
Research and Applications

Designing and evaluating contextualized drug–drug

interaction algorithms

Eric Chou1, Richard D. Boyce 1, Baran Balkan2, Vignesh Subbian 2,

Andrew Romero3, Philip D. Hansten4, John R. Horn4, Sheila Gephart5 and

Daniel C. Malone6

1Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, 2College of Engineering, Univer-

sity of Arizona, Tucson, Arizona, USA, 3Banner University Medical Center, Tucson, Arizona, USA, 4Department of Pharmacy, Uni-

versity of Washington, Seattle, Washington, USA, 5College of Nursing, University of Arizona, Tucson, Arizona, USA and
6Department of Pharmacotherapy, University of Utah, Salt Lake City, Utah, USA

Corresponding Author: Richard D. Boyce, PhD, Suite 419, 5607 Baum Blvd, Pittsburgh, PA 1506, USA (rdb20@pitt.edu)

Received 29 January 2020; Revised 28 January 2021; Editorial Decision 25 February 2021; Accepted 9 March 2021

ABSTRACT

Objective: Alert fatigue is a common issue with off-the-shelf clinical decision support. Most warnings for drug–

drug interactions (DDIs) are overridden or ignored, likely because they lack relevance to the patient’s clinical sit-

uation. Existing alerting systems for DDIs are often simplistic in nature or do not take the specific patient context

into consideration, leading to overly sensitive alerts. The objective of this study is to develop, validate, and test

DDI alert algorithms that take advantage of patient context available in electronic health records (EHRs) data.

Methods: Data on the rate at which DDI alerts were triggered but for which no action was taken over a 3-month

period (override rates) from a single tertiary care facility were used to identify DDIs that were considered a high-

priority for contextualized alerting. A panel of DDI experts developed algorithms that incorporate drug and pa-

tient characteristics that affect the relevance of such warnings. The algorithms were then implemented as com-

putable artifacts, validated using a synthetic health records data, and tested over retrospective data from a sin-

gle urban hospital.

Results: Algorithms and computable knowledge artifacts were developed and validated for a total of 8 high pri-

ority DDIs. Testing on retrospective real-world data showed the potential for the algorithms to reduce alerts that

interrupt clinician workflow by more than 50%. Two algorithms (citalopram/QT interval prolonging agents, and

fluconazole/opioid) showed potential to filter nearly all interruptive alerts for these combinations.

Conclusion: The 8 DDI algorithms are a step toward addressing a critical need for DDI alerts that are more spe-

cific to patient context than current commercial alerting systems. Data commonly available in EHRs can im-

prove DDI alert specificity.
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BACKGROUND AND SIGNIFICANCE

Drug–drug interactions (DDIs) are associated with an elevated risk

of hospitalization in older adults and are responsible for an

estimated 5%–14% of adverse events among inpatients.1,2 While

failure to properly manage a DDI is a medical error,3–5 prescribers

and pharmacists often have inadequate knowledge regarding DDIs

and how to properly manage an interaction when patient exposure

cannot be avoided.6–10 Electronic prescribing and pharmacy systems

include alerts for potential DDIs as a form of clinical decision sup-
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port (CDS) to warn prescribers and pharmacists of potentially harm-

ful medication combinations, and ideally provide documentation on

how to avoid or mitigate the risk of patient harm. However, this

technology has led to unintended consequences and fallen short of

fulfilling its potential to improve patient safety.

Clinicians override (ie, ignore or dismiss warning) for up to 90%

of potential DDI alerts, primarily because clinicians do not consider

the alerts to be relevant.11–15 Wright et al14 examined DDI alert

override reasons across 10 sites and found “not clinically signifi-

cant” to be the second most commonly provided reason that clini-

cians provided for overriding alerts. Excessive irrelevant alerts are

thought to decrease users’ sensitivity to alerts, producing what is

known as the cry-wolf phenomenon, alarm fatigue, or more specifi-

cally alert fatigue.10,13,14 Alert fatigue is more than just a frustra-

tion; it can lead clinicians to respond inappropriately.15 Edrees et

al16 found that 87.3% of high priority alerts were overridden in a 1-

year sample of inpatient and outpatient data from a large academic

health system. Of concern, less than half (45.4%) of the overrides

were considered appropriate. Moreover, the rate of adverse drug

events was higher with inappropriate versus appropriate overrides

(9.4% vs 4.3%; P¼ .038).

