20 controls [39]. SNCA expression was analyzed for all
transcripts containing all coding exons together and no expression changes were found.
However, in contrast to our results, SNCA126 expression was increased. This difference
could be due, on one hand, to the small sample number included in Funahashi’s study, or
on the other, to ethnical differences. Additional studies in both, the Asian and Caucasian
populations should confirm this difference.

In our PD cohort, the expression of SNCA transcript variants did not differ significantly
when compared to controls. Nevertheless, a positive correlation between SNCA transcript
expression and disease onset was found. Correspondingly, the expression of SNCAtv1,
SNCAtv2, and SNCA126 was diminished in PD patients who debuted with PD symptoms
before the age of 70 years in comparison with those with later disease onset. This division
of PD patients in dependency on their age at onset further revealed that SNCAtv1 and
SNCAtv2 were significantly diminished in the earlier onset group when compared to
controls. In a recent study, Locascio and colleagues analyzed SNCA transcript levels in
three independent PD cohorts and found reduced SNCA mRNA at early PD stages [40].
Here, we found the diminution of SNCAtv1 and SNCAtv2, which together represent about
80% of total SNCA in blood. This diminution could correspond to Locascio’s findings, who
analyzed the expression of all coding exon-containing SNCA variants together. Since in
the present study SNCAtv3 was analyzed independently, the decrease of SNCAtv1 and
SNCAtv2 could be detected in all PD patients with onset before 70 years, independently
on their disease stage.

Two additional studies analyzed SNCA in blood of PD patients, both in correlation
with SNCA promoter methylation [41,42], and in both hypo-methylation of the SNCA
promoter, but no significant expression changes of SNCA mRNA was found. It is important
to take into account that mainly SNCAtv1 and SNCAtv2 are regulated by methylation
changes in the CpG-island in SNCA intron 1 [43]. Together, the results of our studies
and the previous studies mentioned here underline the importance of analyzing SNCA
transcripts with different initial exons independently, especially when seeking for a disease
biomarker. The fact that these transcripts are driven by different promoters and that
SNCAtv3 expression differs from SNCAtv1 and SNCAtv2 suggest that SNCAtv3 may
mask expression changes of the individual transcripts.

Furthermore, another recent study analyzed AS levels in blood cells from PD patients
with and without dementia in comparison with controls [44]. The results revealed that total
AS was increased in PD patients without dementia in comparison with PD patients with
dementia. Since dementia in PD usually develops at late disease stages, these results are in
concordance with our observation that the lowest SNCA levels are found at late disease
stages and that SNCA is increased at the earlier stages.

Although SNCAtv1 and SNCAtv2 expression was diminished in both DLB and PD
with onset before 70 years, SNCAtv3 expression did not differ between the entire DLB
and PD cohorts compared to controls. However, its expression correlated inversely with
disease duration in both diseases, and opposite SNCAtv3 expression levels, as a decrease
in early DLB and an increase in early PD were observed. Since both DLB and PD are
synucleinopathies sharing similar neuropathological features in the brain, this result has
been rather unexpected. A possible explanation could be the differences in the clinical
course between both diseases, because whereas DLB is a rapidly progressing disease of
short duration [6,7], PD usually has a much slower but longer disease course [9]. This
difference could have a direct effect on AS oligomerization and aggregation rates in the
brain, which at the same time could be differently reflected in blood. Furthermore, different
spreading pathways of brain alpha-synuclein pathology have been recently proposed [45].
According to this hypothesis, in PD brain, AS spreading would start in the brainstem and
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reach the cortex relatively late. In contrast in DLB, AS spreading would start in the olfactory
bulb and extend directly to the cortex. These differences could also be reflected as SNCAtv3
expression changes in blood, which could represent a biomarker to differentiate between
early DLB and PD. In addition, the suitability of SNCAtv3 as an early DLB biomarker
should be further explored, since it could be useful to identify those patients in prodromal
cohorts who will develop DLB in the future.

The main weakness of our study is the relative low number of participants, which
made it impossible to further subdivide the cohorts, especially the PD cohort. In the case
of PD, the analysis of the results in different PD subtypes would permit to obtain more
precise results on the suitability of SNCA transcripts as disease biomarker. However, the
study has been performed over several years and therefore robust expression data have
been obtained. Nevertheless, the results must be validated in additional and independent
cohorts and in different laboratories.

Further research is needed to answer several questions that have arisen. First, are
changes in SNCA transcript expression contrasting in different PD subtypes? Second, does
hypo-methylation of the CpG island in SNCA intron 1 correlate with expression changes
of individual transcripts, specifically SNCAtv1 and SNCAtv2? Third, is SNCAtv3 a valid
biomarker to distinguish between individuals with idiopathic REM sleep behavior disorder
who will convert to DLB from those who will convert to PD? If so, prodromal patients
could be specifically identified and be eligible for the study of preventive treatments.

