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Ependymoma (EPN) is a rare primary tumor of the central nervous system (CNS) that
affects both children and adults. Despite the definition and classification of distinct
molecular subgroups, there remains a group of EPNs with a balanced genome, which
makes it difficult to predict a prognosis of patients with EPN. The role of miRNA-mRNA
network on EPN is still poorly understood. We assessed the involvement of miRNA-
mRNA pairs in EPN by applying a weighted co-expression network analysis (WGCNA)
approach. Using whole genome expression profile analysis followed by functional
enrichment, we detected hub genes involved in active proliferation and DNA replication
of nerve cells. Key genes including CYP11B1, KRT33B, RUNX1T1, SIK1, MAP3K4,
MLANA, and SFRP5 identified in co-expression networks were regulated by miR-15a
and miR-24-1. These seven miRNA-mRNA pairs were considered to influence not only
pathways in cancer and tumor suppression process, but also MAPK, NF-kappaB, and
WNT signaling pathways which were associated with tumorigenesis and development.
This study provides a novel insight into potential diagnostic biomarkers of EPN and may
have value in choosing therapeutic targets with clinical utility.
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INTRODUCTION

Ependymomas (EPN) are rare neuroepithelial primary tumors of the brain and spinal cord that
occurs in both children and adults. EPNs in childhood arise most often within the posterior fossa
(PF) than supratentorial brain (ST), while spinal cord EPNs occur more frequently in adulthood.
These neoplasms are the third most common central nervous system (CNS) tumors in children,
accounting for 6–12% of brain tumors in childhood, while making up 1.8% of all primary tumors
of the CNS (Ostrom et al., 2015, 2016). Traditionally, EPNs have been histologically classified as
subependymomas and myxopapillary ependymomas (WHO grade 1), classic ependymomas (WHO
grade 2), RELA-fusion positive (WHO grade 2 or 3), and anaplastic ependymomas as a high grade
type (WHO grade 3) (Louis et al., 2016). It is particularly important to dig out a universal biomarker
that can represent characteristics of EPN, which reflected distinct features. Currently, treatment
for EPNs remains as maximal surgical resection combined with focal radiotherapy, which severely
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affects the growth and development of patients, especially
children. The 10-year overall survival (OS) is 64% in children and
ranges from 70 to 89% in adult patients with EPNs (Ostrom et al.,
2015). The 5-year survival rate decreases to 42–55% in infants
with EPNs (Gatta et al., 2014). It is becoming clear that to predict
patient survival based on histopathologic features is challenging
for ependymal tumors. Finding new molecular biomarkers and
revealing molecular mechanisms will be more effective in guiding
us to choose appropriate treatment strategies.

The microRNAs (miRNAs), small non-coding RNAs of
approximately 22 nucleotides, fine-tune gene expression
by binding to the 3′-UTR of the target mRNAs post-
transcriptionally, causing gene silencing (Bartel, 2004). Previous
studies reported a large group of mammalian mRNAs regulated
by miRNAs (Friedman et al., 2009). It was shown that miRNAs
could affect nearly one third of human genes (Bartel, 2009;
Friedman et al., 2009) while a single mRNA could be targeted
by various miRNAs, indicating that the gene regulation function
of miRNA was involved in complex networks (Pan et al.,
2018). Aberrant expression of miRNAs has been identified in
many types of cancer (Pan et al., 2019a; Pan and Shen, 2019).
Co-expression network analysis of miRNA and mRNA has
attracted more attention in recent years, as it is believed to be
one of the predominant regulatory types of gene expression
(Liu and Yang, 2018). Thus, identification of miRNA–mRNA
pairs and discovering the regulation network may potentially
uncover useful cancer biomarkers. Recent research has revealed
miR-15a and miR-24-1 are up-regulated in EPNs relapsed and
deceased cases when compared to both the clinical remission
cases and survivors, and may serve as a candidate of inferior
prognostic molecules in children with EPNs (Braoudaki et al.,
2016). As important regulators of life activities, miRNAs are
closely related to cancer (Hayes et al., 2014) through its altered
expression levels that affect the content of downstream genes
(Esquela-Kerscher and Slack, 2006). It is necessary to detect both
miRNA and associated mRNA during the diagnosis process,
thereby increasing the reliability of the diagnosis. Identified
co-expression miRNA-mRNA pairs in the current study can be
applied as targets for clinical co-detection of ependymoma.

