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Transcriptome and Exome Analyses of 
Hepatocellular Carcinoma Reveal Patterns 
to Predict Cancer Recurrence in Liver 
Transplant Patients
Silvia Liu,1* Michael A. Nalesnik,1* Aatur Singhi,1* Michelle A. Wood-Trageser ,1 Parmjeet Randhawa,1 Bao-Guo Ren,1 
Abhinav Humar,2 Peng Liu,3 Yan-Ping Yu,1 George C. Tseng,3 George Michalopoulos ,1 and Jian-Hua Luo1

Hepatocellular carcinoma (HCC) is one of the most lethal human cancers. Liver transplantation has been an effective 
approach to treat liver cancer. However, significant numbers of patients with HCC experience cancer recurrence, and 
the selection of suitable candidates for liver transplant remains a challenge. We developed a model to predict the likeli-
hood of HCC recurrence after liver transplantation based on transcriptome and whole-exome sequencing analyses. We 
used a training cohort and a subsequent testing cohort based on liver transplantation performed before or after the 
first half of 2012. We found that the combination of transcriptome and mutation pathway analyses using a random 
forest machine learning correctly predicted HCC recurrence in 86.8% of the training set. The same algorithm yielded 
a correct prediction of HCC recurrence of 76.9% in the testing set. When the cohorts were combined, the prediction 
rate reached 84.4% in the leave-one-out cross-validation analysis. When the transcriptome analysis was combined with 
Milan criteria using the k-top scoring pairs (k-TSP) method, the testing cohort prediction rate improved to 80.8%, 
whereas the training cohort and the combined cohort prediction rates were 79% and 84.4%, respectively. Application of 
the transcriptome/mutation pathways RF model on eight tumor nodules from 3 patients with HCC yielded 8/8 con-
sistency, suggesting a robust prediction despite the heterogeneity of HCC. Conclusion: The genome prediction model 
may hold promise as an alternative in selecting patients with HCC for liver transplant. (Hepatology Communications 
2022;6:710-727).

Hepatocellular carcinoma (HCC) is the most 
frequent type of liver cancer and has an 
overall 5-year survival of 18%,(1) with only 

glioblastoma and pancreatic cancer having higher 
mortality.(2) Currently, surgical intervention remains 
the most effective therapy. When HCC is localized 
and the liver function is adequate, tumor resection or 

cryoablation may be a treatment option. However, liver 
transplantation is the mainstay of successful treatment 
because it addresses both the tumor and the underly-
ing liver disease, thereby eliminating the primary risk 
factor for additional tumors.

The first successful liver transplant was performed 
in 1967.(3) Since then, the number of liver transplants 
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applied to treat HCC has steadily increased. The Milan 
criteria were developed in 1996 to guide the selection 
of HCC patients by limiting transplantation to those 
individuals with HCC comprising a single lesion <5 cm 
in diameter or up to three tumor nodules but with 
no tumor nodule >3  cm in diameter.(4) However, the 
Milan criteria were ultimately viewed by some as too 
restrictive, denying transplantation to a large number of 
potentially treatable patients with HCC. Several sub-
sequent criteria were developed to address this,(5) and 
the latest Extended Toronto criteria include patients 
with any size or number of tumors in the absence of 
systemic cancer-related symptoms, extrahepatic dis-
ease, or poorly differentiated tumor.(6) Posttransplant 
survival rates applying these criteria range from 65%-
85%.(7) A major consideration in selection of trans-
plant candidates is posttransplant HCC recurrence. 
Based on various studies, the HCC recurrence rate 
has been up to 20% among liver transplant patients, 
with a median recurrence time of 14 months following 
transplant. The median post-recurrence survival time is 
only 12 months.(8,9) Thus, a better prediction method 
of HCC recurrence is necessary to improve the clinical 
outcomes of patients with HCC.

Taking advantage of high-throughput genomic 
technology, biomarkers can be detected and measured 
on a genome-wide scale. For the transcriptomic study, 
gene expressions are able to be quantified by both 
large-scale gene-expression microarray and RNA-
sequencing (RNA-seq) technology. These gene-
expression and microRNA expression techniques 
have been applied to HCC studies to detect new bio-
markers, explore molecular mechanisms, and discover 
novel therapeutic targets.(10) For DNA-level analysis, 

genome-wide somatic mutations and copy number 
variations can be detected by both single-nucleotide 
polymorphism microarray and whole exome/genome 
sequencing. Investigators have used these cutting-
edge technologies to discover cancer-driven mutations 
and to study HCC molecular profiles.(11-13)

Given the current need to rationally assess the like-
lihood of posttransplant tumor recurrence, and taking 
advantage of current genomic methodologies, we propose 
a prediction model in this report. We constructed and 
validated a prediction model based on the transcriptomic 
and exomic analyses on HCC samples to predict the like-
lihood of HCC recurrence following liver transplantation.

Materials and Methods
Clinical samples were obtained in accordance with 

the guidelines approved by the Institutional Review 
Board of the University of Pittsburgh. All methods 
were carried out in accordance with relevant guide-
lines and regulations. Informed consent exemptions 
were obtained from the University of Pittsburgh 
Institutional Review Board with # STUDY19070068.

TISSUE SAMPLES
The 128 tissue specimens in this study were obtained 

from the University of Pittsburgh Medical Center 
archived tissue deposit center in compliance with 
institutional regulatory guidelines. The clinical fea-
tures of the samples, including etiology, pre-transplant 
treatment, pathology grade, microvascular/macro-
vascular invasion, sizes and numbers of the tumors, 
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immunosuppression, mammalian target of rapamycin 
inhibitor application, and status of follow-up are listed 
in Table 1 and Supporting Table S1. Milan status was 
assessed based on the examination of the explanted 
liver. In some cases, tumors were found to be of size or 
number beyond Milan criteria for one of three reasons: 
First, some transplants were performed before the use 
of Milan criteria as a screening process. Second, clin-
ical Milan status was based on radiologic assessment, 
and in some cases additional small tumors or varia-
tions in tumor size were discovered on analysis of the 
liver explant. Third, some patients with tumors beyond 
Milan criteria underwent living donor transplant out-
side the national match program. Cancer tissues from 
the explanted livers were identified through hematoxy-
lin and eosin staining. The position of the cancer in the 
slide was matched with the tissue block and circled. The 
identified positions were then used to obtain needle 
cores from the cancer tissues, to simulate a clinical nee-
dle biopsy. Non-liver and benign tissues some distance 
from the cancer were used as matched normal con-
trols. The sample size was estimated by power analysis 
and specimen availability. The processes and protocols 
followed the guidelines approved by the Institutional 
Review Board of the University of Pittsburgh.