In conclusion, our study highlights the importance of analyzing the different SNCA
transcript variants instead of total SNCA in biomarker research. To determine the biomarker
potential of the three major SNCA transcripts, SNCAtv1, tv2 and tv3 to predict disease
progression, these should be analyzed in longitudinal studies including both PD and DLB
cohorts with a detailed clinical record. Furthermore, the determination of SNCA transcript
expression levels in prodromal LBD patient cohorts may provide information on disease
development in the future.

4. Materials and Methods
4.1. Source of Tissues

Post-mortem brain samples with their corresponding clinical and neuropathological
diagnoses were provided by the Institute of Neuropathology Brain Bank and the Neurolog-
ical Tissue Bank of the University of Barcelona/Hospital Clinic, Barcelona, Spain. Brain
samples were obtained from 16 donors with DLB, from 16 donors with PD, and 13 donors
devoid of neurological signs or symptoms and lack of neuropathological findings. Tempo-
ral cortex samples, obtained from all DLB, and PD, and 11 control brains were used for the
study of differential SNCA transcript expression. Samples from the control frontal cortex,
caudate nucleus and pons were used to analyze the relative amount of SNCA transcripts
in the different brain regions. The presence and distribution of AS related pathology was
evaluated following the criteria established by the third report of the DLB consortium [30]
and according to Braak and Braak [29]. AD-type pathology was assessed by using the Braak
and Braak criteria [28]. The study was carried out in accordance with the requirements of
the local Ethics Committee.

4.2. Participants

A total of 185 individuals were included from two different hospitals: Hospital
Universitari Germans Trias i Pujol (Badalona, Barcelona) and Hospital Universitari de
Bellvitge (L’Hospitalet de Llobregat, Barcelona). Three cohorts were recruited:

DLB patients. A total of 72 patients who fulfilled criteria for probable DLB [6,30] were
prospectively recruited from those visited in the Neurodegenerative disease Unit of both
centers as routine clinical practice.

PD patients. A group of 59 PD patients diagnosed according to the UK PD Society
Brain Bank criteria [46] were included. None of these patients presented cognitive impair-
ment, which was defined as subjective cognitive complaints, based on the patient’s and
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informant interview, and on the Minimental State Examination (MMSE) score, considering
cognitive impairment if the MMSE punctuation was <24 points. MMSE testing forms, part
of the routine protocol used during the initial cognitive status screening, although the use
of other tests, such as the Montreal Cognitive assessment (MoCA) may detect cognitive
decline with higher sensitivity.

In DLB and PD patients, age at onset was defined as the age when memory loss or
parkinsonism was first noticed by the patient or his/her relatives.

Control subjects. A total of 54 CTRLs were selected among non-blood relatives of the
patients, age-matched with the DLB group.

The study was carried out with the approval of the local Ethical Committees for
Clinical Investigation of the institutions involved in the study, and a written informed
consent was signed by all participants or their legal guardians according to the Declaration
of Helsinki.

4.3. RNA Purification, Reverse Transcription, and Assessment of mRNA Stability

From brain tissue, RNA was isolated with TRI-Reagent (MRC, Cincinnati, OH, USA)
according to the manufacturer’s protocol. Since red blood cells are the major source of
AS in blood [46], whole blood samples were used for expression analyses. RNA isolation
was carried out after collection of 3 mL of whole blood in PAXgene Blood RNA tubes
(PreAnalytiX, Hombrechtikon, Switzerland) by the use of the PAXgene Blood RNA Kit 50,
v2 (PreAnalytiX). RNA quantity, purity and integrity were ascertained by the Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). For RNA obtained from blood,
all RIN values were higher than 8. In regard to brain samples, only RNAs with RIN higher
than 6 were stored at −80 ◦C until use [47].

For brain samples, 2 µg and for blood samples, 1 µg of total RNA was used for
reverse transcription by Ready-to-go™ You-Prime First-Strand Beads (GE Healthcare,
Buckinghamshire, UK). mRNA degradation rates of all SNCA transcript variants were
assessed in order to assure that they presented similar stabilities even at RIN values of
about 6, as described before [48].

4.4. Primer Design

Primer sequences and primer combinations are given in Table 6 and their location is
shown in Figure 6. The SNCA gene bears numerous transcript variants by the inclusion
of alternative 5’ initial exons and by splicing out of internal exons. The five transcripts
analyzed here present specific sequences permitting the design of isoform-specific primers.
To amplify SNCAtv1, SNCAtv2, and SNCAtv3, the forward primer was located in exons 2a,
2b, and 1, respectively. A common reverse primer was located in exon 4 (Figure 6). All exon
4 lacking transcripts giving rise to AS126 were co-amplified by the use of a forward primer
that spanned the boundary between exons 3 and 5, and a reverse primer was located in
exon 6. Exon 6 lacking transcripts giving rise to AS112 were also co-amplified, the forward
primer as located in exon 4 and the reverse primer spanned the boundary between exons
5 and 7 (Figure 6, Table 6).
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Table 6. cDNA primer sequences used for PCR amplification of SNCA transcript variants, neuron-specific enolase,
synaptophysin, beta-actin and porphobilinogen deaminase.