Weighted co-expression network analysis (WGCNA) can find
co-expressed genes by calculating gene connectivity, and identify
candidate biomarkers from a large number of gene sets rather
than a small number of differentially expressed gene sets (Hu
et al., 2012; Chang et al., 2013; Yang et al., 2018). It is a systematic
biological method commonly used in current oncology research,
and is valuable for mining prognostic markers involved in brain
tumors. In silico technology greatly improves the efficiency of our
research on molecular mechanisms and biological functions (Li
et al., 2019b; Pan et al., 2019b; Yuan et al., 2019). Theoretical
models of system biology provide reliable support for finding
mechanisms of molecular interaction (Chen et al., 2017, 2018,
2019; Liu et al., 2017b; Li et al., 2018). The large data sets of
both mRNA and miRNA expression profiles in the same patient
could help discover the molecular mechanisms of miRNA-mRNA
dysfunctions (Huang et al., 2015, 2016; Chen et al., 2016; Liu
et al., 2017a; Zhou et al., 2019). In this study, WGCNA is used to
identify the potential significant miRNAs and mRNA associated

with diagnosis and prognosis of EPN, which is key for advancing
our understanding on tumor progression of EPN and choice of
optimal treatment strategies.

MATERIALS AND METHODS

Dataset
The paired mRNA expression and miRNA profiles of 64
ependymoma patients were downloaded from NCBI Gene
Expression Omnibus (GEO) with accession number GSE21687
(Wani et al., 2012). The 64 samples were all ependymoma
primary tumors. There were 25 female and 39 male samples.
The ages of youngest and oldest patients were 0.4 and 59 years,
respectively. The median and mean ages were 8 and 13.2 years,
respectively. Most of the samples were young patients. Within
the miRNA profiles, there were 799 miRNAs that were measured
with Agilent-019118 Human miRNA Microarray 2.0 G4470B
(miRNA ID version). Within the 799 microRNAs, there were 723
human microRNAs. The mRNA profiles of 54,675 probes were
measured with Affymetrix Human Genome U133 Plus 2.0 Array.
For the probes corresponding to the same gene, we averaged their
values to gene expression levels. To make the expression levels
comparable between samples, we did quantile normalization
(Ritchie et al., 2015). Finally, a total of 20,502 human mRNAs and
723 human miRNAs were used for downstream analysis.

The workflow of the miRNA and mRNA co-expression
network analysis was shown in Figure 1. First, the miRNA and
mRNA profiles of the same patient were combined. Then, the
WGCNA network was constructed and the genes/miRNAs were
clustered into modules. Then, the KEGG (Kyoto Encyclopedia of
Genes and Genomes) (Kanehisa and Goto, 2000) and GO (Gene
Ontology) Biological Progress (BP), Molecular Function (MF),
and Cell Component (CC) (Gene Ontology, 2015) functions of
each module were investigated. Then, the enrichment of miRNAs
in each module was evaluated using a hypergeometric test which
compared the proportions of miRNAs in this module and in the
background of total mRNA and miRNAs. Lastly, with the help of
the miRNA-target database, we inferred the miRNA and mRNA
dysfunctional pathways.

Co-expression Network Analysis
Screening hub genes and detecting co-expression of miRNA-
mRNA pairs were performed by WGCNA, which is an R
package for analyzing a weighted correlation network (Langfelder
and Horvath, 2008). Appropriate soft-threshold power was
selected to ensure co-expression network fitting scale-free
topology. Associated genes were clustered based on dissimilarity
of unsigned topological overlap matrix (TOM). Finally, we
identified network modules and the genes/miRNAs within them.

Functional Enrichment Analysis of
Module Genes
We performed functional enrichment analysis on clustered
genes in each module to detect the biological function of co-
expressed hub genes. Gene Ontology (GO) terms included
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FIGURE 1 | The workflow of the miRNA and mRNA co-expression network analysis. First, the miRNA and mRNA profiles of the same patients were combined.
Then, the WGCNA network was constructed and the genes/miRNAs were clustered into modules. Then, the KEGG (Kyoto Encyclopedia of Genes and Genomes)
and GO (Gene Ontology) Biological Progress (BP), Molecular Function (MF), and Cell Component (CC) functions of each module were investigated. Then, the
enrichment of miRNAs in each module was evaluated using a hypergeometric test which compared the proportions of miRNAs in this module and in the background
of total mRNAs and miRNAs. Lastly, with the help of the miRNA-target database, we inferred the miRNA and mRNA dysfunctional pathways.

three parts: Biological Progress (BP), Molecular Function (MF),
and Cell Component (CC). These were downloaded from the
Gene Ontology database1 and the KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathways were downloaded from the
KEGG database2. Hypergeometric distribution test (Li et al.,
2019a; Pan et al., 2019b; Zhang et al., 2019) was applied to
detect enrichment terms and p-values were corrected by False
Discovery Rate (FDR) methods with a cutoff FDR < 0.05.
Significantly enriched entries in all modules were sorted in
ascending order by FDR value.

