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Primary immune regulation disorders lead to autoimmunity, allergy and inflammatory
conditions due to defects in the immune homeostasis affecting different T, B and NK cell
subsets. To improve our understanding of these conditions, in this work we analyzed the T
and B cell compartments of 15 PID patients with dysregulation, including 3 patients with
STAT1 GOF mutation, 7 patients with CVID with dysregulation, 3 patients with mutations
in CTLA4, 1 patient with CD25 mutation and 1 patient with STAT5b mutation and
compared them with healthy donors and with CVID patients without dysregulation.
CD4+ and CD8+ T cells from the patients exhibited a significant decreased frequency of
naïve and regulatory T cells with increased frequencies of activated cells, central memory
CD4+ T cells, effector memory CD8+ T cells and terminal effector CD8+ T cells. Patients
also exhibited a significantly increased frequency of circulating CD4+ follicular helper T
cells, with altered frequencies of cTfh cell subsets. Such cTfh cells were skewed toward
cTfh1 cells in STAT1 GOF, CTLA4, and CVID patients, while the STAT5b deficient patient
presented a skew toward cTfh17 cells. These alterations confirmed the existence of an
imbalance in the cTfh1/cTfh17 ratio in these diseases. In addition, we unraveled a marked
dysregulation in the B cell compartment, characterized by a prevalence of transitional and
naïve B cells in STAT1 GOF and CVID patients, and of switched-memory B cells and
plasmablast cells in the STAT5b deficient patient. Moreover, we observed a significant
positive correlation between the frequencies cTfh17 cells and switched-memory B cells
and between the frequency of switched-memory B cells and the serum IgG. Therefore,
primary immunodeficiencies with dysregulation are characterized by a skew toward an
activated/memory phenotype within the CD4+ and CD8+ T cell compartment,
org October 2020 | Volume 11 | Article 5767241
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accompanied by abnormal frequencies of Tregs, cTfh, and their cTfh1 and cTfh17
subsets that likely impact on B cell help for antibody production, which likely
contributes to their autoimmune and inflammatory conditions. Therefore, assessment of
these alterations by flow cytometry constitutes a simple and straightforward manner to
improve diagnosis of these complex clinical entities that may impact early diagnosis and
patients’ treatment. Also, our findings unravel phenotypic alterations that might be
associated, at least in part, with some of the clinical manifestations observed in
these patients.
Keywords: primary immunodeficiencies, follicular helper T cells, flow cytometry, switched memory B cells, primary
immune regulation disorders
INTRODUCTION

Primary Immune Regulation Disorders (PIRD)s lead to defects in
the immune homeostasis that cause a defective or exacerbated
immune response that usually produce autoimmunity, allergy, and/
or inflammation (1–6). These diseases constitute an expanding
group of primary immunodeficiencies (PID) listed in the last IUIS
Phenotypic Classification of PID (7). Within this group, those that
course with autoimmunity are the result of defects in regulatory T
cell development and/or function (8–10), whose hallmark disease is
immune dysregulation, polyendocrinopathy, enteropathy, X-
linked (IPEX), a disease caused by mutations in the FOXP3 gene
(11–13). However, two thirds of patients with a phenotype that
resembles IPEX do not exhibit FOXP3 mutations. Deleterious
mutations in IL-2RA (CD25), STAT5b, CTLA-4, LRBA (14–17),
and gain of function mutations in STAT1 and STAT3 (18–20)
have been described as causing IPEX-like syndromes. Many
patients with common variable immune deficiency (CVID) may
also present an IPEX-like phenotype, as they can present
cytopenias, inflammatory bowel disease, allergies, granulomas,
lymphoproliferation, and/or malignancies (21). Autoimmunity
can be the first sign of immune dysregulation, even preceding
other manifestations such as susceptibility to specific infectious
organisms (5, 22).