INCLUSION AND EXCLUSION 
CRITERIA

Samples were obtained from native liver explants at 
the time of liver transplantation on the basis of tissue 
availability. HCC represents a subset of liver transplant 
patients. Samples with sufficient quantity of RNA and 
DNA were selected for the study. For both training and 
testing data sets, patients were required to have clinical fol-
low-up for at least 3 years (Table 2 and Supporting Table 
S1). HCC recurrence was monitored by a combination 
of magnetic resonance imaging, computed tomography, 
ultrasound, alpha-fetoprotein level, and clinical evalua-
tion. Re-emergence of HCC within 3 years after trans-
plant is defined as recurrence, whereas absence of HCC 
detection in the same period is defined as non-recurrence.

TRANSCRIPTOME SEQUENCING
Paraffin was removed by incubating tissue cores with 

xylene overnight. RNA extraction and transcriptome 
sequencing procedures were described previously.(14-18) 
Briefly, total RNA was extracted from tissue cores using 

the TRIzol method. DNase1 was used to degrade DNA, 
and a RIBO-Zero Magnetic Kit (Epicentre, Madison, 
WI) was used to remove ribosomal RNA from the 
samples. RNA was reverse-transcribed to complemen-
tary DNA, and a TruSeq RNA Sample Prep Kit v2 
(Illumina, San Diego, CA) was used for library prepa-
ration. The procedure was guided by the manufactur-
er’s manual. The quality of the transcriptome library 
was analyzed with quantitative PCR using Illumina 
sequencing primers and quantified in an Agilent 2000 
Bioanalyzer. The sequencing procedure followed the 
manual for paired-end sequencing with 200 cycles as 
specified for the HiSeq 2500 or with 300 cycles as 
specified for the NextSeq550 platform by Illumina.

EXOME SEQUENCING
Illumina TruSeq DNA Exome prep kit was used to 

prepare the exome library. Briefly, the extracted DNA 
(100 ng) was fragmented in Covaris sonicator to 200 bp 
length. This was followed by ends repairing, adenylation 
of 3’ ends, and adapter ligation. After clean-up by mag-
netic beads, the DNA fragments were PCR-amplified 
for eight cycles of 98°C for 20 seconds, 60°C for 20 sec-
onds, and 72°C for 30  seconds. The amplified DNA 
was used to hybridize the probes, and the hybridized 
probes were captured by Streptavidin magnetic beads.

After repeating the probe hybridization and probe 
capturing, the enriched DNA fragments were ampli-
fied for eight cycles at 98°C for 10 seconds, 60°C for 
35 seconds, and 72°C for 30 seconds. The libraries were 
then assessed for quality and quantity in an Agilent 
2000 Bioanalyzer. The sequencing procedure followed 
the manual for paired-end sequencing with 200 cycles, 
as specified for the HiSeq 2500 or with 300 cycles as 
specified for the NextSeq550 platform by Illumina.

BIOINFORMATICS ANALYSIS FOR 
TRANSCRIPTOME SEQUENCING 
DATA

The sequencing quality control was first per-
formed on RNA-seq data through FastQC (https://
www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​
c/). Adapter sequences and low-quality reads were 
trimmed out by Trimmomatic.(19) After preprocess-
ing, surviving reads were aligned to human reference 
genome hg19 by aligner Hisat2.(20) Gene fragments 
per kilobase per million reads (FPKM) were quantified 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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TABLE 1. CLINICAL FEATURES OF THE HCC COHORT

Clinical Features Category/Statistical Measurements Training Validation

Number of samples Count 38 26

Latest recurrence status Nonrecurrent 23 18

Recurrent 15 8

Milan score In 16 (42.1%) 20 (76.9%)

Out 22 (57.9%) 6 (23.1%)

Tx age Mean ± SD 56.2 ± 8.9 61.9 ± 5.7

Tx type Orthotopic 37 16

Living related 1 3

Living nonrelated 0 7

Underlying disease HBV 5 (13.2%) 0 (0.0%)

HCV 17 (44.7%) 9 (34.6%)

Nodular regenerative hyperplasia 1 (2.6%) 0 (0.0%)

Hemochromatosis 2 (5.3%) 0 (0.0%)

NASH 5 (13.2%) 8 (30.8%)

EtOH 8 (21.1%) 10 (38.5%)

A1AT 1 (2.6%) 0 (0.0%)

PBC 1 (2.6%) 1 (3.8%)

NRH 0 (0.0%) 4 (15.4%)

Orig. number of tumors 1 10 9

2 8 6

3 4 3

4+ 16 8

Orig. tumor sizes (cm) [min, max] [0.2, 21.0] [0.3, 6.0]

Alive status at last follow-up Alive 13 17

Dead 24 9

Unknown 1 0

Pretransplant Rx Y 18 17

N 10 6

Unknown 10 3

PreTx Rx type RFA 6 (15.8%) 9 (34.6%)

Resection 2 (5.3%) 4 (15.4%)

TACE 13 (34.2%) 14 (53.8%)

Sorafenib 0 (0.0%) 5 (19.2%)

None 10 (26.3%) 6 (23.1%)

Immunosuppression Tacrolimus 18 (47.4%) 25 (96.2%)

Mycophenolate 11 (28.9%) 25 (96.2%)

Cyclosporine 5 (13.2%) 3 (11.5%)

Everolimus 3 (7.9%) 14 (53.8%)

Azathioprine 0 4 (15.4%)

mTOR inhibitor Y 3 13

N 28 12

Unknown 7 1

Highest AFP level [min, median, max] [4, 40, 34,818] [2.1, 34.05, 22,256]

HCC differentiation Poor 6 4

Moderate 21 17

Well 11 5

Microvascular invasion Yes 23 14

No 13 12

Unknown 2 0
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by Cufflinks.(21) All of the pipelines were run using 
default parameters.