Approaches to reduce alert fatigue include turning-off entire cat-

egories of alerts, using expert opinion to refine commercial drug

knowledge bases to a smaller set of potential DDIs, and tiering alerts

by relative clinical importance.11,12,17–19 For example, Bakker et

al20 conducted a modified Delphi study to identify DDI alerts that

are of importance to critical care patients and found that 38% of

148 potential DDIs were not clinically relevant for the ICU. Pirnejad

et al21 used clinical input from a nephrology team to redesign poten-

tial DDI alerts for kidney transplant patients and reduced the num-

ber of DDI alert types from 52 to 33. A 2020 consensus paper by 4

large health care institutions in the United States describes addi-

tional actions such as using an appropriate alert governance and

management process, collecting and monitoring alert performance

metrics, and improving alert presentation.22

Unfortunately, most systems currently trigger DDI alerts based

on the pair-wise combinations of the drugs involved. Thus, there

tends to be little or no consideration by the systems of contextual

factors. However, the specificity of an alert to individual patient

characteristics play a major role in alert acceptance.11,23–25 An in

situ qualitative study on prescribers’ interaction with electronic

medication alerts showed that when alerts failed to provide contex-

tual information, prescribers bypassed the alert and then searched

for the relevant data that they needed.26

Quality improvement projects have found that making DDI

alerts more appropriate to clinical context can improve alert accep-

tance. Daniels et al15 observed a reduction in the override rate from

93.9% to 46.8% after making nearly a third (30.2%) of DDI alerts

more contextual and suppressing another 16.5% of alerts. Similarly,

Muylle et al27 were able to reduce alerts that interrupt clinician

workflow (interruptive alerting) for potassium increasing potential

DDIs by 92.8%, with no statistically significant effect on the rate of

hyperkalemia, by restricting alerts to only cases where a recent po-

tassium value was �5 mMol/L.

Objectives
The primary audience for this work is informatics leaders at health

systems who are responsible for and/or interested in implementation

and evaluation of CDS systems. The overarching goal of our work is

to develop and validate algorithms that use data available in

electronic health records (EHRs) as contextual information to pro-

vide greater specificity to DDI alerts that are frequently overridden.

In this study, we describe the creation of algorithms that were vali-

dated on both synthetic and real-world EHR data. The algorithms

apply to adult patients exposed to 1 or more of the interacting drug

combinations. We expect the DDI algorithms to have significant im-

pact because the involved drug combinations account for a dispro-

portionate share of alert overrides.15,21 Moreover, we provide both

logic flow diagrams and computable artifacts the DDI algorithms

that should help others to adapt them to their setting.

METHODS

Identification of high priority DDIs and algorithm

development
High priority DDIs were identified based on the most frequently

overridden alerts at the former “University of Arizona Medical Cen-

ter” (now “Banner University Medical Center Tucson”) over a

3-month period (Table 1A and B). A necessary condition for the

DDIs to be “high priority” for this project was that more than 1000

overrides were observed. Drug experts on the research team (4 phar-

macists trained in DDIs: AVR, DCM, JRH, and PDH) also assessed

if evidence for potential harm existed in the literature, if the alert

lacked specificity as implemented in the health system, and if the

alert would be amenable to contextualization using EHR data, such

as laboratory values, diagnoses, duration of use, and other factors

that would affect the risk of harm. The experts then performed an

extensive literature review to identify drug-related and patient-

related factors that would impact the risk of harm from exposure to

each interacting drug combination (Table 1C). The drug experts

used the results of the literature review to design DDI alert algo-

rithms that were contextualized to risk increasing or mitigating fac-

tors. The team discussed each algorithm as it was developed over

regularly scheduled web meetings.

Each algorithm was developed as document-based decision tree

(also known as a logic flow diagram, see an example in Figure 1)

specific to the potentially interacting drug pair. The leaf nodes of

each DDI algorithm decision tree indicated the seriousness of the po-

tential DDI and potential operational recommendations (see Ta-

ble 2). The drug experts documented supporting evidence for every

branch point in the DDI algorithm. Additionally, the team wrote

protocols to define terminology code sets for the relevant medica-

tions, conditions, and lab measurements for each rule. These proto-

cols were used to create extensional concept sets for the

8 algorithms.

Implementation of computable algorithms and testing

against simulated data
Members of the research team then translated the document-based

decision tree algorithms into knowledge artifacts implemented rules

using JBoss Drools (Table 1H). The rules were written so that a rule

engine could identify patients that satisfy specified criteria for each

decision in the DDI decision tree. Supplementary Figure S1 shows

an example Drools rule corresponding to the potential DDI decision

tree in Figure 1.

For the purpose of creating a sample implementation, and to test

that the rules would run as expected, a synthetic patient population

was created and loaded into the open source common data model

provided by the Observational Health Data Science and Informatics

(OHDSI) collaborative.28 This common data model was chosen for
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its ability to accommodate all of the different types of observational

health data used by the algorithms as well as its use of widely-used

standardized terminologies. These features made it simple to use

concept sets to refer to the medications, observations, conditions,

and measurements used in the DDI algorithms. The knowledge arti-

facts for each DDI algorithm were executed against simulated pa-

tient data (Table 1G) to validate that the algorithm’s logic was

sound and complete.

The DDI rules were designed to use concept sets to refer to clin-

ical entities such as drug exposures, conditions, and measurements

used in the original algorithms. Concept sets were created for the

entities using terms from RxNorm (drugs), LOINC (lab measure-

ments), and SNOMED-CT (clinical conditions) terminologies

(Table 1E). For each entity, the team identified candidate concepts

from the relevant terminology in a systematic manner, starting

with locating a more general concept and then assembling a list of

descendant concepts. These were then iteratively filtered by the

team to remove nonrelevant concepts. The final concept sets were

loaded into a database table used by the rule engine. They were

also published to the National Library of Medicine’s Value Set Au-

thority Center.29 The final set of rules and concept sets were used

to help with quality assurance alongside queries of the relational

database (Table 1I).

