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Methods for carrying out coherent X-ray scattering experiments are reviewed.

The brilliance of the available synchrotron sources, the characteristics of the

existing optics, the various ways of obtaining a beam of controlled coherence

properties and the detectors used are summarized. Applications in the study of

the dynamics of speckle patterns are described. In the case of soft condensed

matter, the movement of inclusions like fillers in polymers or colloidal particles

can be observed and these can reflect polymer or liquid-crystal fluctuations. In

hard condensed-matter problems, like phase transitions, charge-density waves or

phasons in quasicrystals, the study of speckle fluctuations provides new time-

resolved methods. In the domain of lensless imaging, the coherent beam gives

the modulus of the sample Fourier transform. If oversampling conditions are

fulfilled, the phase can be obtained and the image in the direct space can be

reconstructed. The forthcoming improvements of all these techniques are

discussed.

1. Introduction

When X-rays are used in diffraction experiments, it is neces-

sary that they have a coherence on some scale � in order that

they produce interferences. This scale defines a small volume

where the electromagnetic beam gives rise to interferences.

For classical X-ray scattering experiments, the diffraction of

large beams with many coherence volumes is observed. In

each coherence volume Di, a wave AiðqÞ is diffracted. Only an

incoherent sum of the intensities over a large number of

domains N is measured:

IðqÞ ¼P
i2N

jAiðqÞj2: ð1Þ

With the new synchrotron sources, the high brilliance and the

small source size open the possibility of obtaining coherent

X-ray beams of reasonable intensity and of nearly macro-

scopic spatial extension. As the X-ray source is not coherent,

the method consists in selecting, in the two transverse direc-

tions, a part of the incoherent beam which fulfils the condi-

tions for diffraction:

��0 ’ �=4�; ð2Þ
where �0 is the r.m.s. divergence of the beam and � is the r.m.s.

beam size. The equality in equation (2) corresponds to fully

coherent Gaussian beams. Equation (2) is in fact another

version of the Heisenberg equation, if one estimates

�p ¼ 2�h- �0=� and �x ¼ �. In practice, owing to optics,

especially with the use of slits in the sample vicinity, the beam

cannot be considered as Gaussian, and the condition for

obtaining an X-ray beam of good coherence can be written as

� � � �; ð3Þ
where � is the size of the beam (usually slit aperture or pinhole

diameter) and � is the FWHM divergence of the beam. This

rough formula always gives excellent estimates of the coher-

ence conditions. Formula (3) has a simple physical inter-

pretation: coherence is the high-resolution limit of a

diffraction experiment, which means that the resolution

�q ¼ 2��=� cannot be smaller than 2�=�. For a very high

resolution in q space, it is necessary to increase the size of the

coherently irradiated sample, as for instance in Petukhov et al.

(2006) where this size had to be extended to 100 mm for

carrying out measurements with a microradian angle resolu-

tion.

Along the longitudinal direction, the diffracted waves can

interfere if the FWHM path-length distribution of the waves in

the irradiated sample �L fulfils

�L � �l ¼ �2=2��; ð4Þ
where �l is the longitudinal (temporal) coherence length. The

optics determines the experiment monochromaticity ��. One

can also imagine that monochromaticity is achieved by an

energy-sensitive detector.

Coherent scattering methods were first developed for the

study of fluctuations in dynamical processes by means of

speckle dynamics. This was a transposition of the methods of

dynamical light scattering (DLS) and it is often called X-ray

photon correlation spectroscopy (XPCS) or X-ray intensity

fluctuation spectroscopy (XIFS). The main advantages of

X-rays are in their ability to observe order fluctuations in the

vicinity of Bragg peaks, to observe fluctuations at smaller sizes



(larger jqj values), and also in their penetration depth, which

opens the possibility of studying opaque or strongly multiply

diffracting samples. Fluctuations of a stationary process can be

studied from the intensity–intensity correlations averaged

over a large number of fluctuation times:

�ðq; tÞ ¼ hIðq; t0ÞIðq; t þ t0Þit0=hIðq; t0Þi2t0 ; ð5Þ

where the time covariance has been normalized by the average

intensity squared. This average, obtained at a given q, assumes

that the system is ergodic. The position of the XPCS technique

in the time versus q domain is compared with other techniques

in Fig. 1.

In coherent experiments, the first problems were to improve

the experimental stability and to find suitable detectors. For

XPCS, the conditions of equations (3) and (4) could be

somewhat relaxed because the observation of speckles does

not need a very high degree of coherence. Progress in

experimental set-ups and in micromechanics quickly opened

the possibility of using coherent scattering in the study of

small objects where � in formula (3) is the sample size. In this

case, one observes the modulus of the amplitude of the wave

scattered by the sample, corresponding to the Fourier trans-

form (FT) of the electron density of the sample, and one is

able to obtain direct-space information on the shape and the

inner structure of the diffracting object. This leads to the

recent fast development of lensless imaging methods, where

phase reconstruction is achieved from measurements over-

sampling the reciprocal space (Fienup, 1982, 1987). A discus-

sion of the limits of this method can be found in Shen et al.

(2004) as regards intensity limitations and in Mielenz (1999) as

regards resolution limitations.

Coherent X-rays is now a well established technique, and

valuable information complementary to this paper can be

found in van der Veen & Pfeiffer (2004) and in Lengeler

(2001). Many of the methods developed for light scattering

experiments are now used with X-rays. One of them is to

obtain interferences between a reference and the sample,

which is called heterodyning. Homodyne and heterodyne

XPCS measurements provide correlation functions (Berne &

Pecora, 2000) different from equation (5) and heterodyning

the amplitude diffracted by the sample with that of a reference

can provide a method for phase retrieval (Gabor et al., 1971).

In this paper, I will show how coherent X-ray scattering

experiments are carried out and discuss the progress in this

field. I will limit the discussion to X-rays of energies

E > 700 eV, i.e. the L edges of 3d transition metals.

Coherence is obtained either by selecting a part of the

incoherent beam with slits or by the small size of the

diffracting sample. These experiments have special needs in

beamline set-ups, and the experimental problems in devel-

oping this technique will first be explained. Typical results in

the XPCS technique and in lensless imaging will be summar-

ized. Finally, the future of coherent X-ray scattering and some

new developments will be discussed.

2. Coherent beam

2.1. The synchrotron sources

The intensity Ic available from a source in a coherent

scattering experiment is connected to the average source

brilliance B:

Ic ¼ Bð�=2Þ2ð��=�Þ: ð6Þ
The source can have a wide energy spectrum (bending

magnets, wigglers) or can be narrowly peaked (undulators).

Fig. 2 shows the typical brilliance evolution among various

X-ray sources. Fig. 3 shows the standard wavelength depen-
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Figure 1
The frequency–scattering vector domains of available techniques for
dynamic studies [adapted from Grübel & Zontone (2004)]. The XPCS
domain can be extended down to q ’ 3� 10�4 Å�1 and � ’ 10�4 Hz,
overlapping with DLS. The other techniques are inelastic neutron
scattering (INS), inelastic X-ray scattering (IXS) and nuclear forward
scattering (NFS).

Figure 2
Summary of the source brilliance evolution during the 20th century. B
units are photons (s mm2 mrad2 0.1% bandwidth)�1.



dence of B for realistic undulators or bending magnets in a

typical third-generation source. These estimates are for Soleil,

France, but they are of the same order in many recent

‘national’ synchrotron sources (SLS in Switzerland, Diamond

in UK, Elettra in Italy), which are in the 2–3 GeV range. A

recent review of existing and future synchrotron sources is

found in Bilderback et al. (2005), and it is interesting to refer

to Helliwell (1998) for history. Sources in the 6–8 GeV range,

like ESRF, APS and SPring 8, have the main advantage of

providing larger brilliance in the higher-energy range

(E> 8 keV). Units of B are photons s�1 mm�2 mrad�2 for a

0.1% bandwidth, and undulators typically provide B ’ 1020 in

the 8 keV range. In this paper, orders of magnitude will be

given for the ESRF, well experienced by the author, but all

third-generation synchrotron sources should be of the same

order of magnitude. A 25 m long undulator (780 periods of

32 mm) at SPring-8 (Yabashia et al., 2001; Hara et al., 2002)

could have the highest available value: B> 1021. As an

example, a ‘U20’ undulator with an Si(111) monochromator

(��=� ¼ 1:4� 10�4) can provide a coherent intensity of

Ic ’ 0:6� 1011 photons s�1 at 8 keV, from the B values of

Fig. 3.

2.2. The beamline optics

This large intensity is somewhat reduced by the insertion of

optical elements in the beam path and by the difficulty in

obtaining the high degree of precision needed for light beams

of subnanometric wavelengths.

A first example was diffraction from beryllium windows

observed at the initial stage of the ESRF (Cloetens et al.,

1996). The diffraction from windows was then systematically

studied (Suzuki et al., 1998) and in the beamline design the

choice of beryllium polished windows, crystalline diamond

windows or in-vacuum beam is now one of the first subjects of

discussion. The scattering from unpolished windows is not

only an imaging problem, as for instance in Cloetens et al.

(1996), where the diffraction from crystal defects was hidden

by the plane-wave distortion (Suzuki et al., 1998). In fact, the

windows also behave as secondary sources (Pietsch et al.,

2005), which has the effect of reducing the source brilliance.

For instance, in Pietsch et al. (2005), the beam coherence was

discussed by considering that the source was at a distance of

7.6 m (the unpolished beryllium window acting as a virtual

source) and not at the electron beam position 45 m away. This

is a strong effective brilliance reduction of the source.

2.2.1. Focusing. In a synchrotron experiment, the source-to-

sample distance is of the order of 50 m, and the FWHM source

height is between 20 mm (an undulator beamline at ESRF)

and 70 mm (a bending magnet beamline of ESRF). From

equation (3), one calculates the vertical transverse coherence

length at the sample: �v ’ 400 mm. The horizontal FWHM of

the beam is close to 1 mm (in the case of even undulators of

the ESRF like ID10), and �h ’ 8 mm. This is one of the

reasons for having beams in the � ’ 10 mm range for speckle

experiments. In this case, only a small part of the available

intensity is selected in the vertical direction. Vertical focusing

can compensate for this problem: the intensity is increased in

the same proportion as �v is decreased. The ratio between the

source-to-focusing-optics distance and the optics-to-sample

distance has to be of the same amount as the ratio between the

source height and the pinhole diameter, i.e. about two in this

case. For the study of nanoobjects, where the beam coherence

length can be reduced, this ratio can be much larger, and the

focusing set-up can be very close to the sample, opening the

possibility of submicrometre focused beams.

