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Machine-learning Approach for 
the Development of a Novel 
Predictive Model for the Diagnosis 
of Hepatocellular Carcinoma
Masaya Sato   1,2, Kentaro Morimoto3, Shigeki Kajihara3, Ryosuke Tateishi   2, 
Shuichiro Shiina4, Kazuhiko Koike2 & Yutaka Yatomi1

Because of its multifactorial nature, predicting the presence of cancer using a single biomarker is 
difficult. We aimed to establish a novel machine-learning model for predicting hepatocellular carcinoma 
(HCC) using real-world data obtained during clinical practice. To establish a predictive model, we 
developed a machine-learning framework which developed optimized classifiers and their respective 
hyperparameter, depending on the nature of the data, using a grid-search method. We applied the 
current framework to 539 and 1043 patients with and without HCC to develop a predictive model for the 
diagnosis of HCC. Using the optimal hyperparameter, gradient boosting provided the highest predictive 
accuracy for the presence of HCC (87.34%) and produced an area under the curve (AUC) of 0.940. Using 
cut-offs of 200 ng/mL for AFP, 40 mAu/mL for DCP, and 15% for AFP-L3, the accuracies of AFP, DCP, and 
AFP-L3 for predicting HCC were 70.67% (AUC, 0.766), 74.91% (AUC, 0.644), and 71.05% (AUC, 0.683), 
respectively. A novel predictive model using a machine-learning approach reduced the misclassification 
rate by about half compared with a single tumor marker. The framework used in the current study 
can be applied to various kinds of data, thus potentially become a translational mechanism between 
academic research and clinical practice.

Hepatocellular carcinoma (HCC) is one of the commonest cancers and is the leading cause of cancer-related 
deaths worldwide1. Despite recent improvements in therapeutic interventions2–5, HCC is still associated with a 
poor prognosis in patients with an advanced disease stage6. Previous studies have reported the beneficial influ-
ence of regular surveillance for HCC in high-risk populations to detect HCC at an early stage7–9.

Regarding the suggested guidelines for HCC surveillance, whether tumor markers should be included in a 
surveillance program, along with ultrasonography, remains controversial, since the sensitivity or specificity of 
alpha-fetoprotein (AFP), which has been the most widely used tumor marker for HCC, by itself is unsatisfac-
tory10–13. Because of the multifactorial nature of HCC14, it is difficult to predict its presence using a single bio-
marker. Therefore, combining multiple biomarkers to improve diagnostic accuracy is important. To date, other 
tumor markers, such as des-gamma-carboxyprothrombin (DCP)15,16 and the Lens culinaris agglutinin-reactive 
fraction of AFP (AFP-L3)17,18, have been proposed to complement the diagnostic accuracy of AFP. In addition to 
information on tumor markers, data on biomarkers of liver inflammation (aspartate aminotransferase [AST] and 
alanine aminotransferase [ALT]), fibrosis (platelet count)19, liver function (total bilirubin [TB] and albumin)20, 
and the hepatitis virus status are commonly available in daily clinical practice. These biomarkers alter the pretest 
probability for a diagnosis of HCC using tumor marker and thus are useful for predicting the presence of HCC.

Machine learning is a multidisciplinary field combining computer science and mathematics and focused 
on implementing computer algorithms capable of maximizing predictive accuracy from static or dynamic data 
sources using analytic or probabilistic models21. Combining clinical data using this analytical tool can ena-
ble the development of a novel model for HCC prediction. The aims of the present study are (1) to develop a 
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machine-learning framework to establish the most appropriate model depending on the applied data, and (2) to 
apply this framework to existing data from HCC patients to develop an appropriate model for HCC prediction.

Materials and Methods
Patients.  From all the patients who visited the liver clinic at the University of Tokyo Hospital between January 
1997 and May 2016, we extracted 4242 patients (1311 HCC patients and 2931 non-HCC patients) for whom 
information on the presence (or absence) of HCC was available and who had undergone laboratory testing on at 
least one occasion. All the patients in the HCC-positive group had been diagnosed as having HCC at the time of 
their first visit and had received initial treatment at our institution. Patients who subsequently developed HCC 
during the follow-up period for chronic liver disease were included in the HCC-negative group in the current 
study. Patients for whom information on AFP, AFP-L3, DCP, AST, ALT, platelet count, alkaline phosphatase 
(ALP), gamma-glutamyl transferase (GGT), albumin, TB, age, sex, height, body weight, hepatitis B surface (HBs) 
antigen, and hepatitis C virus (HCV) antibody status were available were selected. Finally, we included 539 HCC 
patients and 1043 non-HCC patients with the required information in the current analysis.