Application of computable algorithms to real world data
Figure 2 shows a flow diagram showing the key programming activi-

ties and software artifacts for the study. The rules were also evalu-

ated using real-world data to identify the feasibility of translating

them “outside of the laboratory” into real clinical workflows. After

obtaining Institutional Review Board (IRB) approval, 3 months of

de-identified data were obtained from the University of Arizona

Medical Center (January 1, 2016 to March 31, 2016). Data were

extracted only for those patients who had at least 1 exposure to a

drug that was included in 1 of the 8 DDI algorithms. These source

data files included records for patient diagnoses, drug orders, and

lab results, which served as entities to describe a population to be

used for evaluating DDI algorithms. The research team transformed

the data into the OHDSI common data model, which allowed reuse

of the rules that were validated using simulated data with only mi-

nor modifications (Table 1H).

The simulated patient data and the real world population data

both contained similar types of observational data related to medi-

cations, conditions, lab measurements, and the patients’ visits to the

facility (Figure 2). Thus, both datasets could be loaded following

similar OHDSI common data model schemas using the PostgreSQL

database management system. Additionally, the robust support for

different coding systems in the common data model allowed for

seamless mapping of the full breadth of data in both the simulated

and real world datasets to the curated concept sets. The Drools rule

engine could connect to either datasets interchangeably by configur-

ing an application programming interface (Java Database Connec-

tivity) Driver that linked the rule engine to the PostgreSQL

database.

DDI algorithm execution over real-word data was validated

against SQL queries of the relational database with patient popula-

tion data (Table 1I). These queries were written independent of the

rule engine so that daily alert counts per rule could be compared.

Comparisons of the query output with that of the rule engine in-

formed further refinements of the rule engine. Each rule was consid-

ered validated for use with the real world data when the alert and

query output were concordant. The research team defined basic con-

comitant exposure to the 2 drugs of interest for each DDI as a simple

overlapping exposure period (meaning that the start and stop dates

of the 2 drugs overlapped). Alongside this output, we analyzed de-

mographic attributes of the patients and the availability of drug and

patient risk factors that were included in the clinical algorithms for

each of the rules.

We counted 2 types of output: basic concomitant exposure to

the 2 potentially interacting drugs in each algorithm, and occur-

rences of the various rule algorithm leaf nodes labeled using the

codes shown in Table 2. Every unique exposure to the potentially

interacting drugs indicated by an algorithm was counted. Cases

where multiple drug exposures were started for the same drug at the

exact same timestamp, but with different directions for dosage, were

counted separately in the output. Supplementary Figure S2 shows 3

example scenarios where the same patient would have multiple

alerts on a given day involving the same potentially interacting drug

pair.

RESULTS

Identification of high priority DDIs and algorithm

development
A total of 8 DDIs were identified as high priority for contextual

alerting. These are shown in Table 3 along with the drug and patient

factors that were used in the contextualized potential DDI algo-

rithms. The document-based decision tree for each algorithm is pro-

vided in Supplementary Appendix with a sub-set of algorithms

Table 1. Overview of the study activities arranged to distinguish steps that were conducted to design contextualized drug–drug interaction

algorithms (A–D) and steps conducted to test the rules on both simulated and real-world electronic health records data (E–I)

Study activity Lead personnel

Algorithm design

A Data collection at the University of Arizona Medical Center DCM and AVR

B Identification of highest number of alert overrides based on data DCM and AVR

C Literature search to develop clinical algorithms JRH and PDH

D Manual clinician review of random patient profiles for each algorithm DCM

Algorithm testing

E Validation of rule output via relational database queries EC

F Source real-world EHR data loaded in the Common Data Model and run through rules SCR and EC

G Testing of rules using a simulated population loaded in the OHDSI Common Data Model RDB, SCR, and EC

H Translation of clinical algorithms into Drools rules RDB, SCR, and EC

I Development of standardized value sets for drugs, conditions, and labs in clinical algorithms DCM, RDB, and SCR

JAMIA Open, 2021, Vol. 00, No. 0 3



published to https://ddi-cds.org/. Both document-based decision

trees and computable knowledge artifacts are publicly available for

a subset of algorithms at https://ddi-cds.org. The source code used

to implement the Drools knowledge artifacts is also available on the

web.30 Moreover, a Drools environment containing the rules, rule

execution environment, and synthetic data are available as a Docker

image.31

Figure 1. The algorithm for “Immunosuppressant/Fluconazole” drug–drug interaction decision support as a document-based decision tree.

Table 2. Operational classifications assigned to the leaf nodes of

the potential DDI algorithms

Color coding General clinical recommendation

Red Avoid Combination

Yellow Usually Avoid Combination or Minimize Risk

Green No Special Precautions
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Implementation of computable algorithms and testing

against simulated data
Eight computable DDI algorithms were successfully validated using

Drools and simulated patient data. The synthetic patient population

included 93 people with a total of 24 lab measurements, 12 condi-

tion occurrences, and 208 drug exposures. This population, though

small, was sufficient to validate that Drools rules identified all

patients qualifying for each branch of logic in each algorithm and

did not trigger incorrect decisions for any patients. Almost all clini-

cal entities required for the DDI rules were supported in the version

5 of the OHDSI common data model. Only 1 algorithm had a deci-

sion tree branch that was not possible to implement in the comput-

able version. Specifically, the “Epinephrine/Beta-blocker” algorithm

referenced the use of epinephrine for dermatology, dentistry, or plas-

tic surgery. This could not be implemented in the computable rule

because the OHDSI common data model does not directly link drug

exposures with patient condition occurrences.