Coherent experiments need high-quality focusing elements.

To this end, different techniques have been developed.

(a) Refractive lenses use the slightly smaller than unity

index of refraction of matter (Snigirev et al., 1996; Lengeler et

al., 1999). They currently provide focused beams of 3 to 10 mm

with a metre range of focal lengths (Lengeler et al., 1998) in

beamlines like ID01 of ESRF and a typical focus size of 30 mm

FWHM for a focal length of about 15 m at ID10. These

(relatively) large focus sizes could be explained by lens

imperfections, but also by large focal distances. This typical

size of the focused beam at the sample was well adapted for

speckle experiments, where the beam was in the 10 mm range.

For imaging purposes of submicrometre samples, shorter focal

distances (less than 1 m) and submicrometric beams are now

currently available, thanks to novel mechanical techniques

(Lengeler et al., 2002). A discussion of the recent improve-

ments in focus size and in energy range is given in Schroer et

al. (2003) and Lengeler et al. (2005). Absorption limits the use

of lenses to X-ray energies larger than 5 keV.

(b) Phase zone plates (Fresnel zone plates, FZP) can give

very small focus sizes and they also benefit from the advances

in microprocessing. Their initial efficiency of the order of 10%

(Yun et al., 1999) could be raised by a suitable choice of

material (David et al., 2001). Complex multilevel zone plates

can reach 50% efficiency (Fabrizio et al., 1999) and even more

(Nöhammer et al., 2003).

These two focusing methods are now well developed [see

David et al. (2004) for some descriptions of the set-ups]. They

have chromatic aberrations: their focal distances have a strong
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Figure 3
Estimates of brilliance of various sources for the
Soleil synchrotron (France). Brilliance (B) units are
photons (s mm2 mrad2 0.1% bandwidth)�1.



� dependence (��2 for refractive lenses and ��1 for FZP).

Their shape and the choice of the material have to be adapted

to the chosen energy range and focal distance. Their focusing

characteristics now reach the diffraction limits.

(c) Mirror design is an important parameter of the beamline

optics. These are used as low-pass filters and as focusing

elements. In the first ESRF design, the vertical emittance was

planned to be 0.7 nm rad, with a 10% coupling between

horizontal (7 nm rad) and vertical emittance. The ESRF

emittance is now about 4 nm rad horizontally and the coupling

has been reduced to less than 1%. The vertical source size was

therefore reduced by a factor of 25 compared to the first

design. The standard vertical source sizes of undulators in

large facilities (ESRF, APS and SPring 8) are close to the

ESRF value: 8 mm (r.m.s.). The first mirrors were long (1 m at

least) and their r.m.s. slope errors were of the order of 5 mrad.

For a source-to-focusing-mirror distance of 30 m and a mirror-

to-sample distance of 15 m, the FWHM height of the beam

should be 10 mm with a perfect mirror. With the initial mirror

specifications, the slope errors induce a 350 mm FWHM

height. This yields a loss of a factor of 35 in the source bril-

liance. In a non-coherent experiment, the image of the focused

beam when studied in detail then consists of a superposition of

spots corresponding to various parts of the mirror. Each spot

can have the size of the focused source (about 10 mm). This

can induce large experimental instabilities for small samples

or in high-resolution diffraction experiments. In the present

description, from equation (3), the vertical transverse coher-

ence length at the mirror is �v ’ 220 mm, for a 30 m distance

from an undulator source. In this case, only a few centimetres

of the mirror are selected and slope errors are less of a

problem, because one chooses a ‘good region’ of the mirror,

i.e. a strong maximum in the beam profile. Some improve-

ments have been made in the polishing of large mirrors and

slope errors for large mirrors are now of the order of 1 mrad

(r.m.s.). Further progress is obtained from active bending and

by the reduction of the size of the mirrors. For coherent

systems (Hignette et al., 2001), the relevant quantity is the

mirror shape error � and Marechal’s criterion states that

� ’ �=½27 sinð	cÞ� ’ 1 nm ð7Þ

for classical critical angles 	c. These characteristics are now

obtained by combining interferometric measurements with

chemical machining and plasma etching of the surface

(Yamauchi et al., 2002; Yamamura et al., 2003). These mirrors

are used in the Kirk–Patrick–Baez (KB) configuration for

focusing at short distances with a very small focus (<1 mm).

Mirrors are very efficient because of their small intensity

losses and their nearly energy independent focusing proper-

ties. Another method for reducing the size of the mirror was to

increase the incidence angle by replacing the mirror by a

multilayer. In Ziegler et al. (2001), the multilayer had less than

1 mrad slope errors and, in Hignette et al. (2005), sub-100 nm

focusing was obtained.

These focusing methods are now well developed and very

small beam sizes are obtained. This opens the possibility of

observing samples at a very small scale, as is currently done in

scanning electron microscopy, or to have high-quality optical

lenses for imaging purposes in X-ray microscopy techniques.

The aim of this paper is the use of coherent X-ray beams. The

sample scale studied is usually larger than 1 mm for speckle

experiments. For the lensless imaging technique, the beam can

be significantly larger than the sample, and the main problem

is to ensure that the sample is irradiated by a plane wave in

order to use the fast Fourier transform (FFT) algorithms. This

problem has been briefly discussed (Robinson et al., 2003) in

the case of a non-planar focused beam and Kohmura et al.

(2005) has examined the effect of wave distortion occurring

after a pinhole. This, combined with the irradiation problems

arising from excess intensity, nowadays probably limits the

need of very small beam sizes in the experiments discussed

here.

2.2.2. Monochromatization. Another aim of optics is

wavelength selection. This selection is an important experi-

mental parameter for the longitudinal (temporal) coherence.

XPCS experiments are often performed in the vicinity of

8 keV, except for resonant scattering experiments, but higher-

energy X-rays may be a valuable choice (Thurn-Albrecht et

al., 2003).

Energy selection can be performed using three techniques:

filters (‘pink beam’), crystals, and grates or multilayers.

(i) Pink beam selects a harmonic of an undulator with

mirrors and absorbing filters [Abernathy et al. (1998) (at

ESRF) and Sandy et al. (1999) (at APS)], and the resulting

bandwidth is ��=� ’ 1:3% (r.m.s.) for both synchrotrons. Fig.

4 shows the energy distribution of a typical undulator of the

APS and the result of low-pass filtering by a mirror. With the

quality and the length of modern undulators, this value of

��=� is essentially dependent on the characteristics of the

electronic optics of the synchrotron (essentially the horizontal

emittance of the synchrotron and secondarily the horizontal

‘beta function’ of the beamline).
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Figure 4
The energy dependence of the flux of an APS undulator, as calculated
(dot-dashed line), as measured after a Pt-coated mirror which reflects all
wavelengths (dashed line) and after a silicon mirror acting as a low-pass
filter (‘pink beam’, continuous line). (Adapted from Sandy et al., 1999.)



(ii) Crystals are used in most cases. As distortions of the

crystallographic planes in imperfect crystals have the same

effect as mirror-slope errors, perfect crystals are used, which

limits the bandwidth possibilities. The larger energy band-

width is ��=� ’ 3� 10�4 with the Ge(111) Bragg reflection

(Hart & Berman, 1998). This bandwidth is reduced to ’ 10�8

in inelastic scattering beamlines (Verbeni et al., 1996; Toellner

et al., 2001), which means that the longitudinal coherence

lengths vary from the mm to the cm range.

(iii) Monochromatizing reduces intensity. Some experi-

ments need intermediate energy resolution. Multilayers

(Morawe et al., 2003; Martynov et al., 2004; Hignette et al.,

2005) can become very useful, and the number and the quality

of the layers has been improved (Liu et al., 2004). Light-

element multilayers of high quality and of a large number of

periods are now available (Platonov et al., 2004). These

provide excellent monochromators for small-angle scattering

experiments (SAXS) and for the study of nanocrystals, where

the longitudinal coherence length �l can be small. For low

X-ray energies, where Bragg scattering cannot be used, grat-

ings provide adjustable monochromaters. The efficiency of

gratings for soft X-ray optics was discussed in Attwood et al.

(1999). One characteristic feature was the low overall effi-

ciency of this type of set-up at the X-ray energies discussed

here: there was a 10% efficiency of the gratings and another

order of magnitude was lost in optics aberrations. New

improved optics are now developed around the synchrotrons

more dedicated to this energy range (ALS, Elettra).

2.3. X-ray detection

2.3.1. Detection. Coherent diffraction is the high-resolution

limit of incoherent diffraction. As both incident ki and

diffracted kf wavevectors determine the resolution volume,

equation (3) is also valid for detection. In an XPCS experi-

ment, the sample-to-detector distance is of the order of 2 m

and the aperture of the detector is of the order of 20 mm. This

gives �d ’ 10 mrad and, from (3), �must be in the 10 mm range

for a 1.6 Å wavelength. This is the main reason for choosing

this beam diameter in XPCS. If the sample size is the beam

aperture, like in nanocrystal studies [see for instance

Robinson et al. (2001), where crystals are in fact in the

micrometre range], � is significantly smaller and �d can be

increased.

2.3.2. Point detectors. With slits and a point detector, the

resolution can be easily adjusted. Combining these detectors

with fast correlators is a very efficient method for the study of

fast phenomena, but large intensities are necessary. One can

estimate the statistical error in � in equation (5) for low

counting rate (Fera et al., 2000):

��ðq; tÞ ’ ½�ðq; tÞ�1=2=½IðqÞðT�tÞ1=2�; ð8Þ

where IðqÞ is the measured intensity per unit time, T is the

total measuring time and �t is the sampling time. A detailed

discussion of the errors is found in Brown (1993). With the

good stability of available beamlines, T can be extended to a

few thousand seconds and, from the measured intensities I, the

minimum accessible �t can be easily estimated. As the

correlator can sample a very short time interval, the time

structure (bunches, . . . ) and all beamline and synchrotron

vibrations or drifts are observed.