Follicular helper T cells (Tfh) cells were originally described in
human tonsils as a separate subset of memory CD4+ T cells
expressing the chemokine receptor CXCR5, specialized in
providing help to B cells (23, 24). They are essential for the
formation of germinal centers (GC), where B cells become
activated and differentiate into long-lived memory B lymphocytes
(MBL) and plasmablast cells (PBC) (25–28). Some studies reported
that a small counterpart of Tfh circulate in peripheral blood, and
theywere named “circulating Tfh cells” (cTfh) (29–31). Analyses of
-6; Blimp-1, B lymphocyte-induced
albumin; cTfh, circulating follicular

phocyte–associated antigen-4; CVID,
flow cytometry; GC, germinal center;
s; mAb, monoclonal antibodies; MBL,
-of-rapamycin; PBC, plasmablast cells;
ells; PBS, phosphate-buffered saline
s; PIRD, primary immune regulatory
ed memory B cells; TBL, transitional B
Treg, regulatory T cells.

org 2
cTfh revealed that they contain different subsets with unique
phenotypical and functional characteristics (32, 33). According to
CXCR3 and CCR6 expression, transcription factors and cytokines
produced, cTfh cells were classified into cTfh1 (CXCR3+CCR6-),
cTfh2 (CXCR3-CCR6-) and cTfh17 (CXCR3-CCR6+) cells,
resembling the classical Th1, Th2, and Th17 cell subsets (26, 32).
Only cTfh17 andcTfh2 cells are highly efficient for B cell help due to
their production of IL-21 (34, 35). Also, Tfh cells play a crucial role
in the long-term maintenance of antibody production that, in the
case of antibody-mediated autoimmunediseases,may contribute to
the pathogenesis of these diseases (25, 35, 36). Moreover,
phenotypical abnormalities in different T cell, B cell, and NK cell
compartments might be associated with several clinical findings
usually observed in PID with immune dysregulation (37–41), and
their characterization may contribute to a better identification or
classification of PID patients (42–44). Such alterations might be
assessed by flow cytometry (FC), especially in some institutions
were next generation sequencing (NGS) is not available.
Furthermore, FC is in fact a quicker, useful and less expensive
tool that may guide clinician’s diagnostic suspicion (31, 42, 44).

Therefore, in this work, we performed a characterization of T
andB cell subsets of a cohort of 15 patientswith PIRDand analyzed
whether such alterations are associated their clinical features.
MATERIALS AND METHODS

Samples
Samples from 15 patients with PID with immune dysregulation
were included: 1 patient with CD25 deficiency (Y41S mutation)
(14), 1 patient with STAT5b mutation (F646S) (15), 3 patients with
STAT1 gain of function (GOF) mutations (Q167H, R274Q, and
F172L), 3 family-related patients with the same CTLA4 mutation
(L141P) and 7 CVID (ESID criteria) patients with dysregulation
with unknown molecular defect (CVIDdys). The cohort included 9
female and 6 male patients with a median age of 25.7 years (range:
12–48 years). The main clinical features of these patients are
summarized in Supplementary Table 1. Assessment of T and B
cell subsets was repeated at least twice and evaluated prior treatment
and after one year following cessation of immunosuppression when
possible; immunosuppressive and/or immunomodulator therapies
are detailed in Supplementary Table 1. As controls, we included a
October 2020 | Volume 11 | Article 576724
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group of healthy donors (HD) and a group of five CVID patients
without immune dysregulation (CVIDno-dys). Whole blood was
collected by venipuncture in tubes with EDTA. Samples from
healthy volunteers were provided by the Blood Bank of the
“Ricardo Gutiérrez” Children’s Hospital (Buenos Aires,
Argentina). Studies have been approved by the institutional
review committee and informed consent of participating subjects
or their legal guardians if they were minors was obtained.

Antibodies and Reagents
The following fluorochrome-labeled monoclonal antibodies
(mAb) against human molecules were used: APC-anti-CD3
(SK7), PerCP/Cy5.5-anti-CD4 (SK3), APC-H7-anti-CD8
(SK1), PE-anti-HLA-DR (TU36), PE-Cy7-anti-CD19 (SJ25C1),
FITC-anti-CD45RA (L48), Brilliant Violet 421-anti-CD27 (M-
T271), PE-anti-CD25 (2A3), Alexa 488-anti-FOXP3 (259D/C7),
Pacific Blue-anti-CD4 (RPA-T4), PE-Cy5-anti-CD21 (B-ly4),
FITC-anti-IgD (IA6-2), APC-anti-IgM (G20-127), APC-H7-
anti-CD38 (HB7), PE-anti-CD24 (ML5) from BD; APC-anti-
CXCR5 (J252D4), PE-Cy7-anti-CD45RA (HI100), Pacific
Blue-anti-CXCR3 (G025H7), and Brilliant Violet-anti-CCR6
(G034E3) from BioLegend.