Identification of miRNA-Enriched
Modules
We used a hypergeometric test to identify the miRNA-enriched
modules. For each module, we counted the number of members
(genes and miRNAs) and the number of miRNAs and compared
them with the number of all genes and miRNAs and the number
of all miRNAs. Based on these numbers, we can calculate the
statistical significance of miRNA enrichment in this module using
a hypergeometric test. The modules with FDR < 0.05 were
considered as miRNA-enriched modules.

1http://geneontology.org/
2https://www.genome.jp/kegg/

Detection of Target Genes of miRNAs
Interested miRNAs were searched against miRanda3, PicTar4,
TarBase5, MirTarget6, miRBase7, and TargetScan8 databases to
detect target genes of miRNAs. All records in the databases were
retained and merged into a set of predicted miRNA target genes.

RESULTS

Construction of Co-expression Networks
for miRNAs and mRNAs
The weighted gene co-expression network was constructed from
20,502 mRNAs genes and 723 miRNAs using the WGCNA
approach. In our research, soft-thresholding power was set to be
five to ensure the scale-free topology of the network (Figure 2).
In Figure 2, the R2 meant how well the liner regression model
fit for the association between degree and the log of the number
of nodes with the corresponding degree. In scale-free network,

3http://www.microrna.org/microrna/
4https://pictar.mdc-berlin.de/
5http://www.microrna.gr/tarbase
6http://mirdb.org/
7http://www.mirbase.org/
8http://www.targetscan.org
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the degree and the number of nodes with a corresponding degree
has a power law relationship. Therefore, the degree and the log of
the number of nodes with a corresponding degree has a linear
relationship and the R2 of the linear regression model can be
used to check how well the network fits the scale freeness. When

soft-thresholding power was set to be five, the R2 was 0.967.
A total of 38 modules were detected in this network and their
relationship was shown in a cluster dendrogram (Figure 3). The
number of members in different modules varies widely. The
members of each module were listed in Supplementary Table S1.

FIGURE 2 | The relationship between Soft Threshold (power) and network properties. (A) The relationship between Soft-Threshold (power) and Scale Free Topology;
(B) the relationship between Soft-Threshold (power) and Mean Connectivity. When Soft-Threshold (power) was five, the Scale Free Topology (R2) was 0.967 and
Mean Connectivity became stable. Therefore, we setted Soft-Threshold (power) to be five.

FIGURE 3 | The cluster Dendrogram of the WGCNA co-expression network. The genes and miRNAs were clustered in 38 modules. Each module was marked with
one color. Except for the gray module, which included many un-classified members, the turquoise module contained a maximum 1,943 members, while a minimum
of 33 members were included in the skyblue3 module. In addition, we found 31 modules contained at least one miRNA and the maximum amount of 297 miRNAs
were in the midnight-blue module.
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Beside the gray module which included many un-classified
members, turquoise module contained the maximum 1,943
members, while the minimum 33 members were included in
skyblue3 module. In addition, we found 31 modules contained
at least one miRNA and the maximum amount of 297 miRNAs
were in the midnight-blue module.

Functional Enrichment Analysis of
Modules
To investigate the functions of classified modules, we used
a hypergeometric distribution test to analyze KEGG and
GO enrichment on each clustered module (Supplementary
Table S2). After FDR correction, enriched KEGG pathways
with adjusted p-values (FDR), in which less than 0.05 were
retained and sorted into ascending order. It was found that
genes in the red module significantly enriched in cell cycle
and DNA replication pathway (FDR = 6.61 × 10−26 and
5.23 × 10−13, respectively), which were important processes
during cell proliferation. The synaptic vesicle cycle pathway
and glutamatergic synapse pathway was remarkably enriched
in turquoise module (FDR = 1.03 × 10−14 and 2.97 × 10−11,
respectively), reflecting genes in such modules played important
roles in the nervous system.