BIOINFORMATICS ANALYSIS FOR 
WHOLE-EXOME SEQUENCING 
DATA

DNA specimens from paired data (tumor and benign 
tissue for the same patient) were collected for whole-
exome sequencing (WES). Similar as for RNA-seq 
data, each WES data point first went through a pipeline 
of quality control (https://www.bioin​forma​tics.babra​
ham.ac.uk/proje​cts/fastq​c/) and filtering. Reads that 
passed the quality control were then aligned to human 
reference genome hg19 by Burrows-Wheeler Aligner 
mem function.(22) Tool Picard (http://broad​insti​tute.
github.io/picar​d/) was then applied to sort, index, and 
mark duplicates on the aligned reads. The Genome 
Analysis Toolkit(23) analysis pipeline was then used to 
perform realignment and mutation calling. Eventually, 
paired samples (tumor and normal) were matched to 
call somatic mutations by GATK Mutect2.(23) All 
pipelines were run by default parameters.

PREDICTION MODEL ON 
TRANSCRIPTOME EXPRESSION 
PROFILES

Genomic and machine learning methods were intro-
duced to predict the recurrence status of liver transplan-
tation. These machine learning algorithms generally 
take in the genomic features (e.g., gene expression and 
mutation pathways across the samples) and generate a 
prediction probability per sample. For the transcrip-
tome model, genome-wide gene-expression profiles 
were quantified across all tumor samples. FPKM values 
were first log2-scaled. Several machine learning algo-
rithms were applied to the transcriptome expression 
data, specifically, support vector machine (SVM),(24) 

random forest (RF),(25,26) linear discriminant analy-
sis (LDA),(27) logistic regression,(28) and k-top scor-
ing pairs (k-TSP).(29) Quantile normalization across 
the training and testing cohorts was applied to correct 
the batch effect for the first four algorithms, whereas 
k-TSP is a non-parametric method in which quantile 
normalization is not required. For all of these methods, 
leave-one-out cross-validation (LOOCV) was per-
formed on the training cohort to evaluate the prediction 
algorithms and select the best parameters (the best top 
number of genes or paired genes). The best algorithm 
was then applied to the whole training cohort to train 
a model and apply to the testing cohort. Eventually, 
the training and testing cohorts were pooled together 
to generate the best model for prediction of recurrence 
of a new sample. All biostatistical analyses were per-
formed by R programming and available R packages: 
“randomForest,” “MASS,” “e1071,” and “switchBox.”(30)

PREDICTION MODEL 
INTEGRATING TRANSCRIPTOME 
EXPRESSION AND GENE 
MUTATION

All machine learning algorithms applied to transcrip-
tome analysis were used to integrate both RNA and 
DNA data. At the RNA level, gene expressions were 
used as features, which is similar to the model working 
only on transcriptome expression data. At the DNA level, 
somatic mutations were called on each tumor-normal 
pair individually. Known Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways with defined functional gene sets were col-
lected from the public database.(31,32) The total number 
of genes with somatic mutations were then calculated for 
each functional pathway and used as DNA-level features.

For the machine learning models RF, SVM, LDA 
and logistic regression, both transcriptome expression at 
RNA level and pathway mutation at DNA level, were 

Clinical Features Category/Statistical Measurements Training Validation

Macrovascular invasion Yes 5 2

No 32 24

Unknown 1 0

Abbreviations: A1AT, alpha-1 antitrypsin deficiency; AFP, alpha-fetoprotein; EtOH, ethanol; HBV, hepatitis B virus; HCV, hepatitis C virus; 
mTOR, mammalian target of rapamycin; N, no; NASH, nonalcoholic steatohepatitis; NRH, nodular regenerative hyperplasia; PBC, primary 
biliary cholangitis; RFA, radiofrequency ablation; Rx, prescription; TACE, transarterial chemoembolization; Tx, transplant; and Y , yes.

TABLE 1. Continued

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
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TABLE 2. CLINICAL FEATURES OF SAMPLES COLLECTED FROM HCC TRANSPLANT PATIENTS

Cohort Sample Surgical Year Recur Status Milan Months to Recur Follow-up (Months)