Flow Cytometry
Immunostaining of T cells was performed using 100 ml of whole
blood collected with EDTA and stained during 15 min at room
temperature with the corresponding mAb. Thereafter, red blood
cells were lysed using FACS Lysing Solution (BD) for 7 min,
washed twice with PBS/BSA and acquired. After gating on
CD45+ cells, followed by a second gate on CD3+ cells, subsets
within the CD4+ and CD8+ cells were defined as naïve T cells
(CD45RA+CD27+), central memory T cells (TCM, CD45RA

-

CD27+), effector memory T cells (TEM, CD45RA
-CD27-) and

terminal effector T cells (TEMRA, CD45RA
+CD27-), respectively

as described (45–47). Activated CD4+ and CD8+ T cells were
characterized as HLA-DR+ cells. cTfh (CD4+CD45RA-CXCR5+)
cells were divided in 2 subsets: cTfh1 (CCR6-CXCR3+) and
cTfh17 (CCR6+CXCR3-) (30, 34). For B lymphocytes (BL), 250
ml of whole blood collected with EDTA were lysed using Pharm
Lyse (BD), washed twice with PBS/BSA and stained with the
corresponding mAb for 30 min at room temperature. Thereafter,
a second lysis with FACS Lysing Solution (BD) for 7 min was
performed, cells were washed twice with PBS/BSA and acquired.
Different stages of B cell differentiation were identified within the
CD19+ cell subpopulation as transitional or immature B cells
(TBL, CD38++CD24++), naïve B cells (IgD+CD27-), CD21low B
cells (CD21lowCD38+/-), post-switched MBL (Sw-MBL, IgD-IgM-

CD38+/-), and plasmablasts (PBC, CD38++CD27++), as described
(48). For regulatory T cells (Treg, CD4+CD25++FOXP3+), 1 × 106

PBMC/mm3 were labeled with the corresponding mAb following
the manufacturer protocol (Anti-Human FOXP3 Staining Kit,
BD). Cells were acquired in a FACSCanto II flow cytometer (BD)
and analyzed using the FlowJo software v10.0.7 (Treestar, Inc.).

Statistical Analysis
All data are presented as relative values. The differences between
HD and patients as a whole group were analyzed by an unpaired
Frontiers in Immunology | www.frontiersin.org 3
t-Student tests. If the group passed the normality test, a parametric
method (Welch test) was used. If the group did not pass the
normality test, a non-parametric method (Mann-Whitney U test)
was used.Whenmore than two groupswere compared andbecause
in all cases at least one group did not pass normality test, a non-
parametric Kruskal-Wallis test with Dunn’s post hoc test was used.
Spearman correlation was used to assessed association between
variants. A two-sided p-value of <0.05 was considered statistically
significant. GraphPad Prism 6.01 (GraphPad Software) was used
for all graphs and statistical analyses.
RESULTS

CD4+ T Cells From PIRD Patients Exhibit
Increased Frequencies of Activated, TCM
and cTfh cells, Reduced Frequencies of
Treg Cells, and Altered Frequencies of
cTfh Cell Subsets
Wefirst performed the analysis of naϊve andmemoryT cell subsets in
a cohort ofPIRDpatients (Figure1).To identify thedifferentCD4+T
cell subpopulations, we use the gating strategy outlined in
Supplementary Figure 1A. Analyzed as a group and compared to
HD, CD4+ T cells from the patients exhibited a significant decreased
frequency of naïve CD4+ T cells (Figure 1A) with increased
frequencies of activated (HLA-DR+) CD4+ T cells (Figure 1B) and
TCM cells (Figure 1C). In addition, we did not observe significant
differences in the frequency of TEM (CD45RA-CD27-) and TEMRA

(CD45RA+CD27-) cells between patients and HD (not shown).
Moreover, analysis of CD4+CD25++FOXP3+ cells using the gating
strategy outlined in Supplementary Figure 1B confirmed that
patients with dysregulation evidenced lower frequencies of Treg
cells (Figure 1D). Disaggregated analysis of individual patients
according to their mutation confirmed these differences, although
they did not reach statistical significance in the STAT1GOF patients
(Figures 1E–H). Also, compared to the CVIDno-dys group, CVIDdys

patients presented lower frequencies of naïve CD4+ T cells (Figure
1E) andhigher frequencies of TCM cells (FigureG).Of note, although
P2 and P3 (STAT1 GOF), P4 (STAT5b def.), P5 (CD25 def), P6
(CTLA4), P9, and P10 (CVID) exhibited intermittent total and/or
CD4+ T lymphopenia (not shown).