Application of computable algorithms to real-world

data
The real-world EHR dataset included 24 599 individual patients

who had a healthcare encounter that overlapped with the study’s

3-month period (January–March 2016). The average age of all

patients at the end of the study period was 43.4 (SD ¼ 23.7) years of

age. There were 31 332 distinct health encounters with 10 506

(33.5%) having a duration of at least 24 hours. The manner in

which the data were extracted did not allow us to identify the type

of healthcare encounter each patient had (inpatient, emergency de-

partment, or outpatient). So, we focused the analysis on encounters

lasting 24 hours or more. Tables 4 and 5 summarize the clinical

dataset from real-world EHRs used in this study.

Figure 3 shows the results of testing the computable rules for the

8 algorithms over the retrospective real-world dataset. All the DDI

algorithms were based on drug combinations that frequently trig-

gered alerts at the study site. Thus, if one assumes that in a typical

EHR, basic concomitant exposure to drugs involved in the selected

DDIs will always result in an interruptive alert (ie, a modal dialogue

box interrupting the ordering clinician’s workflow), then the total

number of alerts that would have triggered based on basic concomi-

tant exposure (black bars in Figure 3) is 3020. Figure 3 shows that

the 8 algorithms suggest filtering 1584 (52.4%) of these alerts based

on the operational classification “No Special Precautions” (green

bars in Figure 3). Examining specific DDIs, the percentage of inter-

ruptive alerts that the algorithms suggest completely filtering (“No

Special Precautions”) ranges from 100% for “Citalopram/QT pro-

longing agent” (N¼849) and “Fluconazole/Opioid” (N¼282) to

<1% for Warfarin/Antidepressant (N¼468).

The algorithm that resulted in the most contextualized simulated

alerts was “Warfarin/Antidepressants.” In contrast to 468 basic con-

comitant exposures with no contextualization, the computable rule

identified 368 (78.6%) situations classified as “Avoid

Combination,” 96 (20.5%) situations classified as “Usually Avoid

Combination or Minimize Risk,” and 4 (0.9%) situations classified

as “No Special Precautions.” The “Immunosuppressant/

Fluconazole” algorithm also resulted in well contextualized output

with 313 (89.4%) of the 350 basic concomitant exposures classified

into 2 different situations warranting an “Avoid Combination” clas-

sification, and 37 (10.6%) classified as “No Special Precautions.”

The “Epinephrine/Beta-blocker” algorithm was the only algorithm

that transitioned all basic concomitant exposures (N¼176) to

“Usually Avoid Combination or Minimize Risk.”

DISCUSSION

Avoiding alert fatigue is critical if warnings are to be useful to clini-

cians. This study shows proof-of-concept and the value for contextu-

alizing potential DDI alerts using data commonly available in

EHRs. Document-based decision trees were developed for 8 potential

DDI alerts that occurred frequently at a tertiary care hospital (Sup-

plementary Material). It is notable that an evaluation of the rules on

Figure 2. A flow diagram showing the key programming activities and software artifacts for the study. The study team loaded simulated and real-word EHR data

into separate schemas within a single database instance (PostgreSQL). Both database schemas using the common data model and standard vocabulary main-

tained by the OHDSI collaborative. All data were person-centric and coded using terminology standards stored in the Concept and Concept Set tables. The re-

search team used a custom Java-based controller to load data from the database into Drools working memory and run the computable potential drug–drug

interaction alert algorithms for testing and validation. DDI: drug–drug interaction; CDS: clinical decision support.
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retrospective real-world data from the same institution showed the

potential to reduce interruptive alerts by more than 50%. We expect

that this level of alert reduction combined with the greater contextu-

alization of interruptive alerts would help reduce alert fatigue

among prescribing clinicians working with inpatient adults.

The meaningful use regulation has resulted in health systems

with EHRs to also implement DDI warnings based on third-party

drug databases.32 The developers of these databases recognize that

overalerting is a major complaint of their systems, but are also

concerned about failing to provide a warning when one should be

provided. The current systems are largely built on simple lookup

rules that examine the drug ingredient without considering other

attributes of the product such as dose, route of administration,

timing, and other patient-specific factors that directly affect the rele-

vance of the warning. Furthermore, many of these decision rules

Table 3. The 8 DDIs that were selected for development of contextualized decision support algorithms

Drug–drug Interaction Drug Factors Patient Factors

Citalopram/QT prolonging agent Dose of citalopram

QT-agents

Female sex, ECG > 480 ms, age 68 or older,

concomitant loop diuretic, serum potassium

< 3.5 mEq, history of myocardial infarction,

has diagnosis of sepsis, and has diagnosis of

heart failure

Clonidine/beta-blocker Class of beta-blocker (selective, nonselective,

alpha-blocking)

Clonidine formulation

Timolol formulation

Withdrawal of clonidine

Epinephrine/beta-blocker Class of beta-blocker (selective, nonselective,

alpha-blocking)

Epinephrine formulation

Timolol formulation

Epinephrine indication (dermatological, dental,

plastic surgery uses)

Dose of epinephrine

Anaphylaxis conditions

Fluconazole/opioid Dose of fluconazole

Dose of oxycodone

Dose of fentanyl

Visit type (inpatient or outpatient)