Training Training 1 1988 Non-Recur Out NA 72

Training Training 2 2009 Non-Recur In NA 134

Training Training 3 2007 Non-Recur Out NA 121.5

Training Training 4 2008 Non-Recur In NA 136.9

Training Training 5 2008 Non-Recur In NA 76.7

Training Training 6 2008 Non-Recur Out NA 157.3

Training Training 7 2008 Non-Recur Out NA 103

Training Training 8 2008 Non-Recur In NA 104.2

Training Training 9 2008 Non-Recur In NA 121.1

Training Training 10 2008 Non-Recur In NA 113.1

Training Training 11 2009 Non-Recur Out NA 110.4

Training Training 12 2009 Non-Recur In NA 92.1

Training Training 13 2009 Non-Recur In NA 127.8

Training Training 14 2009 Non-Recur Out NA 116.2

Training Training 15 2009 Non-Recur In NA 134.3

Training Training 16 2009 Non-Recur In NA 92.2

Training Training 17 2009 Non-Recur In NA 73.5

Training Training 18 2009 Non-Recur In NA 137.2

Training Training 19 2009 Non-Recur In NA 129.2

Training Training 20 2009 Non-Recur In NA 145.8

Training Training 21 2009 Non-Recur Out NA 142.3

Training Training 22 2012 Non-Recur In NA 101.8

Training Training 23 1991 Non-Recur Out NA 298.8

Training Training 24 1988 Recur Out 26.3 31.1

Training Training 25 1989 Recur Out 25.2 25.2

Training Training 26 1989 Recur Out 5.8 5.8

Training Training 27 1990 Recur Out 27.7 47.4

Training Training 28 1991 Recur Out 9.1 9.1

Training Training 29 1992 Recur Out 19.6 21.3

Training Training 30 2004 Recur Out 25.5 29.1

Training Training 31 2007 Recur Out 27.1 80.5

Training Training 32 2007 Recur Out 10.9 13.6

Training Training 33 2007 Recur Out 5.2 16.7

Training Training 34 2008 Recur Out 15.2 79.1

Training Training 35 2012 Recur In 35.4 43.2

Training Training 36 1988 Recur Out 12.5 15.2

Training Training 37 1989 Recur Out 6.6 6.6

Training Training 38 1990 Recur Out 15.6 33.5

Validation Testing 1 2012 Non-Recur In NA 55.6

Validation Testing 2 2015 Non-Recur In NA 53.3

Validation Testing 3 2015 Non-Recur In NA 49.7

Validation Testing 4 2015 Non-Recur In NA 61

Validation Testing 5 2015 Non-Recur In NA 61

Validation Testing 6 2014 Non-Recur Out NA 48.7

Validation Testing 7 2015 Non-Recur In NA 61

Validation Testing 8 2016 Non-Recur In NA 56

Validation Testing 9 2016 Non-Recur In NA 57.8

Validation Testing 10 2016 Non-Recur In NA 37.9

Validation Testing 11 2016 Non-Recur Out NA 37.3

Validation Testing 12 2016 Non-Recur In NA 48.6
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used as prediction features. RF regression prediction was 
used to predict a probability score for recurrence. This 
score ranges from 0 to 1, where a score >0.5 represents 
recurrence and score <0.5 predicts nonrecurrence. For 
the k-TSP model, this was applied to transcriptome 
expression and gene-mutation profiles individually. To 
combine the two -omics data sets, scores calculated 
from the transcriptome expression data and scores from 
the gene-mutation data were weighted and summed 
for the prediction. The final score ranges from −1 to 1, 
where a positive score represents recurrence, and a neg-
ative score means nonrecurrence for binary prediction.

Similar to the model involving only transcriptome 
expression data, the model integrating both the RNA 
and DNA was first applied to the training cohort. The 
best parameters selected by LOOCV were used as the 
final model for the training cohort and then applied 
to the testing cohort for evaluation. In the final stage, 
both cohorts were pooled to provide a final prediction 
model on leave-one-out cross-validation. All biosta-
tistical analyses were performed by R programming 
and available R packages.(30)

PREDICTION MODEL 
INTEGRATING TRANSCRIPTOME 
EXPRESSION, GENE MUTATION, 
AND MILAN SCORE

Similar to transcriptome expression and gene-
mutation integration, multiple machine learning mod-
els were used to integrate RNA expression, DNA 

mutation, and Milan score. For the k-TSP model, it 
assigned a weight to the RNA score, DNA score, and 
Milan score (−1 for “in” and 1 for “out”). The final pre-
diction score is the sum of all three weighted scores. 
For RF, SVM, LDA and logistic regression, the follow-
ing were used as features contributing to prediction: 
gene expression, pathway mutation, and Milan score. 
RF generated a probability score ranging from 0 to 1, 
where a score higher than 0.5 is indicative of recur-
rence, and a score less than 0.5 predicts nonrecurrence.

DOWNSTREAM FUNCTIONAL 
PATHWAY ANALYSIS

When combining the training and testing data, the 
top 500 differentially expressed genes (DEGs) were 
selected by the ranking of P values. These genes were 
then used for functional pathway analysis. Four path-
way databases were collected for the enrichment test: 
GO,(31) KEGG,(32) Reactome,(33) and BioCarta.(34) The 
top significant enriched pathways were selected by false 
discovery rate = 5%. Genes involved in selected pathways 
were used for network analysis. Clustering heatmap, 
pathway barplot, and network figure were generated 
by R programming (package ComplexHeatmap(35) and 
ggplot(36) and Cytoscape software(37).

STATISTICAL ANALYSIS
All of the statistical analyses were performed by R 

programming. The receiver operating characteristic 

Cohort Sample Surgical Year Recur Status Milan Months to Recur Follow-up (Months)

Validation Testing 13 2016 Non-Recur In NA 57.4

Validation Testing 14 2016 Non-Recur In NA 49.3

Validation Testing 15 2015 Non-Recur In NA 65.8

Validation Testing 16 2016 Non-Recur In NA 36.2

Validation Testing 17 2016 Non-Recur In NA 51.5

Validation Testing 18 2016 Non-Recur In NA 50.4

Validation Testing 19 2013 Recur In 35.7 62.5

Validation Testing 20 2016 Recur Out 7.5 38.6

Validation Testing 21 2016 Recur Out 7.5 38.6

Validation Testing 22 2016 Recur Out 7.5 38.6

Validation Testing 23 2016 Recur Out 7.5 38.6

Validation Testing 24 2016 Recur In 6.7 18.6

Validation Testing 25 2016 Recur In 6.7 18.6

Validation Testing 26 2019 Recur In 7.7 20.9

Abbreviations: NA, not available; and Recur, recurrence.

TABLE 2. Continued
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(ROC) curves and Kaplan-Meier analyses were 
analyzed and plotted by R/Bioconductor packages 
survival (https://CRAN.R-proje​ct.org/packa​ge=sur-
vival), pROC,(38) ggfortify,(39) and GGally (https://
CRAN.R-proje​ct.org/packa​ge=GGally).

POWER CALCULATION
In this study, the prediction model can gener-

ally reach 85% prediction accuracy (P  =  0.85) with 
n  =  64 samples. To achieve 95% confidence level 
(α  =  0.05, Z  =  1.96), the confidence interval was 
calculated as p ±Z

√

p ×
(

1− p
)

∕n = 85% ± 8.7%. 
That is, when we claim that the prediction accu-
racy is 85%, the corresponding confidence interval 
is [76.3%, 93.7%].