2.3.3. CCDs. For X-ray imaging of the scattered intensities

in reciprocal space and for slow processes with low counting

statistics, area detectors are currently used.

For the high resolution necessary in these measurements,

direct illumination CCDs (DI-CCD), provide a reasonable

detection quantum efficiency (DQE) in the 0.1–12 keV energy

range. In Fig. 5 is plotted the DQE energy dependence of the

two main CCDs used in such experiments. The left curve

corresponds to the front-illuminated ‘deep-depletion’ CCD

(DD-CCD) and the right curve to the ‘back-illuminated’ (BI-

CCD) one.

In DD-CCDs, the X-rays are detected close to the inte-

grated circuit surface, in the vicinity of the CCD cell, and the

charges are spread over a distance smaller than the pixel size,

which is of the order of 20 mm. These CCDs are made from

high resistivity (‘deep depletion’) silicon wafers. In BI-CCDs,

the wafer is thinned to about 50 mm and X-rays are absorbed

on the opposite size and detected at the surface. As both of

these CCDs directly absorb X-ray photons in the Si wafer, a

large number of charges ne are detected. For an X-ray energy

E (in eV), ne ¼ E=3:62 is a classical formula. As CCD cells

saturate at about 200000 electrons, i.e. 100 photons pixel�1 at

8 keV, it is necessary to read the CCD frequently in order to

avoid saturation. On imaging, a large number of frames have

to be added.

For dynamical studies, the sampling frequency of the CCD

is an essential parameter which limits the minimum sampling

time �t. High-quality CCDs have a slow frequency (1 MHz),

in order to limit electronic noise to less than 10 electrons.

When used as ‘indirect’ detectors (i.e. with an X-ray-to-

optical-light conversion), only a few electrons per X-ray are

detected and a very low noise is necessary. In DD-CCDs or BI-

CCDs, the signal-to-noise ratio is much larger, and increasing

the frequency by a factor of ten should still induce an
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Figure 5
Dependence of the DQE on photon energy (in keV) for the CCDs used
in coherent scattering experiments. (a) Direct illumination, with
(continuous line) and without (dashed) beryllium window. (b) Back
illumination, no window (adapted from Princeton Instruments data
sheets).



acceptable noise. For instance (Falus et al., 2004), with a

classical CCD (lower DQE than the DD-CCD of Fig. 5), the

full frames (1024� 1024 pixels) were read at a 50 Hz repeti-

tion rate. Another method for obtaining short �t is the kinetic

mode, where only a small part of the CCD is used (Lumma,

Lurio, Mochrie & Sutton, 2000). As multiple exposures of the

same frames are used, the time between two samples can be

reduced to the shift time, of the order of one hundredth of a

microsecond.

In both dynamical and imaging uses of CCDs, a number of

frames have to be managed. For small enough intensities, the

CCD can be used as a ‘photon counting detector’ (Livet et al.,

2000). Fig. 6 shows a small part of a DD-CCD where individual

X-rays can be observed. In this DD-CCD, the charges

produced by the absorption of an X-ray photon are mainly

localized on one or two pixels and it is not difficult to locate

the impact. This method gives a very efficient noise suppres-

sion. One can also use the X-ray energy dependence of the

charges to obtain filtered images. For very low count rate, this

opens the possibility of removing fluorescent scattering,

cosmic rays or harmonic components from the beam.

Obtaining ‘true’ countings also gives a very good estimate of

errors by means of Poisson statistics. This method has been

extended to soft X-ray imaging (Chesnel et al., 2002) and now

to BI-CCDs. For BI-CCDs, electronic charges induced by the

absorption of 700 eV X-rays are spread over a distance

corresponding to 2–3 pixels (with 14 mm BI-CCD pixel sizes).

The center of mass of the electronic cloud from each X-ray is

obtained with a precision of less than 1 pixel, yielding a better

resolution than simply adding frames. This ‘droplet’ algorithm

was combined with the kinetic mode (Livet et al., 2006).

The DD-CCDs are efficient in coherent scattering experi-

ments for �< 2 Å when the intensity is low, but as X-rays are

front-absorbed, some radiation damage is observed. For lower

X-ray energies, the BI-CCDs have a better DQE and no

significant radiation damage occurs because the X-rays are

absorbed on the opposite side of the CCD. As the charges

have to migrate across the CCD, they are spread over a few

pixels.

For large intensities, new ‘pixel array detectors’ are under

development, where each pixel can count 107 X-rays s�1

(Rossi et al., 1999; Delpierre et al., 2001). Pixel sizes were of

the order of hundreds of mm (Bérar et al., 2002; Löcker et al.,

2004; Broennimann et al., 2006) but rapid improvements are

happening with 170 mm resolution (Pfeiffer et al., 2003) and

now 55 mm (Pfeiffer et al., 2004; Zorzia et al., 2005; Bisogni et

al., 2006). These area detectors with a 50 mm resolution will

probably become standard for high-intensity XPCS measure-

ments.
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Figure 6
Observation of individual X-rays in a small part of a DD-CCD. The
charges are essentially on one pixel, a few on two. The total number of
charges of each peak is connected to the X-ray energy: here E ¼ 8 keV
(unpublished results).

Figure 7
Diffraction from a circular pinhole of diameter � ¼ 5 mm, � ¼ 3:3 Å,
detector with 22 mm pixels at 1.8 m. This image results from the
accumulation of 2000 DI-CCD frames. For each frame, the CCD was
transformed in a photon-counting detector, as described in Livet et al.
(2000). Intensities correspond to counts, and the log units show the large
dynamics obtained (unpublished results obtained at the ID20 beamline of
ESRF).



3. Observation of speckles

3.1. Pinholes and slits

In first coherent scattering experiments, laser-drilled holes

in 50–100 mm thick Pt sheets were used (Sutton et al., 1991).

For speckle dynamics experiments, the exact shape of the

pinhole is not very relevant, and the input wavefront need not

be planar. For carrying out coherent experiments, one first

check was provided by the observation of the Frauenhofer

fringes from pinholes. The shape of the scattering was some-

what irregular. The reason could be the poor quality of the

beamline optics, giving multiple beams crossing the pinhole as

well as the pinhole’s irregular edges. When electrochemically

drilled pinholes developed for electron microscopy became

available, beautiful pinhole diffraction could be obtained

(Livet et al., 1998), as shown in Fig. 7. Now with ion-beam

machining, well controlled hole shapes can be obtained and

one can measure various interference patterns (Leitenberger

et al., 2003; Eisebitt, Lörgen et al., 2004). For XPCS

measurements, it is useful to continuously change the beam

aperture in a reproducible way. The recent progress in

micromechanics enables routine submicrometric positioning

of slits. Some studies were necessary for a better under-

standing of slit-edge scattering. This problem was addressed in

Nikulin & Davis (1988) and the refraction of wedge-shaped

edges was measured. Edges behave like a prism, with a strong

scattering at very small angles, depending on the refractive

index of the slit and on the wedge angle. In Vlieg et al. (1997),

the wedge angle was reduced to 0.5� and refraction was almost

suppressed. As available motors now make slit positioning

reproducible with an accuracy of a few hundred nanometres,

careful studies of slit scattering were performed.

Fig. 8 shows the diffraction of 1 mm square slits, with a 1 mm

distance between carefully polished roller blades along the

beam path. This distance explains the asymmetry of the

pattern. A quantitative study (Le Bolloc’h et al., 2002) of the

scattering of these slits showed that the observed intensity

could be explained by the intrinsic Frauenhofer scattering of

the slits. This wave calculation was used in order to discuss the

efficiency of guard slits for background reduction in coherent

SAXS (CSAXS) (Livet et al., 2003). Measured and calculated

scattering from 1 mm asymmetric slits showed very good

agreement. The calculation of a plane wave propagating

through a ‘macroscopic’ object (here the 1 mm asymmetrical

square slits) shows that our diffraction figure does correspond

to the real object and that our experiments are reliable enough

to reconstruct the shape of diffracting samples.

Now nearly ideal diffraction patterns can be obtained from

all apertures and slits are often preferred because of their

flexibility in XPCS. An aperture modifies the shape of the
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Figure 8
Diffraction from 1 mm asymmetric square slits, � ¼ 1:58 Å, detector with
22 mm pixels at 1.25 m. Slit edges are 1 mm distant along the beam path
(unpublished results from the BM2 beamline of ESRF).

Figure 9
Diffraction from an ordered AuAgZn2 alloy at the (1

2
1
2

1
2) Bragg

superstructure position. � ¼ 1:58 Å, 12 mm2 slits, detector with 22 mm
pixels at 2 m (unpublished results from the ID10 beamline of ESRF).



propagating plane waves, and one can distinguish the near-

field (NF) region from the far field (FF) region. For distances

much larger than the NF/FF limit F ¼ �2=ð2�Þ, the FF image

of the pinhole exhibits a large diffraction pattern, as shown in

Figs. 7 and 8. For this reason, in SAXS, adding guard slits is

necessary. In CSAXS, all parasitic background from the

sample vicinity can interfere with the sample scattering,

making subtraction of a background intensity impossible. This

is connected to the large longitudinal range e where a wave

can interfere for a given scattering angle 	 in SAXS:

e ’ �l=ð2	2
mÞ: ð9Þ

In CSAXS, the minimum 	 value 	m is of the order of, or

less than, 10�3 rad [qm ¼ 4� sinð	mÞ=� ’ 8� 10�3 Å�1] and

e ’ 0:25 m with an Si(111) monochromator. Even if this para-

sitic intensity is many orders of magnitude lower than the

beam, for low scattered intensity, it may still dominate

significantly the signal from the sample. Low parasitic scat-

tering is also very sensitive to small defects of the aperture

edges, making the amplitude scattered by the slits difficult to

estimate. Moreover, these interfering amplitudes can give rise

to some heterodyning in dynamic CSAXS experiments (Livet

et al., 2006). The guard slits are positioned close to the sample,

at a distance of the order of F . This set-up produces a strong

cross-shaped background and cross beamstops yielded SAXS

measurements with very low background (Livet et al., 2003).