Immunosuppressant/fluconazole Immunosuppressants

Fluconazole formulation

Dose of fluconazole

Age

Potassium/potassium-sparing diuretic Potassium

Dose of spironolactone

Dose of amiloride

Dose of triamterene

Serum potassium concentration

Warfarin/antidepressant Warfarin

SSRIs and SNRIs

Tricyclics

Buproprion

Mirtazapine

NSAIDs

Aspirin

Systemic corticosteroids

Aldosterone antagonists

Anti-platelet medications

Age

History of UGIB or peptic ulcer

Warfarin/salicylate Warfarin

Salicylate formulation

Nonacetylated salicylates

Dosage of nonacetylated salicylates

Indication of thromboembolic events

Note: The column to the right shows the health record data types that were used to contextualize the algorithms. The table also shows health record data types

that were used to make the algorithms specific to specific patient situations.

Abbreviations: K: potassium; NSAIDs: nonsteroidal anti-inflammatory drugs; QT: QT interval; SNRIs: serotonin-norepinephrine reuptake inhibitors; SSRIs: se-

lective serotonin reuptake inhibitors; UGIB: upper gastrointestinal bleeding.

Table 4. Demographics of the real-world electronic health records

that the DDI algorithms were tested on

Patient characteristics N (%)

Total 24 599

Sex

Female 13 164 (53.5)

Male 11 435 (46.5)

Ethnicity

Hispanic or Latino 10 407 (42.3)

Not Hispanic or Latino 13 748 (55.9)

Unknown 444 (1.8)

Age

Under 18 years old 3843 (15.6)

18–60 years old 13 682 (55.7)

60þ years old 7074 (28.7)

6 JAMIA Open, 2021, Vol. 00, No. 0



lack specificity at the ingredient level, relying on sometimes broad

therapeutic categories to assign interaction properties.

Our study seeks to advance DDI algorithms to use contextual

factors that improve the specificity of warnings, while retaining a

high degree of sensitivity. It is important to stress that, while neces-

sary for reducing DDI alerts and making them more clinically rele-

vant, the approach might not be sufficient to increase alert

acceptance or improve clinical outcomes. For example, Duke and

Bolchini33 designed a model to integrate patient-specific data into

DDI alerts via a web-based service that was interoperable across

clinical information systems. In a randomized controlled follow-up

study, Duke et al34 found no improvement in prescriber adherence

to DDI alerts that included the patient’s most recent relevant labora-

tory values for hyperkalemia-associated DDIs among high-risk

patients. It is important to note that Duke et al’s alerting system did

not use patient-specific data to intelligently filter alerts for clinicians.

Rather, the alerts simply showed the relevant laboratory values, as-

suming clinicians would make the necessary cognitive connections.

The authors acknowledged that stating the elevated risk for each pa-

tient might have improved adherence, suggesting the importance of

Table 5. Summary information on the real-world electronic health

records dataset that the DDI rules were tested on

N Average per

person (SD)

Any health encounter

Number of visits 31 332 1.27 (1.13)

Visit length 2 d, 5 h, 18 min

Drug exposures started during visit 516 387 17.3 (29.0)

Lab measurements taken during visit 284 657 16.8 (31.5)

Health encounter of �24 h

Number of visits 10 506 1.14 (0.46)

Visit length 6 d, 3 h, 10 min

Drug exposures started during visit 336 789 32.3 (43.2)

Lab measurements taken during visit 234 353 27.8 (41.8)

Visit duration of <24 h

Number of visits 20 826 1.22 (1.18)

Note: All drug exposures and measurements considered in this table are

counted if and only if they are recorded during a visit within the study period.

A visit was determined as occurring within the study period if it either began

or ended between the 3-month period of January through March 2016.

Figure 3. The results of running the 8 computable algorithms for which there was concomitant exposure in the real world dataset. The figure shows a set of 2 bar

charts for each algorithm. The first bar chart shown for each algorithm shows the total count of basic concomitant exposure to the drugs involved in the algo-

rithm DDI. The second bar chart shown for each algorithm shows 2 counts derived from the simulated alerts triggered by the computable algorithm. The first

count is the total number of simulated alerts that triggered by each rule. The second count is a breakdown of the specific branches of each algorithm that were

triggered. Color coding is used to indicate the operational classification of each branch based on Table 2 (red ¼ Avoid Combination; yellow ¼ Usually Avoid Com-

bination or Minimize Risk; and green ¼ No Special Precautions).

JAMIA Open, 2021, Vol. 00, No. 0 7



addressing alert specificity. For example, alerts for lower-risk

patients could have been filtered or downgraded. Such tiering, or

prioritizing, of alerts has been shown to improve adherence.17 The

Duke et al study is not the only one to report no benefit from con-

textualized DDI alerts. A cluster-randomized controlled study by

Beeler et al35 of contextualized potassium increasing DDI alerts

found that negligible impact on alert management. We note that ev-

ery alert in the study was noninterruptive, regardless of priority,

making it feasible that clinicians missed clinically important alerts

even in the intervention group.

Our findings are concordant with the results of other studies that

have demonstrated the potential for substantial reductions in alert

volume when greater attention is given to contextual factors. Ried-

mann et al36 used a combination of literature searches and expert

interviews to design a context model of 20 factors that could be

used to prioritize drug safety alerts depending on the characteristics

of the specific patient (eg, clinical status), alert (eg, severity), and

user or organizational unit (eg, professional experience of user).