The Gene Ontology (GO) enrichment analysis was performed
on all modules from three aspects: biological process, molecular
function, and cellular component (Supplementary Table S2).
Top terms in three groups were mitotic cell cycle process (GO:
1903047, FDR = 1.31 × 10−61), nucleic acid binding (GO:
0003676, FDR = 2.37 × 10−30), and synapse part (GO: 0044456,
FDR = 1.71 × 10−81), which indicated that these co-expressed
gene hubs were closely related to proliferation and genome
replication of nerve cells.

Beside the KEGG and GO functional annotations, we enriched
the modules with reported multi-omics ependymoma signatures:
the 51 gene expression signatures of ependymoma survival from
Supplementary Table 6 of Wani et al. (2012), and the validated
632 amplification and deletion genes of ependymoma from
Supplementary Tables 5a,b of Johnson et al. (2010). For the
51 survival gene expression signatures, they were significantly
enriched onto the brown and cyan modules with hypergeometric
test FDR of 8.54E-07 and 0.000285, respectively. The brown
module included 18 survival gene expression signatures (AGBL2,
CASC1, CCDC81, DNAH9, DNAI1, EYA4, F5, GLB1L, IQCA1,
IQCH, LRRC23, MYH15, MYLK3, NTS, SHANK2, SPAG6,
TSNAXIP1, and WDR78) and the cyan module included
7 survival gene expression signatures (ANGPTL4, CHI3L2,
ITGA5, SERPINE1, TAGLN, TGFBI, and VEGFA). For the 632
genes with validated amplification in ependymoma, they were
significantly mapped onto the blue module with hypergeometric
test FDR of 0.0319 and there were 61 overlapped genes. For
the 728 genes with validated deletion in ependymoma, they
were marginally significantly mapped onto the light cyan module
with a hypergeometric test FDR of 0.0770 and there were
18 overlapped genes. It can be seen that the modules were
associated with ependymoma survival and DNA copy number
alterations (CNAs).

Comparison With Reported Brain Gene
Co-expression Modules
We compared our modules with the modules reported by
Radulescu et al. (2018), in which the network was constructed
based on the RNA-Seq data of 90 controls and 74 schizophrenia
samples using WGCNA. The hypergeometric test FDR was
calculated to evaluate the overlap significance between our
modules and the modules reported by Radulescu et al. The
results were given in Supplementary Table S3. All the modules
reported by Radulescu et al. can be mapped onto our modules
(hypergeometric test FDR smaller than 0.05); meanwhile, within
the 38 modules identified by us, 21 modules can be mapped onto
the modules reported by Radulescu et al. (hypergeometric test
FDR smaller than 0.05). These results suggested that the main
structure of the brain gene co-expression network was stable
across different conductions and datasets, but we still got some
ependymoma specific modules.

Comparison With the Modules of Mouse
Ependymoma Model
To investigate whether the ependymoma modules are conserved,
we downloaded the mRNA expression profiles of 196 mouse
ependymoma models from NCBI Gene Expression Omnibus
(GEO) by accession number GSE21687. Similarly, we constructed
their co-expression network using WGCNA and identified
16 modules (Supplementary Table S4). The hypergeometric
test FDR was calculated to evaluate the overlap significance
between our human modules and the mouse modules. The
results were given in Supplementary Table S5. 13 out of 17
mouse modules can be mapped onto our human modules
with hypergeometric test FDR smaller than 0.05, and 25
out of 38 human modules can be mapped onto the mouse
modules with hypergeometric test FDR smaller than 0.05.
These results suggested that the co-expression network was
conserved across species.

Identification of miRNA Enriched
Modules
As mentioned above, 31 out of 38 classified modules possessed
miRNAs. We further calculated percentages of miRNAs in total
genes in corresponding modules to detect miRNAs-enriched
functional modules. Five modules with hypergeometric test
FDR smaller than 0.05 were considered to be miRNA-enriched
modules (Table 1). More than half of the genes included in
midnight-blue and royal-blue modules were miRNAs (84 and
53%, respectively). Furthermore, proportions of miRNAs in
dark-turquoise (39%), yellow-green (35%), and saddle-brown
(15%) modules surpassed the remaining modules (<10%),
suggesting that several miRNAs-enriched gene hubs were
interaction networks mediated by miRNAs. Meanwhile, the
miRNA under enriched modules with hypergeometric test FDR
smaller than 0.05 were listed in Table 2. These modules
include less miRNAs than expected when considering the
sizes of these modules. In other words, these modules were
dominated by mRNAs. There were 17 such miRNA under
enriched modules.
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TABLE 1 | The miRNA enriched modules.