Results
PRE-DETERMINATION OF 
TRAINING COHORT AND 
TESTING COHORT

In previous studies we showed that alterations of 
genome and gene expression occurring in HCC are 
associated with aggressiveness of the cancer.(40,41) 

However, it was unclear whether these changes 
contained predictive values for patients with HCC 
undergoing liver transplants. To explore this pos-
sibility, two cohorts based on the surgical time-
line were constructed for transcriptome and exome 
sequencing analyses. The training cohort (38 sam-
ples) included HCC samples obtained from patients 
who had liver transplants from 1988 through the 
first half of 2012, while the testing cohort (26 sam-
ples) included HCC samples who received liver 
transplantation from the second half of 2012 up to 
2016. The results of the transcriptome and exome 
analyses of the training cohort were combined to 
develop a classification algorithm as a training set 
(Fig. 1). The algorithm was then applied to predict 
the clinical outcomes of the samples from the test-
ing set (second cohort).

TRANSCRIPTOME SEQUENCING 
TO PREDICT HCC OUTCOMES

The transcriptome analysis was performed using 
an RF(25,26) model in which all genes were ranked 
based on differential expression between recurrence 
and nonrecurrence samples. The top 10 differentially 
expressed genes were first used to predict recurrence 
status of the samples in the training set using the 

FIG. 1. Flow chart of procedures for training and validation of genome prediction model. The procedure starts with the identification of 
cancer samples by the year of liver transplant surgery using 2012 as the demarcation. All samples before the first half of 2012 were used in 
the training set, whereas samples after the second half of 2012 were used as the testing set. The cancer areas and benign tissues from the 
non-liver organ of the paraffin block were needle-cored and used as “cancer” and “normal” tissues, respectively. All clinical information was 
blind to the researchers before the prediction.

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=GGally
https://CRAN.R-project.org/package=GGally
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LOOCV method. Subsequently, the top 20, 30, 40, 
50, 100, 200, 500, or 1,000 differentially expressed 
genes were added to train the model and to examine 
whether the addition of genes improved the results. 
The final model was selected based on the best 
Youden index (sensitivity + specificity −1). As shown 
in Fig. 2A, 500 differentially expressed genes were 
found to produce the best results in predicting cancer 
recurrence for patients with HCC. The ROC curve 
yielded an area under the curve (AUC) of 0.87 and 
a P value of 2.8  ×  10-9. The LOOCV model based 
on 500 genes produced 84.2% accuracy, with a sen-
sitivity of 80% and specificity of 87% (Supporting 
Table S2). When this algorithm was applied to the 

testing cohort, the AUC of the ROC was 0.806 with 
a P value of 0.00049 (Fig. 2B). The accuracy was 
73.1%, with 87.5% sensitivity and 66.7% specificity 
(Supporting Table S2).

MUTATION PATHWAYS ANALYSIS 
TO ENHANCE PREDICTION OF 
HCC OUTCOMES

To examine whether genome mutations of HCC 
also have a role in predicting the clinical outcomes of 
the HCC transplant patients, we performed exome 
sequencing on the same HCC samples and their 
matched non-liver benign tissue samples from both 

FIG. 2. ROC analysis of genome prediction model. (A) Training set ROC based on top 500 differentially expressed genes between 
recurrence and nonrecurrence samples from the transcriptome sequencing using LOOCV strategy with RF method. (B) Testing set ROC 
based on the algorithm determined in the training set of (A). (C) Training set ROC based on transcriptome and exome sequencing results 
using RF method. (D) Testing set ROC based on the algorithm determined in the training set of (C). (E) ROC of pooled training and 
testing cohorts based on transcriptome sequencing using LOOCV strategy with RF method. (F) ROC of pooled training and testing 
cohorts based on transcriptome and exome sequencings using LOOCV strategy with RF method. Abbreviation: CV, cross validation.
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cohorts. Somatic mutations were identified by sub-
tracting the single-nucleotide variants in the cancer 
sample from the matched normal tissue of the same 
individual. A total of 30,090 somatic mutations 
were identified in 64 HCC samples of both cohorts, 
with an average 470 (15-2,657) mutations per HCC 
sample (Supporting Table S3). These mutations 
were distributed among 6,977 pathways based on 
GO and KEGG. The difference of mutation num-
bers between the recurrence and nonrecurrence 
samples in each pathway was ranked through t tests. 
The pathway with the smallest P value was ranked 
at the top. The top 5 mutation pathways were then 
combined with the 500 genes from the transcrip-
tome sequencing to examine whether the mutation 
status of the pathways improves the transcriptome 
prediction. This model was then added to the top 
10, 15, 20, 25, or 30 pathways. The model with the 
best Youden index was selected through LOOCV. 
As shown in Fig. 2C,D, the combination of five 
mutation pathways and 500 differential expressed 
genes in the training set improved accuracy to 
86.8% with a sensitivity of 86.7% and specificity 
of 87% (AUC  =  0.87 and P  =  5.2  ×  10-9). When 
this algorithm was applied to the testing set, the 
accuracy was 77% (AUC  =  0.764 and P  =  0.0065), 
with a sensitivity of 100% and specificity of 66.7% 
(Supporting Table S2).

When both training and testing set data were 
combined to create a prediction model based on the 
LOOCV method, the transcriptome model predicted 
81.3% correctly (AUC  =  0.896 and P  =  2.2  ×  10-24; 
Fig. 2E), whereas the combination of mutation path-
ways and transcriptome generated a correct prediction 
of 84.4% (AUC = 0.894 and P = 7.3 × 10-24) with a 
sensitivity of 78.3% and specificity of 87.8% (Fig. 2F 
and Supporting Table S2).