Another method uses asymmetric slits and limits measure-

ments to the region of the diffusion plane where slit scattering

is minimum (Abernathy et al., 1998; Sandy et al., 1999; Lumma,

Lurio, Borthwick et al., 2000). In large-angle measurements

(WAXS), beam background reduction is not a problem and

guard slits are useless. In an imaging experiment, like in

diffraction from nanoparticles (Robinson et al., 2001), the

exact shape of the wavefront is an important parameter and

closing slits before the sample significantly modifies the

diffracted intensity (Kohmura et al., 2005).

3.2. Estimating coherence

The coherence properties of a monochromatic radiation at

the sample position are defined by the complex unnormalized

mutual coherence function of the electromagnetic wave:

�ðr1; r2Þ ¼ hEðr1; tÞEðr2; tÞ�it: ð10Þ

This function can be studied by ‘Young’s double hole’

experiments where the interferences are measured between

the two points in the beam r1 and r2. The visibility of the

fringes (Born & Wolf, 1980) V is connected to �, normalized

by ½Iðr1ÞIðr2Þ�1=2, where IðrÞ ¼ �ðr; rÞ is the intensity at r. This

type of experiment is now currently made possible with the

progress in nanotechnologies (Paterson et al., 2001; Leiten-

berger et al., 2003; Tran et al., 2005; Pietsch et al., 2005) because

high-quality holes of micrometre sizes are necessary. An

interferometric method was used in order to obtain a direct

measurement of Vðr1; r2Þ (Pfeiffer et al., 2005). The Fresnel

mirrors technique (Marchesini et al., 2000) also gave excellent

results. An elementary method for checking coherence is also

to observe pinhole Frauenhofer diffraction (Sutton et al., 1991;

Panzner et al., 2003). In this case, the amplitude of the oscil-

lations provides a rough estimate of the visibility V.1

In speckle experiments, the interference of the whole irra-

diated sample is studied, and one needs estimates of the

average value of j�j2 across the irradiated sample. For X-rays,

a comparison between calculated and measured coherence is

important for improving the reliability and the reproducibility

of this type of experiment. In static scattering, speckles appear

as rapid modulations of the intensity when the incoherent

intensity should be only slowly varying. Fig. 9 shows the

speckle structure of the (1
2

1
2

1
2) superstructure of the Heussler

ordered AuAgZn2 alloy. Owing to quenching, the Bragg peak

is broadened by the finite size of the ordering domains (Livet

et al., 2002). In an incoherent experiment, the peak is iso-

tropically broadened and, in a coherent experiment, it

acquires a speckle structure. The intensity statistics of fully

coherent scattering follows an exponential law. A simplified

theory of partial coherence assumes that the intensity in

equation (1) is the result of adding N contributions all having

the same probability distribution from various volumes of

coherence, and that all these volumes have the same prob-

ability distribution. In this case, the speckle intensities should

be distributed according to an Nth-order �N distribution. The

second moment of the intensity distribution can be calculated

from the static intensity variations and the coherence degree 

is defined from

1þ 
ðqÞ ¼ ½hIðqÞ2i � hIðqÞi�=hIðqÞi2: ð11Þ

In this equation, the averages h i are carried out in a q domain

where the incoherent intensity can be assumed constant. A

Poisson contribution hIðqÞi has to be subtracted from the

experimental value of the mean square deviation.
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Figure 10
Angular average (log scales) (a) of the intensities of Fig. 9 over a 5 pixels
ring and the corresponding estimated coherence 
 (b). Pixel units are
distances to the central peak in Fig. 9, i.e. 4:4� 10�5 Å�1 per pixel.

1 One has to be careful with this type of estimate: the contrast observed in the
asymptotic oscillations of the pinhole diffraction is essentially connected to the
mutual coherence of the electromagnetic wave at the edges of the aperture.



This method can be applied to Fig. 9, where the ‘droplet

algorithm’ had transformed for each frame the CCD into a

photon counting detector (Livet et al., 2000), and where 100

frames have been added. Fig. 10 shows the intensity averaged

over five-pixels-width circular rings around the center of the

Bragg peak and the estimates of 
ðqÞ. In this case, 
 ’ 0:1,

independent of q, for three orders-of-magnitude variations of

the intensity. Reliable estimates could be obtained even from

regions of low intensities (less than 1 photon pixel�1) because

of averaging over a large number of pixels.

Another method is to study the speckle autocorrelation

from the covariance between neighboring pixels. In the case of

figures similar to Fig. 9, this function has a slow variation due

to the convolution product of the incoherent intensity and a

fast peaked one due to the speckle structure. If Poisson

counting statistics can be neglected, the ratio between the

maximum of the peak and the ‘plateau’ is a good estimate of

1þ 
 (Tsui et al., 1998). With an area detector, the shape of

the peak obtained by this method is directly connected to the

experimental geometry of the coherence volume, as it is

observed in the conditions of ‘pink beam’ (Abernathy et al.,

1998; Tsui et al., 1998; Sandy et al., 1999), where speckles were

elongated by the poor energy resolution, or in asymmetric

Bragg scattering (Pitney et al., 2000).

The static contrast is connected to the number of areas of

coherence: 
 ¼ 1=N and 
 varies from 1 (full coherence) to 0

(no coherence). Careful studies showed that the intensity

distribution was more complex than the simple model leading

to a �N distribution of the intensities. In Abernathy et al.

(1998) and in Livet et al. (1998), it was necessary to add a small

fully incoherent beam component to explain the observed

distribution. This can be interpreted in the following way: the

beam from which a partially coherent part is selected is not

homogeneous. The beam is selected in a region of maximum

intensity, but a part of this beam corresponds to a large

number of coherence areas of lower intensities. These small

components are essentially connected to optics imperfections,

which gives fully incoherent scattering. This interpretation was

also given for the observation of regions of the beam with a

low visibility in Pfeiffer et al. (2005). These components are

strongly reduced if, before selecting the beam with the pinhole

of size �, a first pinhole is set after the optics, at a distance D

from the sample pinhole, with an aperture �1, in order to have

a reproducible angle � ¼ �1=D in formula (3).

3.3. Optimizing

In equation (11), 1þ 
ðqÞ is the limit for t ¼ 0 of the

function �ðq; tÞ [equation (5)], provided that the dynamic

process studied fulfils the ergodic principle, and that the

fluctuation time is large enough to be observable. This t ¼ 0

limit is a classical way of obtaining 
 in DLS and, for this

reason, 
 is called the ‘zero time intercept’. If the measuring

time is significantly larger than the fluctuation time, in the

homodyne case, the relevant quantity in �ðq; tÞ is the time

variable part gð2Þðq; tÞ, which is calculated from the equation

(Berne & Pecora, 2000)

�ðq; tÞ ¼ 1þ 
ðqÞgð2Þðq; tÞ: ð12Þ
For ergodic systems, gð2Þ can be calculated by averaging over a

set of pixels of an area detector:

1þ 
ðqÞgð2Þðq; tÞ ¼ hhIðq; t0ÞIðq; t þ t0Þit0 iq=hhIðq; t0i0ti2q; ð13Þ
where, like in equation (11), a second average is carried out in

a region where the same dynamics can be assumed. This

technique is also used in DLS for very small q measurements

(Cippelletti & Weitz, 1999) and is often called ‘multispeckles’.

The error in calculating gð2Þ can be deduced from equation (8).

The result can be summarized as

�gð2Þðq; tÞ ’ ½1þ 
gð2Þðq; tÞ�1=2=½
ðqÞhIðq; tÞitðT�tPÞ1=2�;
ð14Þ

where P is the number of pixels of the CCD involved in

averaging in the case of an area detector. The inverse of �gð2Þ

is the signal-to-noise ratio (SNR), called the ‘quality factor’ of

the experiment. A practical consequence of this expression is

that the precision of the experiment is essentially dependent

on the product 
I for a point detector.

The quality of the set-up and an estimate of optimum

conditions can be discussed from the simplified model of a

coherence experiment described above, and schematized in

Fig. 11: a secondary source of square aperture �1 after the

optics, at a distance D before the sample, a square aperture �
at the sample and a detector at a distance d with square pixels

of size �. Assuming a transverse infinite homogeneous inco-

herent beam, the coherence of a monochromatic beam

selected by two sets of square slits can be calculated by a series

expansion in the variable z [¼ z1 ¼ ��1�=ð�DÞ here]:


ðzÞ ¼ P1
n¼0

ð�1Þn22nþ2z2n=½ð2nþ 1Þð2nþ 2Þð2nþ 1Þ!�
� �2

:

ð15Þ
This equation holds for beam selection and for detection,

which also reduces the contrast. An excellent approximation

for the overall value of 
 is to write the experimental contrast

as the product of the contrast of the beam and the detection

contrast: 
 ’ 
ðz1Þ
ðz2Þ, with z2 ¼ ���=ð�dÞ. The SNR of an
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Figure 11
Schematic of a typical SAXS coherent experiment with focusing optics.
Secondary source: slits of aperture �1 at D ¼ 9 m from the sample, with a
pinhole of aperture � and a detector at d ¼ 2 m, and a detection aperture
of �.



experiment can be shortly discussed from the simplified

description of the experimental set-up of Fig. 11 by estimates

of the following two terms.

(i) The detector resolution. If only the aperture � is varied,

the � dependence of the product 
I, i.e. the SNR of the

detection of the speckles, is proportional to z2
2
ðz2Þ and this

function has a constant limit for large z2. Fig. 12 shows the

results of the calculations corresponding to the set-up of Fig.