Module name FDR P-value Module
size

Expected
number of
miRNAs

Number of
miRNAs

Midnightblue 0 0 355 12.09 297

Royalblue 9.09E−69 4.79E−70 138 4.70 73

Darkturquoise 3.82E−40 3.02E−41 134 4.56 52

Yellowgreen 4.24E−13 4.46E−14 52 1.77 18

Saddlebrown 6.48E−05 8.52E−06 88 3.00 13

TABLE 2 | The miRNA under enriched modules.

Module
name

FDR P-value Module
size

Expected
number of
miRNAs

Number of
miRNAs

Gray 1.53E−23 4.04E−25 2933 99.91 20

Green 1.14E−15 5.98E−17 1397 47.59 4

Blue 3.76E−11 2.97E−12 1895 64.55 19

Black 5.19E−10 5.47E−11 1048 35.70 5

Yellow 7.32E−10 9.64E−11 1523 51.88 14

Red 1.44E−09 2.27E−10 1233 42.00 9

Brown 4.65E−09 8.57E−10 1862 63.43 23

Magenta 6.11E−07 1.29E−07 737 25.10 4

Greenyellow 9.62E−06 2.28E−06 583 19.86 3

Purple 0.000178 5.12E−05 685 23.33 7

Lightgreen 0.000178 5.14E−05 283 9.64 0

Lightcyan 0.000289 9.14E−05 340 11.58 1

Cyan 0.000618 0.000211 375 12.77 2

Salmon 0.00230 0.000846 432 14.72 4

Gray60 0.00261 0.00103 322 10.97 2

Darkgreen 0.0203 0.00854 137 4.667 0

Darkgray 0.0235 0.0105 131 4.462 0

Analysis of miR-15a and miR-24-1
Targeting Genes in Co-expression
Modules
Previous research proposed that miR-15a and miR-24-1 were
oncogenic molecules which were associated with a poor
prognostic of patients with ependymomas (Braoudaki et al.,
2016). In our study, miR-15a and miR-24-1 were clustered
into the midnight-blue module and saddle-brown module,
respectively. Predicted target sites were collected from several
databases to seek genes associated with miRNAs. We found four
mRNAs (CYP11B1, KRT33B, RUNX1T1, and SIK1), which were
targeted by miR-15a, and were co-expressed in the midnight-blue
module. After applied annotation by the GeneCards database9

(Stelzer et al., 2016), we found that CYP11B1 and KRT33B were
involved in the estrogen biosynthesis signaling pathway, while
RUNX1T1 and SIK1 were involved in pathways in cancer and
tumor suppression process. Three miR-24-1 targeting mRNAs
(MAP3K4, MLANA, and SFRP5) were identified in the saddle-
brown module. Functional annotation in the GeneCards database
showed that such three mRNAs participated in MAPK signaling

9https://www.genecards.org/

pathway, NF-kappaB Signaling pathway, and WNT signaling
pathway, respectively, indicating that signaling pathways related
to tumorigenesis and development were affected by miR-24-
1. The dysfunctional pathways of miR-15a and miR-24-1 were
summarized in Figure 4.

We checked the association of miR-15a and miR-24 with
survival in 21 TCGA cancers (bladder carcinoma, breast cancer,
cervical squamous cell carcinoma, esophageal adenocarcinoma,
esophageal squamous cell carcinoma, head-neck squamous
cell carcinoma, kidney renal clear cell carcinoma, kidney renal
papillary cell carcinoma, liver hepatocellular carcinoma, lung
adenocarcinoma, lung squamous cell carcinoma, ovarian cancer,
pancreatic ductal adenocarcinoma, pheochromocytoma and
paraganglioma, rectum adenocarcinoma, sarcoma, stomach
adenocarcinoma, testicular germ cell tumor, thymoma, thyroid
carcinoma, and uterine corpus endometrial carcinoma) using
KM-plotter10 (Nagy et al., 2018). In 13 cancers (bladder
carcinoma, cervical squamous cell carcinoma, esophageal
adenocarcinoma, head-neck squamous cell carcinoma, liver
hepatocellular carcinoma, lung squamous cell carcinoma,
pancreatic ductal adenocarcinoma, pheochromocytoma and
paraganglioma, rectum adenocarcinoma, sarcoma, stomach
adenocarcinoma, thymoma, and uterine corpus endometrial
carcinoma), the log rank p-values of miR-15a were smaller
than 0.05. In eight cancers (bladder carcinoma, cervical
squamous cell carcinoma, kidney renal clear cell carcinoma, liver
hepatocellular carcinoma, rectum adenocarcinoma, sarcoma,
stomach adenocarcinoma, and uterine corpus endometrial
carcinoma), the log rank p-values of miR-24 were smaller than
0.05. Both miR-15a and miR-24 played important roles in various
cancers. The findings we discovered may also be helpful in
understanding the mechanisms of other cancers.