Using transcriptome analysis alone, survival analysis 
in the training set showed that 87% of the transplant 
patients predicted as nonrecurrent enjoyed recurrence-
free survival up to 298.8 months, while those patients 
predicted as recurrence had a 20% 3-year recurrence-
free survival rate (P = 1.6 × 10-6; Fig. 3A). When the 
same algorithm from the training set was applied to 
the testing set, the patients predicted as nonrecurrence 
had a 92.3% recurrence-free survival up to 60 months, 
whereas the patients predicted as recurrence had only 
about 46% recurrence-free survival in the same period 

(P  =  0.01; Fig. 3B). The combination of transcrip-
tome and mutation pathways analyses showed that 
the recurrence-free survival rates reached 90.9% for 
patients predicted as nonrecurrence in the training set 
and 100% in the testing set, while the patients pre-
dicted as recurrence had recurrence-free survival rates 
of 18.8% (P = 2.5 × 10-7) in the training set and 42.9% 
(P  =  0.002) in the testing set (Fig. 3C,D). These 
results suggest a minor improvement in the prediction 
of recurrence-free survival when mutation pathways 
analysis was added to the prediction model. When 
both training and testing cohorts were combined, a 
similar mild improvement of survival prediction by 
combined transcriptome and mutation pathways 
model was shown: 87.8% patients predicted as nonre-
currence by the transcriptome/mutation pathways RF 
model experienced at least 3  years of recurrence-free 
survival versus 85.4% by the transcriptome RF model, 
whereas only 21.7% patients predicted as recurrence 
by the transcriptome/mutation pathways RF model 
survived recurrence-free for the similar period versus 
26.1% for the transcriptome RF model (Fig. 3E,F).

ROLE OF MILAN CRITERIA IN 
PREDICTING THE RECURRENCE 
OF HCC IN THE TRANSPLANT 
PATIENTS

The Milan criteria constitute a radiology-based 
parameter defined by the size and number of HCC 
tumor nodules. Based on Milan-in (low risk of recur-
rence) and Milan-out (high risk of recurrence) assess-
ment, the prediction rate of recurrence for the entire 
cohort is 76.6%, with a sensitivity of 78.2% and spec-
ificity of 75.6%. To investigate whether the addition 
of Milan criteria improves the prediction rate of the 
genome prediction model, the transcriptome/mutation 
pathways model and Milan score were combined to 
create a transcriptome/mutation pathways/Milan RF 
model to predict the likelihood of HCC recurrence of 
the liver transplant patients. As shown in Supporting 
Figs. S1 and S2, even though the transcriptome/
mutation pathways/Milan RF model offered signif-
icant improvement of the prediction rates over the 
Milan criteria, the addition of the Milan criteria did 
not improve the prediction rate of the transcriptome/
mutation pathways RF model in the training analysis 
or training to testing analysis (Supporting Table S2).
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To examine whether the other machine learning 
models were improved by Milan criteria, we analyzed 
the transcriptome sequence results through the k-TSP 
method, a non-parametric algorithm especially suit-
able for cross-platform studies. The model provides 
a prediction score based on the k-top scoring pairs, 
in which a positive value indicates recurrence, and a 
negative score predicts nonrecurrence. The k-TSP 
model was applied to the training set for LOOCV 
with different numbers of top gene pairs (5, 7, 9, … 
49), and the best model was selected by the highest 
Youden index. The transcriptome k-TSP model alone 
yielded 79% accuracy in the training analysis, 73.1% 
in the testing analysis, and 79.7% in the combined 

training and testing analyses (Supporting Figs. S3 
and S4, Supporting Table S2). The combination of 
Milan criteria and transcriptome sequencing pro-
duced a significant improvement over either analysis 
alone (Figs. 4 and 5): The Milan/transcriptome k-TSP 
model generated a 79% prediction rate in the train-
ing analysis, 80.8% in the testing analysis, and 84.4% 
in the combined training and testing cross-validation 
analysis. Interestingly, when the DNA mutation path-
way analysis was combined with the Milan/transcrip-
tome k-TSP model, mixed results were obtained: The 
Milan/transcriptome/mutation pathways k-TSP model 
improved the prediction to 89.5% in the training set 
and 87.5% in the combined training and testing set, 

FIG. 3. Kaplan-Meier analysis of genome prediction model. (A) Training set Kaplan-Meier analysis based on 500 differentially expressed 
genes from the transcriptome sequencing using LOOCV strategy with RF method. (B) Testing set Kaplan-Meier analysis based on the 
algorithm determined in the training set of (A). (C) Training set Kaplan-Meier analysis based on transcriptome and exome-sequencing 
results using RF method. (D) Testing set Kaplan-Meier analysis based on the algorithm determined in the training set of (C). (E) Kaplan-
Meier analysis of pooled training and testing cohorts based on transcriptome sequencing using LOOCV strategy with RF method. (F) 
Kaplan-Meier analysis of pooled training and testing cohorts based on transcriptome and exome sequencings using LOOCV strategy 
with RF method.
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but dropped the prediction rate to 73.1% in the test-
ing analysis (Supporting Table S2, Supporting Figs. 
S3-S5). These results suggest that Milan criteria may 
improve the prediction of the k-TSP machine learning 
model, particularly the k-TSP transcriptome analysis, 
when they are combined into an integrative prediction 
model.

Survival analysis showed that 94% of patients with 
HCC with Milan “in” enjoyed a recurrence-free sur-
vival of 3 years or more in the training set. However, 
the 3-year recurrence-free survival for Milan “in” 
patients decreased to 80% in the testing set and 86% 
in the combined data sets (Fig. 5A-C). The Milan/
transcriptome k-TSP model showed a 90% 3-year 
survival rate in the training set when patients were 

predicted as nonrecurrence (Fig. 5D). The testing 
validation analysis showed that 83% of patients with 
HCC predicted by Milan/transcriptome k-TSP model 
as nonrecurrence survived up to 60  months without 
recurrence, compared with 37.5% patients predicted 
as recurrence survived similar periods without recur-
rence (P = 0.016; Fig. 5E). When both training and 
testing cohorts were combined, the cancer-free sur-
vival improved to 85.7% for patients predicted as 
nonrecurrence, and 22.7% for patients as recurrence 
(P = 6.18 × 10-9; Fig. 5F), very similar to the survival 
results produced by transcriptome/mutation path-
ways/Milan RF model in the same data set: 85.7% of 
patients with HCC with 3 years’ recurrence-free sur-
vival when predicted as nonrecurrence, compared to 

FIG. 4. ROC analysis of Milan criteria with the genome prediction model. (A) ROC analysis based on Milan criteria in the training set. 
(B) ROC analysis based on Milan criteria in the testing set. (C) ROC analysis based on Milan criteria in the combined training and testing 
sets. (D) ROC analysis of the training set based on Milan/transcriptome k-TSP prediction model using LOOCV. (E) ROC analysis of 
the testing set based on Milan/transcriptome k-TSP prediction algorithm determined in (D). (F) ROC analysis of the combined training 
and testing sets based on Milan/transcriptome k-TSP prediction model using LOOCV.
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22.7% patients with 3 years or longer cancer-free sur-
vival when predicted as recurrence (P = 6.54 × 10-10). 
These compare favorably with Milan criteria alone: 
86% 3-year survival for Milan “in,” with 35.7% for 
Milan “out” (P = 1.5 × 10-5; Supporting Fig. 2A-F).