11 when � is varying. The top curve shows the decrease of 

when the point detector aperture � is increased. The center

curve shows the variation of the SNR with � with the constant

limit (units are arbitrary). We observe that reducing 
 from 0.3

(� ’ 20 mm) to 0.03 (� ’ 80 mm) causes a 60% increase in the

SNR. The lower curve shows the SNR calculated by taking

into account the number of pixels P when an area detector is

used. The previous estimate has to be multiplied by

ðP / 1=z2Þ1=2. This curve has a maximum close to the CCD

pixel size (22 mm). This shows that binning the pixels of the

detector in the set-up of Fig. 11 would induce a loss in the

experiment quality (i.e. the SNR). This discussion is also found

in a recent paper (Falus et al., 2006) on the Gaussian beam

model, and the conclusions are similar for optimizing the

detector pixel size. The important conclusion of this calcula-

tion is that the optimum for detection in a dynamic SAXS

speckle experiment with a monochromatic beam and an area

detector is about

z2 ¼ ���=ð�dÞ ’ 2:5: ð16Þ
(ii) The beam aperture. In the case when a CCD is used, the

pixel size � is fixed. The variations of 
 and of 
I versus � for

various secondary source dimensions �1 are plotted in Fig. 13.

These results are estimates for the set-up described in Fig. 11.

One observes that, for a given secondary source size �1, 
I has

a maximum at a � value which we define as �m. The position of

�m is dependent on �1. This maximum corresponds to the

compensation between the increase of the SNR with � and the

lowering of the detection contrast because the speckles

become narrower than �. Varying �1 from 100 mm

(�m ’ 13 mm) to 300 mm (�m ’ 9 mm) increases the maximum

SNR by a factor of two and decreases the corresponding 

from 0.37 to 0.15.

3.4. Longitudinal coherence

In a transmission CSAXS measurement, the mono-

chromaticity of the beam fixes the length of the interfering

region by equation (9), where e is the upper limit of the sample

thickness and 	m is replaced by the maximum angle 	M. The

monochromaticity in CSAXS also limits the coherence volume

in the transverse direction:

2�	M <�l; ð17Þ
where we have assumed that the beam size � is the transverse

dimension of the irradiated volume.

For a small 	M and classical monochromators, interferences

are easy to obtain for a sample thickness e of the order of

millimetres and beam sizes of the order of 10 mm. For pink-

beam experiments where �l ’ 60 Å, the longitudinal coher-

ence has to be taken into account in the calculation and 

becomes strongly q dependent. In Tsui et al. (1998) and

Abernathy et al. (1998), this point is discussed in the Gaussian

approximation. From formulae (17) and (9), one can observe

that, in SAXS, wavelength distribution affects coherence by

two mechanisms: for 	 < 	co ’ �=e, the beam size is dominant

[equation (17)] and, for 	 > 	co, it is the sample thickness (9).

For a 1 mm thick sample and a 10 mm beam size, this limit is

about 	co ’ 0:01 rad.

For WAXS, in the vicinity of a Bragg peak, the path-length

differences can be much larger. The simplest discussion is the

symmetric Bragg configuration, with the formula
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Figure 12
Typical dependence of the speckle contrast 
 versus the detector aperture
� (a), the variations of the SNR (or quality, in arbitrary units) for a point
detector (b) and with � as the CCD pixel size (c). Curves (b) and (c)
cannot be compared. In the case of an area detector, the 22 mm pixel size,
at this 2 m distance, is an optimum, and one should not bin pixels of the
CCD.

Figure 13
Calculated quality factor (SNR, arbitrary units) (a) and the corre-
sponding speckle contrast 
 (b) for the set-up of Fig. 11: �1 ¼ 300 mm
(triangles), 200 mm (closed circles) and 100 mm (open circles).



2��1 sinð	BÞ2 <�l; ð18Þ
��1 being the linear absorption length of the crystal and 	B the

Bragg angle. The first term in equation (18) is increasing

rapidly with 	B, so that the inequality is rarely fulfilled and

only small Bragg indices and strongly absorbing samples have

been studied in speckle dynamics experiments. In WAXS, like

in Fig. 9, where the vicinity of a (1
2

1
2

1
2) Bragg peak of the

AuAgZn2 alloy is studied, the value of 
 can be assumed

constant because only a very small part of the reciprocal

lattice is studied. In a symmetric Bragg-reflection configura-

tion, the contrast due to the longitudinal coherence length can

be estimated, in the case where the energy distribution of the

monochromated beam is assumed to be a ‘boxcar’ function,

close to the shape of the Darwin curve of a crystal. For a

resolution in the vicinity of the Bragg QB value with a Bragg

angle 	B, �q ¼ 2���=�2, one defines s ¼ �=½�q sin2ð	BÞ� and

the longitudinal 
 is


l ¼ s½arctanð2=sÞ � ðs=4Þ logð1þ 4=s2Þ�: ð19Þ
For AuAgZn2 (Fig. 9), 
l ’ 0:6, and the transverse coherence

of the set-up yields 
t ’ 0:2. The product of these two terms

corresponds to the observed 
 value of 0.1 in Fig. 10.

In the case of nanocrystals, ��1 can be replaced by the

crystal size in equation (18). As for (111) silicon mono-

chromators, �l > 0:5 mm, full coherence is easily achieved for

submicrometric samples. For smaller sample sizes, mono-

chromators with a larger bandwidth are also desirable here in

order to compensate for low scattering cross sections.

In practice, for speckle measurements, reliable results are

difficult to obtain with 
 smaller than a few percent. For

‘lensless’ imaging, the scattered intensity variations have to be

accurately measured in order to be able to restore the phase

and 
 should be much closer to unity.

4. Using speckles for the study of submicroscopic
dynamics

The XPCS technique is devoted to the study of the dynamics

of inhomogeneities. Many experimental results were obtained

in soft condensed-matter systems and an overview of the

results can be found in Grübel & Zontone (2004). A short

summary of the results is given here and hard condensed-

matter applications in alloys, quasicrystals etc. are described.

4.1. Fluctuations in dilute systems

One first experiment was the observation of the fluctuations

of colloid gold particles by Dierker et al. (1995). For isolated

and non-interacting particles, like the Brownian motion of

latex spheres of radius R in a liquid, the function gð2Þ can be

written as

gð2Þðq; tÞ ¼ exp�2q2hr2ðtÞi: ð20Þ
In Mochrie et al. (2003) and Lumma, Lurio, Borthwick et al.

(2000), polystyrene spheres in glycerol were studied.

Einstein’s classical law (Einstein, 1906; Uhlenbeck &

Ornstein, 1930) for particle diffusion in a liquid was first

observed in the case of spheres in the limit of low volume

fraction fv:

hr2ðtÞi ¼ D0t ¼ kBTt=ð6��RhÞ; ð21Þ
where � is the viscosity and Rh is the hydrodynamic radius, i.e.

the sphere radius R here. To summarize, the dynamic behavior

gð2Þðq; tÞ ¼ exp�2t=ðqÞ; ð22Þ
with the equation

ðqÞ ¼ ðD0qÞ�2; ð23Þ
is the signature of classical Brownian motion. This behavior

was observed in the case of palladium colloidal particles, but

the estimate of Rh in equation (21) showed large colloidal-

particle agglomeration, probably connected to radiation

damage (Thurn-Albrecht et al., 1996). In the case of fractal

colloidal palladium particles, a slowing down was observed

when these overlap for fv ¼ 0:008. The value of D was found

to decrease by a factor of three for this volume fraction as

compared to the dilute case, although this system remained

essentially Brownian (Thurn-Albrecht et al., 1999).

4.2. Concentrated systems

For concentrated colloidal systems, the SAXS spectrum

shows a peaked correlation function S(q) for qR � 2. For

these systems, XPCS is a very useful tool because they are

opaque or they exhibit strong multiple scattering for DLS and

also because XPCS provides measurements in the q domain

1< qR< 5 for R< 0:1 mm. In this region, the model equation

(23) is not valid, as was first observed from measurements

on block copolymer micelles (Mochrie et al., 1997). When

micelles were spherical, the results were fitted with a simple

exponential [equation (22)], but the estimate of D ¼
½ðqÞq2��1 showed a q dependence similar to that of SðqÞ.

In the case of concentrated latex particles in liquids

(Lumma, Lurio, Borthwick et al., 2000), gð2Þðq; tÞ did not have a

simple exponential behavior. From the linear shape of

ln½gð2Þðq; tÞ� for short and long times, a short time Ds and a long

time DL diffusion constant could be obtained, different from

D0 calculated from equation (21). The qR and fv variations of

D0=Ds showed a behavior similar to S(q) for 0:13< fv < 0:52

and 1< qR< 7. The static S(q) and the dynamic D0=Ds results

were in agreement with the hard-sphere model and with the

simulations of Beenakker & Mazur (1984). The dynamics of

the fluctuations is strongly modified by the ‘cage effect’

(Grübel et al., 2000). For latex particles, the stabilization of the

structure is essentially steric.

In charged colloidal suspensions, the hard-sphere model

cannot be used (Grübel et al., 2000) for SðqÞ. For the study

of the dynamics, the hydrodynamic function HðqÞ ¼
Dsðq; fvÞSðqÞ=D0 was introduced. This ratio is unity with no

hydrodynamic interactions. It is independent of the model for

the correlation function SðqÞ and Beenakker & Mazur (1984)

have given its qR and fv dependence in the case of long-range

hydrodynamic interactions. This approximation was ques-

tioned by studying charged colloidal suspension (Riese et al.,
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2000). Non-deionized and deionized silica spheres in a water–

glycerol mixture (fv ¼ 0:089) were compared. The deionized

sample showed a significant discrepancy with the long-range

hydrodynamics interactions. This corresponds to hydro-

dynamic screening, which has been connected to the strong

Coulomb interactions in the deionized system.

This hydrodynamic interaction is an important parameter in

the sedimentation problem.

One interesting possibility of XPCS is that one carries out in

situ experiments. In the case of magnetic colloids (Wagner et

al., 2005; Robert et al., 2005), a magnetic field orders the

particles (Wiedenmann & Heinemann, 2005) and the diffusion

process of the magnetic particles becomes anisotropic (Lal et

al., 2001).