Primer Name Primer Sequence (5′–3′) Primer Comb 1 Transcript 2

SNCA-1U * ATC CAG GAA CAG CTG TCT TC 1U + 4L SNCAtv3
SNCA-2aU * TTC AAG CCT TCT GCC TTT CC 2aU + 4L SNCAtv1
SNCA-2bU * AGT CGG AGT TGT GGA GAA GCA 2bU + 4L SNCAtv2

SNCA-4L ACC ACT GCT CCT CCA ACA T
SNCA-3/5U * CTC TAT GTA GTG GCT GAG AA 3/5U + 6L SNCA126

SNCA-4U GTG CAT GGT GTG GCA ACA
SNCA-5/7L * ATA CCC TTC CTT GCC CAA C 3U + 5/7L SNCA112

SNCA-6L GAG CAC TTG TAC AGG ATG G
NSE_6U TGT ATC GCC ACA TTG CTC AG
NSE_7L1 ACT GGG AGG ATC ATG AAC TC 6U + 7L1 3

NSE_7L2 ATG GCA TCC CGA AAG CTC TCA 6U + 7L2 3

SYPex2U GCT TTG TGA AGG TGC TGC AAT 2U + 4L1 3

SYPex3U TCT TCG CCA TCT TCG CCT TTG 3U + 4L1 3

SYPex4L1 TGC ATC AAA GTA CAC TTG GTG CA
PBGD_U1 ACA CAC AGC CTA CTT TCC AAG
PBGD_L1 TCA ATG TTG CCA CCA CAC TGT

beta-actin U2 TCT ACA ATG AGC TGC GTG TG
beta-actin L3 TAG ATG GGC ACA GTG TGG GT

1 Primer comb, combination of primers used to amplify the different transcripts; 2 transcript, indicates which of the transcripts is amplified;
3 two fragments of each housekeeping gene, NSE and SYP amplified to assure reproducibility of the results; * these primers comprise
transcript-specific sequences.

4.5. Real Time PCR

Relative expression of five SNCA transcript variants, SNCAtv1, SNCAtv2, SNCAtv3,
SNCA126, and SNCA112 was determined in the temporal cortex and blood of all samples
obtained for the study. The relative expression of these transcript variants was additionally
determined in the frontal cortex, pons and caudate nucleus samples of five controls. Real-
time PCR was carried out on a Rotor-Gene 6000 (Corbett Life Science, Qiagen, Hilden
Germany). PCR was performed in 15 µL reactions with the QuantiTect SYBR Green PCR
Kit (QiaGen), containing 16 pmol of each primer (Table 6) and 1 µL of cDNA. Since in the
brain, SNCA shows mainly neuronal expression, human neuron-specific enolase 2 (NSE)
and synaptophysin (SYP) were included as housekeeping genes to correct for neuronal
loss in the tissue with LBD [48]. In blood, two housekeeping genes were analyzed to assess
relative SNCA isoform expression, beta-actin (ACTB) and porphobilinogen deaminase
(PBGD) [49].

All assays included two replicates of each sample. They were performed twice and
independently to assure their reproducibility and minimize possible errors. Standard
curves for the target as well as reference genes were generated for each run by amplifying
the same serially diluted cDNA control sample. Relative transcript variant expression
data were calculated by the ∆∆Ct method. Differences between the expression amounts
of the five SNCA transcripts were calculated by 2ˆn, n corresponding to the cycle number
difference between Ct of one of the less expressing transcripts and Ct of the major transcript.

4.6. Statistical Analysis

Possible differences in quantitative variables (age at disease onset, age at death and
disease duration) between the pathological groups were assessed by the Kruskal-Wallis
test. Fisher’s exact test was used to analyze qualitative variables. Expression analyses
were performed independently for both housekeeping genes, and the normalization factor
was derived from the geometric mean of this data [50]. ∆Ct was obtained for all samples,
and the mean of delta Ct values from the control group was used to calculate the ∆∆Ct-
value and the corresponding expression change for each sample. In the text, the results
are shown as means and standard deviation. The significance of possible differences in
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the expression levels was analyzed by the Wilkoxon-Mann-Whitney test [51], and Mann-
Whitney using GraphPad Prism version 8.0.0 for Windows (GraphPad Software, San Diego,
CA, USA). Data distribution pattern was analyzed by the Kolmogorov-Smirnov Test of
Normality. The correlation between expression levels of the five transcripts, as well as
between SNCA transcript expression and clinical variables was determined by linear
regression. Since normal distribution of the data was found, Pearson correlation coefficient
R and its corresponding p-value were calculated.
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DLB dementia with Lewy bodies
PD Parkinson’s disease
LBD Lewy body disorders
LBP Lewy body pathology
AD Alzheimer disease
AS alpha-synuclein
LB Lewy body
PDD PD dementia
CSF cerebrospinal fluid
SNCA alpha-synuclein gene
tv transcript variant
UTR untranslated region
CTRL Control subjects
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