Seidling et al37 observed that more than half of the alerts that would

have been triggered for DDIs involving cholesterol-lowering statin

drugs were inappropriate because the dose of the statin was not con-

sidered by the software. More recently, Seidling et al23 identified 14

types of modulators useful for refining the specificity of DDI alerts.

These could be applied to 83 out of 100 frequently triggered DDI

alerts using relevant factors in the EHR. However, the clinical rele-

vance of this work was limited by the fact that the investigators did

not conduct an evaluation of the alerts to determine appropriate-

ness. Horn et al19 were able to reduce the potential number of major

alerts by nearly 70% by applying an operational classification that

specified DDI clinical management strategies to a commercial KB.

Some potential limitations of this study include that the DDI

alert algorithms were developed based on potential DDIs that were

frequently overridden at a single institution, were potentially harm-

ful to some patients, and were amenable to contextualization. This

criterion was applied to data from a single site and by a single group

of experts. Other panels might have selected different DDIs based

on their institutional and/or clinical context. The real-world data

did not indicate the type of health encounter each patient had so we

limited the analysis to encounters lasting 24 hours or more. Work is

underway to test the DDI algorithms using real-world data from

outpatient setting where it can be more challenging to identify a

complete set of truly overlapping drug exposures. The algorithms

were developed by consensus among a team of leading DDI experts

but there has not been any empirical validation that the algorithms

are effective at reducing alert fatigue. The computable artifacts were

tested on retrospective real-world data using Java-based Drools rules

and the OHDSI common data model. Further testing would be

needed before implementing the rules in a clinical setting because of

differences in EHR and how they are implemented.

As is mentioned above, the primary audience for this work is in-

formatics leaders at health systems who are responsible for and/or

interested in implementation and evaluation of CDS systems. How-

ever, it is often the case that informatics leaders at healthcare organi-

zations have little or no control over the DDI rule logic used by

commercial drug knowledge base vendors with which an organiza-

tion might contract for DDI CDS. For this reason, we think that

commercial systems should seek to work with the major EHR ven-

dors and the standards community (eg, HL7 FHIR) to provide ex-

panded interoperability and allow more contextualized DDI alerts.

Indeed, progress has been made in that direction through the process

of developing an implementation guide for DDI CDS using emerging

health information technology standards.38 Multiple rules devel-

oped for this project have been implemented using HL7 Clinical

Quality Language (CQL) and FHIR using the suggested Minimum

Representation of Potential Drug–Drug Interaction Knowledge and

Evidence.39–41 One of these rules has been used as a use case in the

recently balloted implementation guide which has received signifi-

cant input from EHR vendors, drug knowledge base vendors, regu-

latory agencies, and other stakeholders.42

Another limitation that should be considered is that the interac-

tions of interest in this study are largely for adult populations. While

our original intent was not to exclude interactions that may occur in

pediatric populations, we focused this study on those interactions

with a high override rate at a major medical center. This study did

not attempt to quantify the degree of harm prevented because of

challenges in determining the frequency that patients are harmed

from exposure to a DDI. Another limitation of the study is that de-

signing alerting algorithms is challenging due to the lack of studies

on DDIs that consider risk factors directly. Thus, extensive and per-

haps more comprehensive algorithm development is limited by lack

of evidence.

CONCLUSION

This work addresses a critical need for contextual DDI algorithms

that are well-tested and shareable. The comprehensive evaluation of

the 8 algorithms for DDI frequently overridden alerts serves as an

important step towards making DDI alerting more patient specific

across various healthcare organizations.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.

AUTHOR CONTRIBUTIONS

All co-authors made substantial contributions to the design of the

work and the analysis and interpretation of data. DCM and AR ac-

quired the electronic health records data for the work. JRH, AR,

DCM, and PDH developed the drug–drug interaction clinical deci-

sion support algorithms. EC, RDB, BB, and VS developed the

knowledge artifacts and conducted the primary analysis. SG pro-

vided input on the algorithms and study design during development.

EC and RDB led the drafting of the work and all authors were in-

volved in revising it. All authors gave final approval for publishing

and agree to be accountable for what is published.

DATA AVAILABILITY

All of the drug–drug interaction algorithms used in this study are

provided in the supplement to this article. The data underlying this

article cannot be shared publicly because access requires a data use

agreement and approval from an institutional review board. The

data will be shared on reasonable request to the corresponding au-

thor following approval from the institution that owns the data and

institutional review board approval.

8 JAMIA Open, 2021, Vol. 00, No. 0



FUNDING

This research was supported by the Agency for Healthcare Research and

Quality (AHRQ) grant numbers R21 HS023826 and R01 HS025984 and Na-

tional Science Foundation grant number 1838745.

Conflict of interest statement. None declared.

REFERENCES

1. Magro L, Moretti U, Leone R. Epidemiology and characteristics of ad-

verse drug reactions caused by drug-drug interactions. Expert Opin Drug

Saf 2012; 11 (1): 83–94.

2. Hines LE, Murphy JE. Potentially harmful drug-drug interactions in the

elderly: a review. Am J Geriatr Pharmacother 2011; 9 (6): 364–77.