Next, the entire cohort was divided into low risk 
of recurrence (Milan-in) and high risk of recurrence 
(Milan-out) based on Milan criteria. The transcrip-
tome/mutation pathways RF model was applied to 
predict outcomes. When Milan is “in,” the model pre-
dicted 88.9% correctly based on the transcriptome/
mutation pathways RF model (Supporting Table S2). 
Interestingly, when Milan is “out,” the model had an 
accuracy of 82.1%, with 94.4% sensitivity and 60% 

specificity, including predicting 17 of 18 recurrent 
patients correctly (Supporting Table S2). These results 
suggest that the genome model may have a significant 
utility in predicting the clinical outcomes of patients 
outside the Milan criteria.

IMPACT OF HETEROGENEITY OF 
HCC

HCC may have significant heterogeneity in terms 
of genomic profile and differentiation even in the 
same individual.(42) A tumor nodule may have dif-
ferent gene-expression and mutation profiles from its 
nearby nodules. To investigate whether the genome 

FIG. 5. Kaplan-Meier analysis of Milan criteria with the genome prediction model. (A) Kaplan-Meier analysis based on Milan criteria 
in the training set (A), the testing set (B), and the combined training and testing sets (C). (D) Kaplan-Meier analysis of the training set 
based on Milan/transcriptome k-TSP prediction model using LOOCV. (E) Kaplan-Meier analysis of the testing set based on Milan/
transcriptome k-TSP prediction algorithm determined in (D). (F) Kaplan-Meier analysis of the combined training and testing sets based 
on Milan/transcriptome k-TSP prediction model using LOOCV.
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prediction model is sufficiently robust to overcome 
the heterogeneous nature of HCC, we examined 3 
individuals with multiple tumor nodules, including an 
individual (patient #V19) having four tumor nodules 
and 2 individuals (patients V#7 and #V21) having two 
tumor nodules each. These eight nodules are listed as 
individual samples in Table 3 and were predicted inde-
pendently. As indicated in Table 3, the transcriptome/
mutation pathways RF prediction model consistently 
produced scores indicating HCC recurrence from each 
of the four tumor nodules of patient #V19, matching 
the clinical outcome of the patient. The transcrip-
tome/mutation pathways RF model correctly predicted 
nonrecurrence outcomes from two tumor nodules of 
patient #V7, whereas the same model predicted two 
tumor nodules of patient #V21 as recurrence outcomes, 
matching the real clinical results. Of the eight tumor 
nodules, the genome prediction yielded consistent pre-
diction results for the multiple nodes collected from 
the same patients (8 of 8). Overall, the genome predic-
tion model appears to be reasonably robust in predict-
ing the clinical outcomes of HCC samples despite the 
heterogeneity of the cancers. A larger number of sam-
ples will of necessity need to be examined in a future 
study to further support this initial conclusion.

SIGNALING PATHWAYS INVOLVED 
IN THE GENOME PREDICTION 
MODEL

When the relative expression levels of the top 500 
genes were used as parameters, most cancers with non-
recurrence outcomes appeared to aggregate together in 
a hierarchical clustering analysis (Fig. 6A) and princi-
pal component analysis (Supporting Fig. S6), separate 
from the samples with recurrence outcomes. A similar 

segregation of recurrence and nonrecurrence samples 
was achieved when using the top 43 pairs of genes 
from the k-TSP model (Supporting Fig. S7A). At 
the DNA level, mutations in the dopamine binding 
pathway were dominant in samples from patients with 
HCC recurrence in the RF analysis (Fig. 6B), whereas 
mutations in the pathways of Syntaxin binding, Golgi 
associated vesicle biogenesis, and regulation of hor-
monal metabolic process were included in the k-TSP 
model (Supporting Fig. S7B). Disruption of these 
pathways may impact the homeostasis and metabo-
lism of the cancer cells, thereby affecting cancer sur-
vival. At the transcriptome level, 77 of 86 genes in 
the k-TSP model overlapped with those from the RF 
models (Supporting Tables S4 and S5). The top 500 
DEGs from the RF model and 43 pairs of genes from 
the k-TSP model were applied for pathway enrich-
ment analysis (Fig. 6, Supporting Figs. S7 and S8). 
Many tumorigenesis pathways were identified, such 
as pathways related to chromosome segregation, cell 
cycle, and DNA synthesis. Genes involved in DNA 
replication, chromosome segregation and mitosis, such 
as cyclin dependent kinase inhibitor 3, minichromo-
some maintenance 6 homologous recombination 
repair factor 8 (MCM8), minichromosome mainte-
nance 8 homologous recombination repair factor 6 
(MCM6), BUB1 mitotic checkpoint serine/threonine 
kinase B (BUB1B), kinesin family member 23, and 
cell division cycle 6 (CDC6), dominated the pathway 
analyses (Fig. 6C; Supporting Figs. S7C and S8).