The current study was performed in accordance with the ethical guidelines of the Declaration of Helsinki. 
This research project was approved by the ethics committee of the University of Tokyo (approval number, 11474). 
Informed consent was obtained in the form of an opt-out on the website. Patients who rejected participation in 
our study were excluded. The study design was also included in a comprehensive protocol for retrospective stud-
ies and was approved by the ethics committee of the University of Tokyo (approval number, 2058).

Diagnosis of HCC.  Hepatocellular carcinoma was diagnosed using dynamic computed tomography (CT) 
imaging, with hyper-attenuation during the arterial phase and washout during the late phase regarded as a defi-
nite sign of HCC22. When a definite diagnosis of HCC could not be made using CT, an ultrasound-guided tumor 
biopsy was performed and the pathological diagnosis was based on the Edmondson-Steiner criteria23.

Development of graphical user interface machine-learning framework.  To establish a predictive model, 
we developed a graphical user interface machine-learning framework using R version 3.4.3 (http://www.r-project.
org) and the Shiny and Caret packages. The model had two main components. The first component consisted of the 
establishment of an algorithm. Comma-separated values (CSV) dataset files with a labeled variable were dragged and 
dropped onto a dashboard, and the framework automatically implemented supervised learning and developed opti-
mized classifiers and their respective hyperparameters, depending on the nature of the data, using a grid-search method 
(Fig. 1). We used a linear logistic regression model for the linear classification. The Akaike information criterion was 
used for variable selection in this model. Algorithms including support vector machines using an RBF kernel, gradient 
boosting, random forests, neural networks, and deep learning were also used for a non-linear classification model. 
The classifiers and their respective hyperparameters are shown in Table 1. For deep learning model, we defined two 
dense layers using ReLU activation function with drop-out ratio of 0.5, and then added output layer with the sigmoid 
activation function. We compiled the model using binary cross entropy as the loss function. An RMS prop optimizer 
was used as a hyperparameter for the optimization of deep neural network. The framework automatically selected the 
best classifier and its respective hyperparameter for the prediction model based on a grid search. The detailed process 
of searching for the optimal hyperparameters was shown in Supplementary Table 1. Algorithm optimization (e.g., a 
heatmap of predictive accuracy in a support vector machine [SVM]) or materials to compare the accuracies among the 
classifiers (confusion matrix or receiver operating characteristic curve) were automatically created.

The second component consisted of the application of the developed model to a new dataset of interest. The CSV 
dataset of interest was dragged and dropped onto a dashboard, and the software applied the optimized classifiers and 
hyperparameters developed in the first component and outputted the probabilities of the respective labels.

Figure 1.  The concept of graphical user interface machine learning framework. Comma-separated values 
(CSV) dataset files with a labeled variable were dragged and dropped onto a dashboard, and the framework 
automatically implemented supervised learning and developed optimized classifiers and their respective 
hyperparameters.

https://doi.org/10.1038/s41598-019-44022-8
http://www.r-project.org
http://www.r-project.org


3Scientific Reports |          (2019) 9:7704  | https://doi.org/10.1038/s41598-019-44022-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Statistical analysis.  Continuous variables were expressed as the medians with the first and third quartiles, 
while categorical variables were expressed as frequencies (%). Comparisons were performed using the Wilcoxon 
rank-sum or chi-square test for quantitative and categorical variables, respectively. We adopted the approaches 
used in the developed framework described above to predict the presence of HCC. To evaluate the accuracy of 
the model, we randomly split a total of 1582 patients into three parts: (i) the training set (80%), which was used 
to build the model, (ii) the development set, which was used for tuning the model parameters, and (iii) the test 
set, which was used to evaluate the performance of each classifier and assessed the predictive accuracy of the 
developed model. We then used a receiver-operation characteristics (ROC) curve analysis to assess the predictive 
accuracy of our classifier. The area under the curve (AUC) was evaluated as the ability to predict the presence 
of HCC. The variable importance for class discrimination in the predictive model was assessed using the mean 
decrease in the Gini impurity24.

Results
Patient characteristics.  Finally, we extracted 1582 patients from our database (539 HCC and 1043 non-
HCC patients). The dataset did not contain any missing data. The patient characteristics are shown in Table 2. The 
proportions of patients with a male sex, HCV antibody-positivity, and HBs antigen-negativity were significantly 
higher among the HCC patients, compared with the non-HCC patients. The serum levels of AFP, AFP-L3, DCP, 
AST, ALP, GGT, and TB, and the patient age were also significantly higher among the HCC patients, whereas the 
serum ALT level, platelet count, and albumin level were lower.