4.3. Fluctuations in liquids

The dynamics of the critical fluctuations was addressed in

the case of the consolute point of the binary hexane–nitro-

benzene mixture, which can be considered as a model system

for phase transitions with a ‘conserved order parameter’

[model B in Hohenberg & Halperin (1977)]. Dynamical

measurements were carried out in the vicinity of Tc ’ 292 K

with a pink beam and a point detector, and the precision

available from the measurements was carefully discussed

(Dufresne et al., 2002). These experiments were performed for

0.003> q> 0:001 Å�1, corresponding to a region of DLS

experiments (Chen et al., 1983).

Capillary waves at the surface of liquids can be observed in

a grazing-incidence scattering experiment, where the incident

angle 	i <	c. Capillary waves are detected in the directions of

q parallel to the surface qk, which means asymmetric

measurements, the exit angle 	f being larger than 	i. The

variations of the speckle contrast with 	f was discussed in

Madsen et al. (2005). At the liquid surface, capillary waves can

be oscillatory if the damping due to viscosity can be neglected

and ‘overdamped’ for large viscosity. This latter behavior was

first identified in the case of pure glycerol (Seydel et al., 2001),

where the correlation function gð2ÞðtÞ was exponential. The

dispersion law for overdamped capillary waves  ¼ �=ð��sqÞ,
with �s the surface tension, was valid. For low viscosity, an

oscillatory behavior, of frequency !, is expected, with the

dispersion relation ! ¼ q3=2ð�s=�Þ1=2, where � is the density of

the liquid. For pure water, the capillary waves can be observed

only for (qk ’ 5� 10�6 Å�1), where their ! becomes low

enough (! ’ 105 s�1) for XPCS (see Fig. 1). As experiments

were carried out very close to the tails of the specular

reflection due to the surface (Gutt et al., 2003), heterodyning

was observed between the amplitude of the specular reflection

and that of the capillary waves. In this case, the heterodyne

function gð1Þ is written

gð1Þðqk; tÞ ¼ expð�t=Þ cosð!tÞ; ð24Þ

and the oscillatory terms, which should vanish in gð2Þ, were

observed. The predicted dispersion relation ! / q
3=2
k was

valid. In a water–glycerol mixture of suitably chosen concen-

tration, the transition from the high-temperature oscillatory

behavior (at 303 K) to the overdamped one (at 278 K) was

observed (Madsen et al., 2004).

In smectic membranes, for thicknesses l in the 10 mm range,

the simplified law  / l was observed (Price et al., 1999).

Results were obtained for q at a Bragg position, in the spec-

ular direction, yielding a large intensity and reliable results

were obtained for correlation times of 0.1 ms (Sikharulidze et

al., 2002). These results could be compared to neutron spin-

echo measurements for thick membranes (Sikharulidze et al.,

2003), with an overlap in the fluctuation time ranges but for

different scattering vectors. For thinner layers, oscillating

behaviors were observed, corresponding to collective

membrane oscillations (Fera et al., 2000; Sikharulidze et al.,

2002). In Sikharulidze et al. (2003), it was noticed that, for the

regime where  was qk independent, its estimated value

decreased by a factor of two when qk was increased from zero

(the Bragg peak position) to 3:5� 10�4 Å�1. This clearly

indicated the transition from heterodyning, where the function

gð1ÞðtÞ ¼ expð�t=Þ is observed, to homodyning, where equa-

tion (22) is valid with a half-time exponential (Berne &

Pecora, 2000). These experiments are discussed in detail in

Sikharulidze et al. (2005) and Sikharulidze & de Jeu (2005).

Pure polymers have low scattering intensities and they are

radiation sensitive, but XPCS could be used for measuring the

viscosity of thin polymer films (Kim et al., 2004). The thickness

and the molecular-weight dependence of the relaxation was

obtained (Li et al., 2005).

4.4. Fluctuations in filled polymers

Transparent polymers have been extensively studied by

DLS, but X-rays bring new insights in the domain of filled

polymers. These are either opaque or strong multiple scat-

terers for light and transparent to X-rays. As filling particles

(silica, carbon black) have a large SAXS intensity and as the

fluctuations can be slow, measurements could be performed

with low-intensity coherent beams, reducing radiation

damage.

Filled polymers can have various kinematical behaviors,

depending on the concentration and on the manufacturing

process. In Geissler et al. (2000), the XPCS method was

used for comparing liquid and thixotropic samples. In Fig. 14,

the time evolution of three samples is shown for

q ¼ 1:71� 10�3 Å�1. In this figure, the t ¼ 0 limit fixes


 ’ 0:23 and three very different time behaviors are observed:

the ‘liquid’ sample has a fluctuation time of about 30 s, the

‘thixotropic’ sample has an observable fluctuation time of half

an hour. These two samples are compared with a static sample,

which provides a check of the experimental stability in the

range of 1 h. In this experiment, the dynamics of the studied

system was very slow, so that the experiment could be carried

out at a beamline (BM2 of ESRF) of small intensity (about

106 photons s�1) (Livet et al., 1998). The set-up summarized in

Fig. 11 was used for these measurements, but the pinhole

(diameter � ¼ 10 mm) was circular and guard slits were set

close to the sample, 0.2 m after the circular pinhole.
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Silica gels in liquid crystals provide information on the

dynamics of the fluctuations in the vicinity of a second-order

transition. In this case, critical slowing down can be observed.

Retsch et al. (2002) have fitted gð2Þ with a modified exponential

behavior:

gð2Þðq; tÞ ¼ exp�2½t=ðqÞ��: ð25Þ
This equation corresponds to ‘anomalous diffusion processes’

(Bouchaud & George, 1990). It is called ‘stretched’ (Krall &

Weitz, 1998) for �< 1 and ‘compressed’ for �> 1 (Cipelletti et

al., 2000). The exponent � can vary from 0 to 2 for the process

to be a stationary and ergodic ‘stable Lévy flight’. In practice,

this equation is mainly used for non-ergodic systems. A review

of its applications to viscoelastic systems is given in Scheffold

& Schurtenberger (2003) and all light scattering measure-

ments can be extended to X-rays. In the case of samples

exhibiting long-term relaxations, like ‘jamming systems’

(Cipelletti et al., 2000), it may be difficult to distinguish in the

correlations slow sample movements from random fluctua-

tions: both can contribute to hrðtÞ2i in equation (20). These

sample movements can be observed in XPCS by studying the

drift of the speckle pattern in the detector. These are not

observed in a DLS experiment because the size of the beam is

millimetres. For the 10 mm beam sizes of XPCS, local flows can

be observed.

Heterodyne detection of the fluctuations was used in order

to distinguish in a rubber random fluctuations from the flowing

occurring after stretch release (Livet et al., 2006). The sample

was an ethylene-propylene rubber filled with carbon black

(volume fraction 20%). In transmission SAXS, the length e of

the coherence volume in equation (9) can be of a few milli-

metres and heterodyning can be measured by simply stacking

along the beam path a strongly scattering static aerosil and the

fluctuating sample. For instance, Fig. 15 shows typical corre-

lations obtained. Strong oscillations are observed due to the

interferences between the reference and a moving rubber.

These oscillations could be described with the heterodyne

contribution [see equation (24)]

�ðq; tÞ ’ 1þ 
1 þ 
2 exp�½t=ðqÞ�� cosð!tÞ þ . . . ; ð26Þ
as plotted in Fig. 15. Except for the larger q values, the time

variations are dominated by an oscillating behavior, char-

acteristic of the drift of the sample. The drift velocity v is

connected to the value of !, to q and to the angle � between

the direction of the drift and the direction of q (see Berne &

Pecora, 2000, p. 79): ! ¼ qv cosð�Þ. In the case of Fig. 15, this

velocity is v ¼ 15 Å s�1.

For this system, similar to ‘jammed’ systems, the local

character of the X-ray measurements and the precise

measurement of extremely small velocities can yield new

insights into the ‘mesoscopic’ processes occurring. Another

advantage of heterodyning is that the irradiation of the sample

can be significantly reduced if the beam that has crossed the

static reference still gives a reasonable experimental SNR.

This heterodyning method should also be useful for micro-

rheology studies, like in Papagiannopoulos et al. (2005).

4.5. Fluctuations in metals

The first speckle measurements consisted of observing the

ordering peak of a Cu3Au single crystal (Sutton et al., 1991),

and the first observation of critical fluctuations in an ordering

system (the Fe3Al Heussler transition) was reported in Brauer

et al. (1995).

Quasicrystals are condensed-matter systems of high

symmetry (Shechtman et al., 1984) and they have long-wave-

length distortion modes called ‘phasons’, which induce a

strong anisotropic scattering in the vicinity of the Bragg peaks

(Coddens et al., 1991). First, at room temperature, a perma-

nent speckle structure was observed in the region of phason

diffuse scattering, showing the stability of the phasons at this

temperature (Létoublon et al., 2001). Then in situ studies were

carried out at high temperature and time-dependent phason

fluctuations were observed above 873 K (Francoual et al.,

2003). In Francoual et al. (2006), the dynamics of the phason

fluctuations was shown to be of a diffusive type, with a

diffusion constant D? like in equation (23) and a q�2 depen-

dence of the fluctuation time  calculated from equation (22).

Charge-density waves (CDW) are observed from Bragg

peaks in metals. They form a well ordered pattern, with very

thin Bragg peaks, at least for the scale explored in XIFS, like in

the NbSe3 system. In Sutton et al. (2002), only a small number

of speckles were observed and applying an electric field

induced CDW sliding. For systems exhibiting a nearly mono-

domain region of CDW (K0.3MoO3), by exploring the sample,

individual CDW dislocations could be observed (Le Bolloc’h

et al., 2005).

4.6. Dynamics of phase transitions

The dynamics of the irreversible process of a phase transi-

tion could be studied in speckle experiments. After quenching
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Figure 14
Correlations observed at q ¼ 1:71� 10�3 Å�1 with three samples: a
‘liquid’ (crosses), with a short fluctuation time, a ‘thixotropic’ sample
(open circles) exhibiting long-time fluctuations and a static aerogel
(closed circles) for a test of the experimental stability. From Geissler et al.
(2000).



of a sample, the time evolution of the speckle structure can be

followed. In a classical (incoherent) experiment, a quasi-

stationary process can be defined from a dynamic size evolu-

tion LðtÞ, which increases with time as tn. This average size is

the main relevant parameter. Two different dynamics can be

defined from Hohenberg & Halperin (1977), depending on

whether the order parameter is conserved (model B, n = 1/3),

like in the unmixing of alloys, or not (model A, n = 1/2), like in

ordering transitions.