3. Committee on Identifying and Preventing Medication Errors. Preventing

Medication Errors. Washington, DC: Institute of Medicine; 2006.

4. Peterson JF, Bates DW. Preventable medication errors: identifying and

eliminating serious drug interactions. J Am Pharm Assoc (Wash) 2001; 41

(2): 159–60.

5. Juurlink DN, Mamdani M, Kopp A, Laupacis A, Redelmeier DA. Drug-

drug interactions among elderly patients hospitalized for drug toxicity.

JAMA 2003; 289 (13): 1652–8.

6. Chen Y-F, Avery AJ, Neil KE, Johnson C, Dewey ME, Stockley IH. Inci-

dence and possible causes of prescribing potential hazardous/contraindi-

cated drug combinations in general practice. Drug Saf 2005; 28 (1):

67–80.

7. Hines LE, Malone DC, Murphy JE. Recommendations for generating,

evaluating, and implementing drug–drug interaction evidence. Pharmaco-

therapy 2012; 32 (4): 304–13.

8. Ko Y, Malone DC, D’Agostino JV, et al. Potential determinants of pre-

scribers’ drug-drug interaction knowledge. Res Social Adm Pharm 2008;

4 (4): 355–66.

9. Weideman RA, Bernstein IH, McKinney WP. Pharmacist recognition of

potential drug interactions. Am J Health Syst Pharm 1999; 56 (15):

1524–9.

10. Nabovati E, Vakili-Arki H, Taherzadeh Z, Saberi MR, Abu-Hanna A,

Eslami S. A survey of attitudes, practices, and knowledge regarding drug-

drug interactions among medical residents in Iran. Int J Clin Pharm 2017;

39 (3): 560–8.

11. van der Sijs H, Aarts J, Vulto A, Berg M. Overriding of drug safety alerts

in computerized physician order entry. J Am Med Inform Assoc 2006; 13

(2): 138–47.

12. Weingart SN, Toth M, Sands DZ, Aronson MD, Davis RB, Phillips RS.

Physicians’ decisions to override computerized drug alerts in primary care.

Arch Intern Med 2003; 163 (21): 2625–31.

13. Grizzle AJ, Mahmood MH, Ko Y, et al. Reasons provided by prescribers

when overriding drug-drug interaction alerts. Am J Manag Care 2007; 13

(10): 573–8.

14. Wright A, McEvoy DS, Aaron S, et al. Structured override reasons for

drug-drug interaction alerts in electronic health records. J Am Med Inform

Assoc 2019; 26 (10): 934–42.

15. Daniels CC, Burlison JD, Baker DK, et al. Optimizing drug-drug interac-

tion alerts using a multidimensional approach. Pediatrics 2019; 143 (3):

e20174111.

16. Edrees H, Amato MG, Wong A, Seger DL, Bates DW. High-priority drug-

drug interaction clinical decision support overrides in a newly imple-

mented commercial computerized provider order-entry system: override

appropriateness and adverse drug events. J Am Med Inform Assoc 2020;

27 (6): 893–900.

17. Paterno MD, Maviglia SM, Gorman PN, et al. Tiering drug-drug interac-

tion alerts by severity increases compliance rates. J Am Med Inform Assoc

2009; 16 (1): 40–6.

18. Shah NR, Seger AC, Seger DL, et al. Improving acceptance of computer-

ized prescribing alerts in ambulatory care. J Am Med Inform Assoc 2006;

13 (1): 5–11.

19. Horn JR, Hansten PD, Osborn JD, Wareham P, Somani S. Customizing

clinical decision support to prevent excessive drug-drug interaction alerts.

Am J Health Syst Pharm 2011; 68 (8): 662–4.

20. Bakker T, Klopotowska JE, de Keizer NF, SIMPLIFY Study Group, et al.

Improving medication safety in the intensive care by identifying relevant

drug-drug interactions - results of a multicenter Delphi study. J Crit Care

2020; 57: 134–40.

21. Pirnejad H, Amiri P, Niazkhani Z, et al. Preventing potential drug-drug

interactions through alerting decision support systems: a clinical context

based methodology. Int J Med Inform 2019; 127: 18–26.

22. McGreevey JD, Mallozzi CP, Perkins RM, Shelov E, Schreiber R. Reduc-

ing alert burden in electronic health records: state of the art recommenda-

tions from four health systems. Appl Clin Inform 2020; 11 (1): 1–12.

23. Seidling HM, Klein U, Schaier M, et al. What, if all alerts were specific –

estimating the potential impact on drug interaction alert burden. Int J

Med Inform 2014; 83 (4): 285–91.

24. Horsky J, Schiff GD, Johnston D, Mercincavage L, Bell D, Middleton B.

Interface design principles for usable decision support: a targeted review

of best practices for clinical prescribing interventions. J Biomed Inform

2012; 45 (6): 1202–16.

25. Jung M, Riedmann D, Hackl WO, et al. Physicians’ perceptions on the

usefulness of contextual information for prioritizing and presenting alerts

in Computerized Physician Order Entry systems. BMC Med Inform Decis

Mak 2012; 12: 111.

26. Russ AL, Zillich AJ, McManus MS, Doebbeling BN, Saleem JJ. Prescrib-

ers’ interactions with medication alerts at the point of prescribing: a multi-

method, in situ investigation of the human–computer interaction. Int J

Med Inform 2012; 81 (4): 232–43.