Predictive accuracy for HCC of each classifier.  Table 3 shows the predictive accuracy for HCC pres-
ence for each classifier using the optimum hyperparameter that provided the highest predictive value in each 
procedure. We assessed the predictive accuracy of the developed model in the test set. The predictive accuracy 
for HCC presence provided by gradient boosting was 87.34%, which was the highest among all the classifiers 
in our framework. The optimal hyperparameters of this classifier for the data used in the present study were 
eta = 0.08, gamma = 0.02, max depth = 1, min_child_ weight = 1.5, nround = 300, subsample = 0.5, and colsam-
ple_bytree = 0.9. An ROC analysis showed that the AUC, sensitivity, and specificity for this optimal classifier were 
0.940, 93.27%, and 75.93%, respectively (Fig. 2). Deep learning was not an optimal classifier for the current data.

Assessment of variable importance for class discrimination of the predictive model.  We then 
investigated the variable importance of the optimal predictive model using the gradient boosting developed in the 
current study. Figure 3 shows the mean decrease in the Gini impurity of this model. Patient age followed by three 
tumor markers and albumin level were the most important variables for HCC prediction.

Predictive accuracy for HCC of single tumor markers.  We also investigated the diagnostic accuracy 
of models using a single tumor marker. Using cut-offs of 200 ng/mL for AFP, 40 mAu/mL for DCP, and 15% for 
AFP-L325, the accuracies of AFP, DCP, and AFP-L3 for HCC presence were 70.67%, 74.91%, and 71.05%, respec-
tively. We also plotted the ROC curves for the prediction of HCC for three tumor markers (Supplementary Fig. 1). 
The AUCs for the prediction of HCC for AFP, DCP, and AFP-L3 were 0.766, 0.644, and 0.683, respectively.

Classifiers Hyperparameters R packages

Logistic regression model — stats

L1 penalized logistic regression model lambda* glmnet

L2 penalized logistic regression model lambda* glmnet

Elastic net penalized Logistic regression model alpha†, lambda* glmnet

RBF Support vector machine C‡, sigma§ kernlab

Gradient Boosting eta||, gamma¶, max_depth**, min_child_weight††, 
max_delta_step‡‡, subsample§§, colsample_bytree|||| xgboost

Random Forest ntree¶¶, mtry*** randomForest

Neural Network size†††, decay‡‡‡ nnet

Deep Learning|||||| epochs¶¶¶, batch_size****, optimizer†††† keras tensorflow

Table 1.  Classifiers and their respective hyperparameters and R packages used. *Scalar value, specifying 
the relative importance of the regularization function. †An option to specify one or more values for the 
probability of a type-I error. ‡A parameter for the soft margin cost function, which specifies the allowance of 
a misclassification penalty for stability. §A parameter to specify the complexity of the separation margin. ||A 
learning rate or step size shrinkage used in an update to prevent overfitting. ¶Minimal loss reduction required to 
make a further partition on a leaf node of the tree. **Maximum depth of tree to control over-fitting; increasing 
this value makes the model more complex. ††Minimum sum of instance weight needed in a child node. 
‡‡Maximum delta step allowed for each tree’s estimation. §§Subsample ratio of training instance. ||||Subsample 
ratio of columns when constructing each tree. ¶¶Total number of trees included in the forest model. ***Number 
of features used in the construction of each tree. †††Number of units in hidden layer (number of nodes in each 
hidden layer was set as 1). ‡‡‡A regularization parameter to avoid over-fitting. ||||||Fully connected neural network 
with 4 layers of neurons (16-64-64-2). ¶¶¶A single training iteration over the entire training data. ****Number of 
training samples processed at an iteration. ††††A device to adjust the deep learning model for optimal execution.
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Discussion
In addition to tumor marker levels, biomarkers of liver inflammation, liver fibrosis, liver function, and the hep-
atitis virus status are commonly measured in daily clinical practice. These biomarkers can be used to predict the 
presence of HCC. Ideally, all clinically available information should be used for such predictions. In the current 
study, we developed a graphical user interface framework to establish the most appropriate model automatically 
depending on the applied data using a machine-learning approach and then assessed the accuracy of the model.

Model fitting is important for a successful predictive method. If the data is linearly separable, a linear model 
will fit the data26,27. However, if the data is linearly inseparable, a non-linear model will fit the data better. 
Therefore, classifiers should be selected depending on the nature of the data. Also, the learning parameters of each 
classifier should be tuned properly using a grid search method28,29 to obtain the ideal hyperparameters providing 
the highest predictive values. Using the optimal hyperparameter, gradient boosting (non-linear model) provided 
the highest accuracy (87.34%) for the data used in the current study. This model reduced the misclassification rate 
by about half, compared with a single tumor marker.

Personalization is one of the ultimate goals of modern medicine30. Predictive models provide a personalized 
assessment of the probability of a clinical event using patient-specific characteristics and have increasingly been 
incorporated into practice in the field of cancer medicine31–33. The framework developed in the current study can 
be used to identify optimal classifiers easily and can be applied to new datasets of interest containing various kinds 
of data, thus potentially becoming a translational mechanism between academic research and clinical practice.