DISCUSSION

Genes (mRNAs) and microRNAs (miRNAs) were identified as
molecular markers for clinical management based on the change
of expression signatures in ependymoma (Costa et al., 2011; Wani
et al., 2012). However, interaction mechanisms between miRNA
and mRNA, as well as between co-expression networks, remain
unclear. Apart from previous studies that focus on differentially
expressed genes (Dai et al., 2017) or genes associated with disease,
e.g., genes with driver mutations (Liang et al., 2017), whole
gene sets containing totally 20,502 mRNAs and 723 miRNAs
were analyzed without any filtration in the current study. In this
manner, on the one hand, analysis can be performed independent
of clinical grouping or unsupervised grouping. On the other
hand, it is beneficial for detecting formerly neglected genes with
low expression levels or little fluctuation between groups.

We used high-performance computers to construct a co-
expression network of 64 EPN samples with both mRNA and
miRNA profiles. The network model passed strict and reasonable
soft-threshold criteria to meet approximate scale-free topology.
In our results, a total of 18,292 genes were clustered into 37

10http://kmplot.com/analysis/
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FIGURE 4 | The dysfunctional pathways of miR-15a and miR-24-1. (A) The dysfunctional pathways of miR-15a. The miR-15a targeted CYP11B1, KRT33B,
RUNX1T1, and SIK1. CYP11B1 and KRT33B were involved in the estrogen biosynthesis signaling pathway and RUNX1T1 and SIK1 were involved in pathways in
cancer and tumor suppression process. (B) The dysfunctional pathways of miR-24-1. The miR-24-1 targeted MAP3K4, MLANA, and SFRP5 which participated in
the MAPK signaling pathway, NF-kappaB Signaling pathway, and WNT signaling pathway, respectively.

modules with intrinsic association (excluding 2933 genes in
gray modules without association). We found that more than
80% of modules (31 out of 37) included miRNA, indicating an
extensive participation of miRNA in the regulation of gene co-
expression networks. Considering the complexity of tumor cell
biological process, it is insufficient to investigate the pathogenesis
of tumors from a single type of RNA alone, while analyzing co-
expression profiles of integrated miRNA and mRNA pairs could
identify the regulatory network for a prognosis of brain tumors
(Bing et al., 2016).

Subsequently, we performed functional enrichment analysis
on clustered modules to determine gene groups that were
intrinsically related to the progress of EPN. Interestingly,
KEGG enrichment analysis showed that the most significant
pathway was the cell cycle pathway in the red module,
which was closely related to various intracellular molecular
activities and cell proliferation capabilities. Development of the
nervous system and brain evolution were affected by changes
in the cell cycle of neural stem cells, which, with an out-
of-control subpopulation growth, may transform into initial
brain tumors in a cancer stem cell niche (Singh et al., 2004;
Salomoni and Calegari, 2010). The second most significant
enrichment in the red module was the DNA replication pathway.
Change in expression levels of genes involved in the DNA
replication pathway directly reflected increased cell proliferation
and division activity, implying that cells have more vigorous
growth and proliferation capabilities, which were hallmarks
characteristic unique to tumor cells.