27. Muylle KM, Gentens K, Dupont AG, Cornu P. Evaluation of context-

specific alerts for potassium-increasing drug-drug interactions: a pre-post

study. Int J Med Inform 2020; 133: 104013.

28. Hripcsak G, Duke JD, Shah NH, et al. Observational health data sciences

and informatics (OHDSI): opportunities for observational researchers.

Stud Health Technol Inform 2015; 216: 574–8.

29. Bodenreider O, Nguyen D, Chiang P, et al. The NLM value set authority

center. Stud Health Technol Inform 2013; 192: 1224.

30. Boyce RD, Chou E, Rosko S, Sibilla M. Code Repository for the Individu-

alized Drug Interaction Alerts Rules project. GitHub; 2020. https://

github.com/dbmi-pitt/ddi-cds Accessed December 5, 2019.

31. Sibilla M, Chou E, Boyce RD. Docker container for the Individualized

Drug Interaction Alerts Project; 2019. https://hub.docker.com/r/ddicds/

idia_rules Accessed December 5, 2019.

32. Blumenthal D, Tavenner M. The “meaningful use” regulation for elec-

tronic health records. N Engl J Med 2010; 363 (6): 501–4.

33. Duke JD, Bolchini D. A successful model and visual design for creating

context-aware drug-drug interaction alerts. AMIA Annu Symp Proc 2011;

2011: 339–48.

34. Duke JD, Li X, Dexter P. Adherence to drug-drug interaction alerts in

high-risk patients: a trial of context-enhanced alerting. J Am Med Inform

Assoc 2013; 20: 494–8.

35. Beeler PE, Eschmann E, Schneemann M, Blaser J. Negligible impact of

highly patient-specific decision support for potassium-increasing drug-

drug interactions - a cluster-randomised controlled trial. Swiss Med Wkly

2019; 149: w20035.

36. Riedmann D, Jung M, Hackl WO, Stühlinger W, van der Sijs H,

Ammenwerth E. Development of a context model to prioritize drug

safety alerts in CPOE systems. BMC Med Inform Decis Mak 2011; 11

(1): 35.

37. Seidling HM, Storch CH, Bertsche T, et al. Successful strategy to improve

the specificity of electronic statin-drug interaction alerts. Eur J Clin Phar-

macol 2009; 65 (11): 1149–57.

38. Nguyen B-P, Reese T, Decker S, Malone D, Boyce RD, Beyan O. Imple-

mentation of clinical decision support services to detect potential drug-

drug interaction using clinical quality language. Stud Health Technol In-

form 2019; 264: 724–8.

39. Boyce R, Garcia E, Hochheiser H, Ayvaz S, Sahay R, Dumontier M. A

Minimum Representation of Potential Drug-Drug Interaction Knowledge

JAMIA Open, 2021, Vol. 00, No. 0 9

https://github.com/dbmi-pitt/ddi-cds 
https://github.com/dbmi-pitt/ddi-cds 
https://hub.docker.com/r/ddicds/idia_rules
https://hub.docker.com/r/ddicds/idia_rules


and Evidence – Technical and User-Centered Foundation. The W3C

Semantic Web in Health Care and Life Sciences Community Group; 2019.

https://w3id.org/hclscg/pddi Accessed July 5, 2017.

40. Boyce R, Malone D, Hansten P, et al. CDS Connect – Contextual Drug In-

teraction Decision Support Algorithm for Warfarin - Antidepressants.

CDS Connect; 2020. https://cds.ahrq.gov/cdsconnect/artifact/contextual-

drug-interaction-decision-support-algorithm-warfarin-antidepressants

Accessed December 1, 2020.

41. Boyce R, Malone D, Hansten P, et al. CDS Connect – Contextual Drug In-

teraction Decision Support Algorithm for Warfarin – Nonsteroidal Anti-

inflammatory Drugs (NSAIDs). CDS Connect; 2020. https://cds.ahrq.gov/

cdsconnect/artifact/contextual-drug-interaction-decision-support-algo-

rithm-warfarin-nonsteroidal Accessed December 1, 2020.

42. Clinical Decision Support Workgroup. Potential Drug-Drug Interaction

(PDDI) CDS Implementation Guide. HL7; 2020. http://hl7.org/fhir/uv/

pddi/2020SEP/index.html Accessed January 21, 2021.

10 JAMIA Open, 2021, Vol. 00, No. 0

https://w3id.org/hclscg/pddi
https://cds.ahrq.gov/cdsconnect/artifact/contextual-drug-interaction-decision-support-algorithm-warfarin-antidepressants
https://cds.ahrq.gov/cdsconnect/artifact/contextual-drug-interaction-decision-support-algorithm-warfarin-antidepressants
https://cds.ahrq.gov/cdsconnect/artifact/contextual-drug-interaction-decision-support-algorithm-warfarin-nonsteroidal
https://cds.ahrq.gov/cdsconnect/artifact/contextual-drug-interaction-decision-support-algorithm-warfarin-nonsteroidal
https://cds.ahrq.gov/cdsconnect/artifact/contextual-drug-interaction-decision-support-algorithm-warfarin-nonsteroidal
http://hl7.org/fhir/uv/pddi/2020SEP/index.html
http://hl7.org/fhir/uv/pddi/2020SEP/index.html