Discussion
Liver transplantation is one of the main approaches 

to treat liver cancers and is particularly useful for 

TABLE 3. MULTIPLE CANCER NODULE PREDICTIONS FROM PATIENTS WITH HCC

Patient Recur Status Milan RF Probability Score* Prediction Status Months to Recur

#V19A Recur Out 0.6275 Recur 7.5

#V19B Recur Out 0.7909 Recur 7.5

#V19C Recur Out 0.8400 Recur 7.5

#V19D Recur Out 0.7534 Recur 7.5

#V7A Non-Recur In 0.1235 Non-Recur NA

#V7B Non-Recur In 0.0120 Non-Recur NA

#V21A Recur In 0.6690 Recur 6.7

#V21B Recur In 0.9183 Recur 6.7

*Score > 0.5 = likely recurrence, and score <0.5 = likely nonrecurrence.
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patients with HCC with late-stage cirrhosis. The 
Milan criteria have been useful for gauging patient 
suitability for liver transplant in the last 25  years. 
Although most patients inside the Milan criteria 
experience cancer-free recovery from the liver trans-
plant,(43) these may be too restrictive and may pre-
clude some eligible patients from liver transplant.(43) 
The genome prediction model described in this 
report, whether in combination with Milan criteria 
or not, represents a potential alternative for the selec-
tion of HCC-bearing liver transplant candidates. At 
least two potential clinical scenarios can be envisioned 
using this model: First, the Milan criteria are used as a 
first line of selection of patient candidates for the liver 
transplant. Patients with “Milan-in” status are selected 
as viable candidates for liver transplant, while patients 
with “Milan-out” status can be screened through the 
genome prediction model for transplant. Second, 

Milan criteria can be integrated into the genome 
prediction model to screen all HCC candidates for 
appropriateness of liver transplant. In either scenario, 
this model may represent an improvement on the 
Milan criteria alone.

Attempts to predict the likelihood of HCC recur-
rence after liver transplantation have been made in 
the past. Some prediction models used clinical fea-
tures such as Milan score, maximal fludeoxyglucose 
uptake value, tumor size, tumor number, and pathol-
ogy grading information(44,45) as their base to predict 
the behavior of the cancer. One study by Kim et al.(46) 
used microarray gene-expression analysis to predict 
the outcomes of HCC recurrence for partial hepec-
tomy patients of HBV-related liver cancers. This study 
integrates both RNA/DNA sequencings and machine 
learning technologies to create a model to predict the 
recurrence of human liver cancers for liver transplant 

FIG. 6. Transcriptomic alteration related to recurrence and mutation pathways of HCC samples. (A) Hierarchical clustering of HCC 
samples based on top 500 differential expression genes between nonrecurrence and recurrence HCC samples. (B) Heat map of five 
signaling pathways based on the differential mutation numbers in the pathways between nonrecurrence and recurrence samples. (C) Gene-
expression alterations and connections based on GO analysis.
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patients. The robust results from our analyses suggest 
that the genome analysis adds accuracy to select liver 
transplant candidates for this life-saving procedure.

Overfitting is one of the potential pitfalls of molec-
ular prediction models. To overcome potential overfit-
ting issues, we preselected the HCC samples into two 
unconnected cohorts based on the year of transplant 
surgery. The testing cohort represents an ongoing 
prospective analysis. To increase the robustness of the 
analysis, most samples in one cohort (training) were 
analyzed through Illumina HiSeq2500, while another 
(testing) were analyzed through NextSeq550. Due 
to the differences of the platforms, the read lengths 
of the sequencing were also different: HiSeq2500 
platform was limited to 100 bases per read, whereas 
NextSeq550DX was 150 bases. The sequencings 
were performed in different time frames (2015-2017 
for the training set, 2018-2020 for the testing set). 
Despite the non-connected nature of the cohorts, dif-
ferent sequencing platforms and different time frames, 
the variation in prediction accuracies between the two 
cohorts was consistently less than 10%, suggesting a 
good reproducibility of the model. The robustness 
of the genome prediction model is not limited to 
RF method. When we applied other machine learn-
ing methods such as k-TSP, SVM, LDA, or logistics 
regression, similar results were obtained (Supporting 
Table S2).

A surprising finding in our analysis is that most of 
the frequent mutations of HCC such as tumor pro-
tein p53, catenin beta 1, and telomerase reverse tran-
scriptase were not found to play important roles in 
predicting the behavior of HCC in liver transplant 
patients. Rather, mutations in dopamine signaling 
pathway such as dopamine receptors and G-protein 
coupled receptors are frequent in patients with HCC 
who experienced recurrence after the liver transplant, 
whereas mutations in genes involved in glucose bind-
ing/metabolism such as hexokinase domain con-
taining 1, glucose 6 phosphate dehydrogenase, and 
endonuclease such as ribonuclease A family member 
2, X-ray repair cross complementing 3, were more 
frequent in patients with HCC who were less likely 
to have cancer recurrence. The altered functions of 
these proteins may have an impact on the survival 
and metabolism of the cancer cells. In contrast, the 
transcriptome analysis shows that the most altered 
expression genes are those involving DNA synthesis 
(MCM8, MCM6, DNA topoisomerase II alpha, and 

CDC7), chromatin segregation (BUB1 and CDC6), 
and mitosis (NDC80 kinetochore complex component 
and protein phosphatase catalytic subunit gamma) 
(Fig. 6C, Supporting Fig. S7C). Copy number gain 
or overexpression of these genes has been previously 
reported in human cancers.(16,47-48) These changes 
may facilitate DNA replication and growth of cancer 
cells. However, most of these genes were not mutated.

The relative irrelevance of the cancer driver muta-
tions for predicting posttransplant recurrence is under-
standable. Tumor recurrence occurs after circulating 
HCC cells present at the time of transplantation 
traverse through the circulation, survive the turbu-
lent flow environment of the cardiac valves, proceed 
through the pulmonary circulation without attaching 
to the lungs, and finally lodge themselves within the 
new liver.(49,50) This may be a complicated process, 
and the pathways operating within the cells must 
allow them to withstand the immune and shear/stress 
forces likely to be encountered. The pathways enabling 
these capabilities are not well understood, and the 
findings from the current study are likely to provide 
useful information as to their nature. The mutation 
and transcriptome analyses appear to uncover two dif-
ferent facets of the cancer genome: a qualitative alter-
ation without much change in expression levels and a 
quantitative change without the alteration of quality. 
Each change may have an impact on the cancer cells 
and contribute to recurrence and metastasis. Future 
dissection of these pathways may help to gain a better 
understanding of the cancer behavior.
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