For both dynamics, the time evolution of the speckle

structure reflects the lack of time invariance due to the initial

quench of the sample [non-ergodicity in equation (13)]. For a

comparison with a stationary process, the measured intensity

is normalized by the incoherent intensity corresponding to the

same time t, estimated from an average over q:

Dðq; tÞ ¼ Iðq; tÞ=hIðq; tÞiq � 1: ð27Þ

Fig. 16 shows the time evolution of Dðq; tÞ obtained in a SAXS

experiment during unmixing of an Al–Li sample (Livet et al.,

2001) for a set of pixels of the same jqj value. The increasing

persistence of the pixel pattern with aging time is clearly

visible.

The modeling of the time evolution of the speckle structure

was obtained from two-dimensional simulations: Brown et al.

(1997) for the A model and Brown et al. (1999) for the B

model. The two-time correlation (Sutton et al., 2003)

Cðq; t1; t2Þ ¼ hDðq; t1ÞDðq; t1Þiq ð28Þ
was introduced.

Experiments were performed in model A: phase separation

in a sodium borosilicate glass (Malik et al., 1998) and in Al–Li

(Livet et al., 2001); and in model B: ordering in Cu–Pd

(Ludwig et al., 2005) and in Cu3Au (Fluerasu et al., 2005). All

showed that the speckles in the high-intensity region had a

fluctuation time of the order of the aging time. For a long

enough time, or for asymptotic intensity, a cross over to a

t2=ðnþ1Þ behavior corresponding to the observation of fluctua-

tions of the interfaces between the two phases could be

observed.

Another method for the study of the dynamics of phase

transitions was proposed by Weinkamer & Fratzl (2003). For

the problem of the dynamics of the unmixing of alloys, i.e.

model B, two microscopic models for the size increase of the

precipitates can be distinguished: the evaporation–condensa-

tion model [called LSW (Lifshitz & Slyozov, 1961; Wagner,

1961)], where atoms migrate from smaller precipitates to

larger ones, and the coagulation model, where precipitates

grow by fusion. Simulations by the Monte Carlo method
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Figure 16
Time evolution of normalized intensity fluctuations at q ¼ 0:0117 Å�1

[equation (27)] showing the increasing persistence of the speckle
structure after quench of an Al–Li sample. From Livet et al. (2001).

Figure 15
Heterodyne correlations obtained from the CL-EPR sample. (a)–(d)
Various values of the q projections [q cosð�Þ ¼ 0.569, 0.899, 1.21 and
1.52�10�3 Å�1] along v for q ¼ 12� 10�3 Å�1. (e)–(h) Various q values
for q cosð�Þ ¼ 1:21� 10�3 Å�1 showing the identical period of the
oscillations. Continuous curves correspond to fits with equation (26).
From Livet et al. (2006).



showed that these two models gave different shapes of the

time evolution of the speckle patterns. This feature can be

connected to the differences between the slow growth of the

inclusions in the first model, where a regular flow of individual

atoms agglomerates on the precipitates, and the sudden rare

and large changes induced by the coagulation of large pre-

cipitates. This needs a careful examination of the statistics of

the fluctuations in the measured time series.

Various methods for the study of these time fluctuations

were used for the problem of growing precipitates (Stadler et

al., 2003, 2005). Comparing two model systems, these authors

concluded that the decomposition of the Al–Ag alloy followed

the LSW process and Al–Zn the coagulation one. This method

was extended to ordering systems (model A) (Stadler et al.,

2004).

These measurements could be carried out in a short time

relative to the global aging of the system. By this method, a

complete history of the speckle structure does not have to be

recorded. This type of interpretation seems well adapted to

non-ergodic systems.

5. Imaging

The possibility of imaging a real-space object from the

measurement of the coherent scattered intensity is based on

oversampling in the reciprocal space. From precise measure-

ments of the modulus of the object Fourier transform (FT),

the phase and the amplitude of the real object have to be

obtained. This needs oversampling by at least a factor of two

as compared with the Nyquist sampling theorem, which states

�q ¼ 2�=D, where D is the sample size.

The basic algorithms are iterative Fourier transforms

between estimates GkðqÞ of the scattering amplitude AðqÞ in

the reciprocal space and estimates gkðrÞ of aðrÞ in the real

space, where k refers to the kth cycle. Constraints are added in

order that the calculation converges towards the solution.

The main constraint in the reciprocal space is that the

modulus of the estimation of the amplitude in the reciprocal

lattice is ½IðqÞ�1=2, which means that at each cycle GkðqÞ is

replaced by G0kðqÞ ¼ ½IðqÞ�1=2 exp½i�ðGkðqÞÞ�, where �ðGkðqÞÞ
is the phase of Gk, wherever the intensity has been measured.

In real space, the constraint is that of a finite support, which

can be adjusted during cycling. This support must agree with

the oversampling condition but, the higher the oversampling,

the easier the convergence (Miao et al., 1998). This is the

Gerchberg–Saxton algorithm, also called error reduction (ER)

(Gerchberg & Saxton, 1972). This algorithm is usually

combined with the hybrid input–output (HIO) algorithm of

Fienup (1982), where the finite support constraint is relaxed.

The constraint of real and positive aðrÞ is also often used in

astronomy and in imaging problems.

An excellent description of the sampling problems can be

found in van der Veen & Pfeiffer (2004). Many simulations

based on these algorithms have been published in order to

discuss the need for oversampling (Miao et al., 1998; Mielenz,

1999) or the influence of experimental noise on the resulting

object image (Marchesini, He et al., 2003).

This technique was first tested on very simple strongly

scattering objects like a two-dimensional pattern of gold dots

(Miao et al., 1999). The soft X-ray scattering was recorded with

BI-CCDs and the resolution was of the order of tens of

nanometres. Simple well prepared objects were studied (He,

Marchesini, Howells, Weierstall, Chapman et al., 2003) and the

reconstructed image could be compared with scanning-elec-

tron-microscopy images (He, Marchesini, Howells, Weierstall,

Hembree & Spence, 2003). These first experiments were

carried out on two-dimensional samples prepared with 100 nm

diameter gold balls on an SiN window. The samples were

studied in transmission and various methods were used to

compensate for lack of measurements in the beam stop.

In He, Marchesini, Howells, Weierstall, Hembree & Spence

(2003), the Patterson function (PF) was calculated by carrying

out a FT of the measured spectrum. This function is the

autocorrelation of the electron density of the sample and,

from the properties of the convolution products, with well

separated clusters, direct information on the distance between

clusters was obtained from the observation of the PF. For a

cluster well separated from a single gold ball, the shape of the

cluster could be obtained. This property was systematically

used by Eisebitt, Lörgen et al. (2004), where the scattering of a

hole and a well separated sample was measured. As the two

amplitudes coherently interfered, the PF directly gives the

sample shape as the convolution of a point hole (a Dirac

distribution) and the sample.

This holographic method using heterodyning between the

scattering of a point source and the sample was applied to the

study of the magnetic map of a Pt–Co multilayer. Magnetic

scattering is observed in the vicinity of the LIII edge of tran-

sition metals (Menteş et al., 2002; Chesnel et al., 2002), which

can be controlled by tuning the energy and the polarization of

the soft X-ray beam. In Eisebitt, Lüning et al. (2004), a

hologram is measured between a hole and a distant sample

and only a single Fourier transform is necessary to obtain an

image of the magnetic configuration. The image resulting from

the Fourier inversion was successfully compared with

magnetic force microscopy measurements. Another method

used was to illuminate the sample with the reference wave of a

well defined 2.5 mm pinhole (Eisebitt et al., 2003, 2005) and to

observe the changes in magnetic scattering with X-ray energy

and polarization.

The magnetic configuration of multilayers was also studied

in the symmetric Laue reflection configuration and speckles

were used in order to image the configurational changes

obtained by applying a magnetic field (Chesnel, Belakhovsky

et al., 2004; Chesnel, van der Laan et al., 2004; Deutsch & Mai,

2005).

Except for magnetic measurements, first experiments used

soft X-rays because for wavelengths larger than 1 nm the

number of photons per coherence area is larger, and also

because the resolution requirements were lower (Sayre et al.,

1998). First two-dimensional reconstructions were obtained

with fixed samples and area detectors. The samples were

studied in transmission and various methods were used to

compensate for the lack of measurements in the beam stop.
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Obviously, samples were very thin and it was difficult to study

three-dimensional systems, which are thicker. For buried

structures (Miao et al., 2002), the three-dimensional q space

was sampled by a reduced set of two-dimensional diffraction

patterns and short wavelengths (� ¼ 2 Å) from an Si111

monochromator were used. For the large number of three-

dimensional q values that were not measured, no constraint

was imposed on the modulus. For systems with a limited

number of different layers, like a set of metallic patterns

buried close to the surface of a silicon wafer, the three-

dimensional image was well reconstructed. This technique was

extended to the study of gold particles deposited at the surface

of an SiN pyramidal membrane (Marchesini, Chapman et al.,

2003). As these particles were deposited on a (non-planar)

surface, the full sampling of the three-dimensional q space was

not necessary. These measurements need the development of

new set-ups of high reliability in order to position and to

rotate the samples. One can observe in passing that recently

developed set-ups use many tools (sample holders, cryo

holder, . . . ) from electron-microscope techniques (Beetz et

al., 2005). Techniques are developed for solving the inversion

problem with blank parts in the scattering planes. An excellent

summary of the method is found in Chapman et al. (2006)

6. Nanocrystals

Imaging of crystals and of defects in crystals is an essential

capability of X-rays and this is achieved in the vicinity of

Bragg peaks. First results were also obtained in gold particles.