Parameters
HCC patients 
(n = 539)

non-HCC patients 
(n = 1043) P value

Sex, n (%) <0.001

   Female 167 (31.0) 483 (46.3)

   Male 372 (69.0) 560 (53.7)

Age (years) 68 (63–74) 57 (48–66) <0.001

HCV antibody <0.001

   Positive 382 (71.0) 630 (60.4)

   Negative 157 (29.0) 413 (39.6)

HBs antigen <0.001

   Positive 78 (14.5) 254 (24.4)

   Negative 461 (85.5) 789 (75.6)

AFP (ng/mL) 21 (7.8–91) 5.0 (3.0–10) <0.001

AFP-L3 (%) 0.5 (0.0–92) 0.0 (0.0–0.5) <0.001

DCP (mAU/mL) 24 (16–74) 16 (12–20) <0.001

AST (U/L) 53 (38–77) 47 (29–77) <0.001

ALT (U/L) 47 (29–74) 56 (30–95) <0.001

Platelet Count (×104/μL) 11.0 (7.9-15.7) 16.8 (12.0-22.1) <0.001

GGT (IU/L) 55 (36–97) 49 (25–94) <0.001

ALP (IU/L) 251 (193–323) 195 (155–250) <0.001

Albumin (g/dL) 3.6 (3.2–4.0) 4.1 (3.8–4.3) <0.001

TB (mg/dL) 0.8 (0.6–1.1) 0.8 (0.6–1.0) <0.001

Height (cm) 161 (154–167) 162 (155–168) 0.11

Body weight (kg) 60.7 (53.0–68.0) 60.0 (52.0–68.0) 0.34

Table 2.  Patient characteristics (n = 1582). *Data were expressed as the median values (1st–3rd quartiles).

Classifier Accuracy* (%)
Area under 
the curve

Logistic regression model 79.74 0.866

L1 penalized logistic bregression model 80.38 0.867

L2 penalized logistic regression model 81.64 0.884

Elastic net penalized logistic Regression model 80.38 0.884

Support vector machine (RBF kernel) 81.65 0.870

Gradient boosting 87.34 0.940

Random forest 86.08 0.923

Neural network 84.18 0.908

Deep learning 83.54 0.884

Table 3.  Predictive accuracy for HCC presence of each classifier. *A training/development/test split was used to 
evaluate the model.
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Deep learning has enabled major breakthroughs in the processing of images, video, speech, and audio34. 
However, deep learning was not the optimal classifier in the current study. Deep learning requires a large polyno-
mial sample size in terms of the dimensions of the input and an exponential sample in terms of the depth of the 
network to obtain ideal convergence boundaries35, which may be unrealistic requirements in clinical settings for 
ethical or methodologic reasons. Instead, identifying optimal classifiers and hyperparameters depending on the 
available data is important. The framework developed in the current study may help to provide optimal models.

The previous studies which compared the predictive performance of tabular data also showed the highest 
predictive performance of gradient boosting in the medical fields (e.g, urinary tract infections36, hip fractures37, 
sepsis38, or bioactive molecules39). Notably, Chiew et al. showed outstanding performance of gradient boosting 
compared to other machine learning algorithms for the risk prediction of suspected sepsis patients in the emer-
gency department using relatively small number of sample38. Gradient boosting may be the best algorithm for 
the analysis of tabular data especially in the medical field where it is difficult to collect a large amount of data for 
ethical or methodologic reasons.

In the future, predictive models using machine learning approach may be implemented in electronic medical 
record system and may offer decision support to improve patient outcomes and reduce clinical diagnosis error 
in daily medical practice. The accuracy of diagnostic algorithm based on machine learning approach depends on 
the number of samples for training40. Larger quantities of multidimensional medical data will be stored in the 
future, potentially improve the accuracy of machine learning based classifier. Discrepancy of disease distribution 
between train and test samples is also an important factor for the performance of each classifier. The predictive 
model developed in the current study is based on the data of tertiary referral center requires. Therefore, further 

Figure 2.  Receiver-operating characteristic curve for predicting the presence of HCC based on the optimal 
predictive model developed by our framework. The area under the curve for the prediction of HCC was 0.943.

Figure 3.  Mean decrease in the Gini impurity of the attributes as assigned using the optimized model. Patient 
age followed by three tumor markers were the most important variables for HCC prediction.
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study with external validation in a community-and clinic based population is needed to assess the practical per-
formance of the current model.

In conclusion, the framework developed in the current study provided a novel predictive model of HCC, pro-
ducing an area under the curve of 0.943. This model reduced the misclassification rate by about half, compared 
with that for a single tumor marker. The current framework can be applied to various kinds of data, and thus 
could potentially become a translational mechanism between academic research and clinical practice.

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable re-
quest.
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