Consistent with previous reports that the Synaptic vesicle
cycle pathway is a key pathway for up-regulation in EPN
(Zhong et al., 2018), this study found that the Synaptic vesicle
cycle pathway was the most significantly enriched pathway in
the turquoise module, which contains the largest amount of
genes. Key tumorigenic molecules contained in the Synaptic
vesicle cycle pathway, such as RAB3a, was found to accelerate
tumor formation and promote tumor cell proliferation by its
increased expression level (Kim et al., 2014). In addition, we

also found genes highly enriched in Glutamatergic synapse
terms that reported to drive growth and invasion of brain
tumors by communicating between neurons and tumor cells
(Venkataramani et al., 2019). Furthermore, the GABAergic
synapse pathway was proposed to confer cell proliferation
advantages in the neural microenvironment (Neman et al.,
2014). Three such significant enrichment pathways contained in
turquoise in our results indicated that this is a functional gene
group that can cooperate to promote conversion of brain nerves
into brain tumor cells. Gene ontology analysis validated the above
results that the turquoise module was an important component
of neuron and synapse synthesis and communication processes,
while the red module contained a set of genes with encoding
proteins to bind with DNA to regulate mitotic cell cycle process.

As we all know, miRNA play a role in regulating mRNA
expression through initiating transcriptional repression and
introducing mRNA cleavage or degradation. We identified
five miRNA-enriched modules (>10%), including oncogenic
molecules miR-15a and miR-24-1, which were previously
reported as poor prognosis biomarkers in child patients with
ependymoma (Braoudaki et al., 2016). Four target genes of
miR-15a predicted from the miRNA database were identified
in the midnight-blue module (CYP11B1, KRT33B, RUNX1T1,
and SIK1). We found CYP and KRT were involved in estrogen
synthesis and signaling pathway which, with an abnormal status,
was considered to be inseparable from the occurrence of multiple
types of cancer (Chen et al., 2008; Gallo et al., 2010; Germain,
2011). Although this signal pathway has not yet been proposed
to participate in brain tumors, functional disorders happening
on cell-specific estrogen synthesis pathways in the brain can also
cause brain diseases (Cui et al., 2013). Our results predict that
miR-15a may delay the aging process of nerve cells by regulating
a signal pathway which has never been discovered before, thereby
promoting nerve cells development to malignant proliferating
cells. RUNX1T1 has the ability to inhibit the growth of tumor cells
(Alfayez et al., 2016) and can be used to predict cancer metastasis
based on its reduced expression (Nasir et al., 2011). Researchers
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considered RUNX1T1 as a prognostic biomarker for CNS tumors
(Liang et al., 2017). Based on our findings in co-expression
networks, expression interaction of miR-15a and RUNX1T1 pair
will lead to cancer transcriptional disorders, as well as encourage
tumor cell growth and invasion. Inactivated SIK1 were reported
to damage TP53-dependent anoikis which endow tumor cells
with metastatic proficiency (Cheng et al., 2009); we infer that
interaction between miR-15a and SIK1 may be a potential cause
of uncontrolled growth of ependymal tumor cells.

Three target genes (MAP3K4, MLANA, and SFRP5) of
miR-24-1 were detected in the co-expression network module
(saddle-brown). After annotation, we found that they affected
the development progress of tumors through three different
signaling pathways. Firstly, MAP3K4 was involved in MAPK
kinase signal transduction, which was a characteristic signaling
pathway for discriminating group A subtype ependymoma
(Archer and Pomeroy, 2011). Secondly, MLANA as a marker
for the proliferation of melanocytes can be used to reflect
brain-specific signatures of melanoma metastasis (Soikkeli et al.,
2007; Nygaard et al., 2014). Involvement of MLANA in the
regulation of NF-kappaB signaling pathway drives specific
immuno-phenotype in group A ependymoma (Griesinger et al.,
2017). Thirdly, SFRP5 participated in the WNT signaling
pathway to regulate cell proliferation, migration, and cell fate
decision. Dysregulation of WNT signaling was associated with
various solid tumors, including glioblastoma (Lee et al., 2016).
The expression interaction between miR-24-1 and these three
genes detected in the current study reflected the potential
expression regulation of MAPK, NK-kappaB, and WNT signaling
pathways in ependymal tumor cells, suggesting that miR-
24-1 promoted tumor progression by targeting genes on
important signaling pathways that are closely related to cell
proliferation and migration.

CONCLUSION

To summarize, based on a weighted gene co-expression network
approach, we identified enriched biological processes and
pathways composed of associated genes that were related to
ependymoma development. Our study reveals that, for the
first time, the key regulatory mechanism of miRNAs is in
promoting tumorigenesis and tumor development by analyzing
co-expression network of miRNAs and mRNAs in ependymoma.
Discoveries in the current study not only cover unexplored

molecular mechanisms of miRNAs serving as a prognostic
biomarker, but also propose novel genes that can be used
for diagnosis signature and for potential antitumor treatment
targets of ependymoma.
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