This metal is not oxidized in air and it has a large atomic

coherent X-ray cross section (/ Z2). By dewetting a thin

metallic film, small crystals can be obtained. Their Bragg

scattering was measured and the diffraction corresponding to

an individual crystal was selected by Robinson et al. (2001)

and a combination of ER and HIO algorithms was used. In the

case of two-dimensional measurement, only the particle-shape

projection can be obtained but the general crystal shape and

some facets of the gold crystals were visible. For a perfect

crystal, the intensities in the vicinity of a Bragg peak should be

symmetrical about the center of the Bragg peak. In the case of

asymmetric scattering, corresponding to an imaginary part of

the electron density, a strain field has been introduced for

simulations (Robinson & Vartanyans, 2001) in a way similar to

that of Huang scattering. The first-order term of the amplitude

is given by

AðqÞ ¼P
R

�ðRÞ exp iq½Rþ uðRÞ�

’P
R

�ðRÞ½1þ iGuðRÞ� exp iqR; ð29Þ

where G is the Bragg vector. This means that the imaginary

part in the electron density �0ðRÞ corresponds to a crystal

distortion: �0ðRÞ ¼ �ðRÞGuðRÞ. This approximation assumes

that uðRÞ 	 a, where a is the lattice parameter. It is thus

difficult to use for defects with large and sudden phase jumps,

like dislocations, twinning or stacking faults, but it may be

valid for surface-stressed nanocrystals.
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Figure 17
Diffraction from a 1 mm gold crystal measured on both sides of the center
of a (111) Bragg peak, showing the high-precision central symmetry of the
scattering: � ¼ 1:55 Å, sample-to-detector distance 0.87 m, pixel size
22 mm. Results from ID01 at the ESRF.



The measurements were extended to the three-dimensional

space. In this case, the area detector can be considered as

planar and rotating the sample gives measurements in a set of

nearly parallel planes. For samples with a strain field due to

residual defects, many planes in the third dimension have to be

measured, corresponding to the continuous function uðRÞ.
First three-dimensional reconstructions of the shape of Au

crystals of dimensions in the mm range (Williams et al., 2003,

2006) assumed �ðRÞ to be real and positive: at the end of each

cycle k, the complex function �kðRÞ was projected onto the

real axis and was set to zero if negative. A maximum of this

function close to the center of the gold crystal was interpreted

as an artifact due to partial beam coherence. The result also

showed regions of zero intensity parallel to (111) planes which

were attributed to twinning.

For X-rays in the 8 keV range and crystals of heavy metals

like gold or lead, the extinction length t is of the order of 1 mm

for the (111) Bragg peak of the f.c.c. lattice. As the use of the

dynamical theory seems very difficult, this technique is

devoted to the study of submicrometric crystals. For such small

samples, the beam must be focused. This reduces the coher-

ence volume and this can also induce phase distortions. For

mm beam sizes, Robinson et al. (2003) have calculated the

modification of the scattering for non-plane waves. As all FT

calculations assume plane waves, it seems to be of the highest

importance to verify this condition in an experiment.

For instance, the focusing set-up of the ID01 beamline of

the ESRF was used for the diffraction of micrometric gold

crystals, and the symmetry of the scattering could be checked

with a high precision. Fig. 17 shows the details of the measured

diffraction in two (nearly) symmetrical positions of the sample

relative to the center of the (111) Bragg peak of the crystal.

These two images were obtained from 1000 frames of 1 s each

after having used the droplet algorithm (Livet et al., 2000). In

this case, observing a symmetric pattern means that the crystal

can be considered as perfect and that only the crystal

boundaries have to be calculated, and measuring a large

number of diffracting planes similar to Fig. 17 can become

unnecessary because the function �ðRÞ could be assumed

constant.

The reconstruction of the shape of samples in all techniques

requires a high degree of coherence, as discussed in

Vartanyants & Robinson (2001). Since Bates (1982) and

Millane (1996), one considers that large enough oversampling,

high enough coherence and precise enough measurements

should yield a unique inverse solution in the two-dimensional

and the three-dimensional spaces, but ‘stagnation’ can be

observed. Stagnation seems to be less of a problem in three-

dimensional than in two-dimensional reconstruction (Williams

et al., 2006). The problem has been compared with statistical

physics, where the solution is a ‘fixed point’ and the stagnation

corresponds to ‘strange attractors’ (Elser, 2003). A summary

of some results is found in Robinson & Miao (2004).

The most recent example of a crystal image reconstruction

can be found in Pfeifer et al. (2006), where the shape and the

strain field of a small lead monocrystal of 0.75 mm diameter

was determined.

7. Discussion

The number of applications of coherent scattering is

increasing rapidly, as well as the number of available sources

and of new set-ups able to carry out such measurements. These

are essentially connected to the availability of synchrotrons of

lower energy in the 2–3 GeV range, taking advantage of the

improvements of the insertion devices (undulators) that have

a high brilliance in the 500–12000 eV range. For the tech-

niques already available and for sources becoming operational

in the near future, reasonable improvements for speckle

dynamics may be expected.

First, for the incoming beam, the maximum value of the

product 
I (the ‘beamline quality’) corresponds to the avail-

able coherent flux given by equation (6). For a source like the

ID10 undulators of ESRF, the estimate of this product is close

to 1011 photons s�1 for ��=� ’ 1:4� 10�4, and the observed

intensity is of the order of a few 109 photons s�1 with 
 ’ 0:2.

This is a loss of two orders of magnitude occasioned by the set-

up of this experiment. In Abernathy et al. (1998), the origin of

the losses is briefly discussed, and beamline improvements are

in progress. These are difficult to achieve if the beamline is not

dedicated to coherent scattering. With modern optics, large 

values are obtained, even for XPCS, and, for the same 
I, the

sample irradiation can be reduced. Such a beamline needs

high stability and high-quality optic elements optimized for

small beam sizes (less than 300 mm), which means low total

heat load in optics. These needs are somewhat contradictory

with the specification of a general use beamline.

Second, the fact that there is no intermediate detection

method between submicrosecond time resolution with a point

detector and fractions of seconds with a CCD constitutes a gap

that could be partly filled by faster reading of the CCDs used

for this type of experiment. Apart from attempts to develop

fast CCD readings (Falus et al., 2004), pixel detectors with

resolutions down to 55 mm (Pfeiffer et al., 2004; Bisogni et al.,

2006) are very promising.

In imaging, the main activity is in the domain of sub-

micrometric samples. The long-term development for this

technique is the study of nanostructured samples like the

buried interconnections in integrated circuits, the defects

introduced by electromigration, the interfacial stresses, or the

dewetting between a metal and its substrate. X-rays can be

used as a technique complementary to electron microscopy for

their penetration depth and also for their resonant scattering

properties.

In practice, the resolution of the technique is directly

connected to the largest q value where scattered intensity can

be measured. This makes background reduction an important

problem. The resolution can nevertheless be discussed from

scaling considerations (Shen et al., 2004). For a fixed sample

size �, the intensity has a q�4 behavior, which means that the

resolution �� scales as I�1=4, i.e. as B�1=4 for equivalent optics.

For three-dimensional imaging, the increase of the number of

reciprocal planes would transform the 1=4 exponent to 1=5.

For nanoparticles, the goal can be to observe their shape, with

a constant ratio ��=�. One interesting problem here is the
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equilibrium shape of nanocrystals when their size � is reduced.

In this case, the coherence volume can be reduced by focusing

(smaller �t) and by increasing the bandwidth (smaller �l),

increasing the intensity in the coherence volume by a factor

��3.

In this case, �� scales as B�1 (B�1=2 for a three-dimensional

object). Recent experiments claim �� ’ 10 nm and it seems

that this method does not need a particularly large increase of

source brilliance but optics improvements and background

reduction.

Owing to their short penetration depth and their sensitivity

to magnetism, soft X-rays are a useful tool for the study of the

dynamics at the surface and of the mechanisms of magnetic

domain reversal.

Stable focusing and well controlled plane waves seem very

important for future progress. The use of apertures before the

sample for limiting the beam size in imaging experiments

induces strong wave distortions at short distances, which make

FT-based methods difficult to use. Wave distortions can also

explain some of the asymmetries in the observed scattering:

the phase variations of the incoming beam can have the same

effect as the introduction of an imaginary component in the

sample electron density of equation (29).

The future of X-ray coherent scattering with free electron

laser (FEL) sources will modify the problem of obtaining a

coherent beam, and new experiments will become accessible.

One can here notice that the increase in beam intensity

obtained by improving the focusing technique already makes

the irradiation damage an important problem. First, small

metallic crystals at the surface of an insulating substrate (e.g.

crystalline silicon with a nanometre thick layer of silicon

oxide) are removed by electric charges due to electron

photoemission. Conducting substrates like graphite are now

used, but they may produce parasitic scattering significantly

larger than the sample signal. Second, submicrometric samples

can be strongly heated by the beam. Third, radiation damage

in biological molecules makes the projects of studying single

large-scale molecules with FELs a difficult challenge. Radia-

tion damage is measured in Howells et al. (2005) and the

balance between the sample irradiation necessary for struc-

ture measurements and its destruction, discussed in Marche-

sini, Chapman et al. (2003) and Shen et al. (2004) can limit the

effective resolution to about 10 nm.

New sources providing a larger brilliance (B ’ 1022) like

the energy recovery linac at CHESS (USA) and damping

wigglers at PETRA III (Germany) can bring significant

improvements in ‘non-destructive’ experiments.

Some errors of this paper have been corrected by Virginie

Chamard (virginie.chamard@univ.u-3mrs.fr) and Françoise

Ehrburger-Dolle (francoise.ehrburger-dolle@ujf-grenoble.fr),

and I wish to thank them. The fit2d program from Andy
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References
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Löcker, M., Fischer, P., Krimmel, S., Krüger, H., Lindner, M.,
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In the paper by Livet [Acta Cryst. (2007), A63, 63–87],

equation (15) is incorrect. The correct equation is

�ðzÞ ¼ P1
n¼0

ð�1Þn22nþ2z2n=½ð2nþ 1Þð2nþ 2Þ2ð2nþ 1Þ!�
� �2

: ð15Þ