Next, we evaluated the frequency of cTfh in peripheral blood
(Figure 2). Although we could not perform this analysis on P3
because we lost follow up, in the rest of the patients we observed a
significant increased frequency of cTfh compared to HD (Figure
2A). In addition, this difference was significant in the CVIDdys

group when compared to HD and to the CVIDno-dys group (Figure
2B). An analysis of cTfh subpopulations revealed that the patients
exhibited higher frequencies of cTfh1 cells (Figure 2C) and cTfh17
cells (Figure 2D). The disaggregated analysis revealed that,
compared to HD, STAT1 GOF, and CVIDdys patients exhibited
increased frequencies of cTfh1 cells, while the STAT5b deficient
patient evidenced a reduced frequency of cTfh1 cells (Figure 2E).
Remarkably, we also observed that CVIDdys patients exhibited an
increased frequency of cTfh1 cells compared to CVIDno-dys patients.
Moreover, compared to HD, STAT1 GOF, CVID, and 2 CTLA4
October 2020 | Volume 11 | Article 576724
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patients exhibited concomitant decreased frequencies of cTfh17
cells that were significant in the STAT1 GOF and CVIDdys patients
(Figure 2F). However, although CVIDno-dys patients exhibited
frequencies of cTfh17 cells that were within the range of HD,
differences in the frequencies of cTfh17 cells between both groups of
CVID patients were not significant, likely due to the low number of
patients that we recruited in this study. In addition, cTfh17 cells
were almost absent in the STAT1 GOF and in two of the CVID
patients, while the STAT5b deficient patient exhibited an increased
frequency. Accordingly, patients with dysregulation exhibited a
significant higher ratio of cTfh1/cTfh17 cells (Figure 2G) that, in
the disaggregated analysis, was particularly characteristic of the
STAT1 GOF and the CVIDdys patients but was not detected in the
Frontiers in Immunology | www.frontiersin.org 4
CVIDno-dys, CTLA4, CD25def, and STAT5b patients (Figures 2G,
H). Overall, these results demonstrate that the dysregulation of the
immune system in these patients encompasses naïve, activated,
central memory, Treg, cTfh, and their subsets of CD4+ T cells and
that the cTfh1/cTfh17 ratio discriminates between CVID patients
with and without dysregulation.

CD8+ T Cells From PIRD patients Exhibit
Increased Frequencies of Activated, TEM,
and TEMRA Cells
Then, we performed an analysis of the CD8+ T cell subsets using
the gating strategy outlined in Supplementary Figure 1A and
observed that, analyzed as a group and similarly to what we
A B D

E F

G H

C

FIGURE 1 | Relative frequencies of CD4+ T cells subsets in PIRD patients. The frequency of CD45RA+CD27+CD4+ (naïve) T cells (A), HLA-DR+CD4+ (activated) T
cells (B), CD45RA-CD27+CD4+ (TCM, C) and regulatory T cells (Treg, CD4+CD25++FOXP3+, D) cells in a cohort of 36 HD (A-C), 21 HD (D), 15 patients with PIRD
(A–C) and 10 patients with PIRD (D) were depicted. Horizontal lines represent the mean of each group. The distribution of the frequencies of CD45RA+CD27+CD4+

(naïve) T cells (D), HLA-DR+CD4+ (activated) T cells (E), CD45RA-CD27+CD4+ (TCM cells, F) and CD4+CD25++FOXP3+ (Treg, H) in each group of this cohort was
also depicted. P1 (STAT1 GOF) and P11 (CVID) were under treatment (as detailed in Supplementary Table 1). Gray areas indicate the 10th and 90th percentiles of
HD for each parameter. An unpaired parametric t-Student test with Welch´s correction was used in (A–D); a non-parametric test with Dunn’s post hoc was used in
(D–H). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
October 2020 | Volume 11 | Article 576724
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observed in CD4+ T cells, PIRD patients exhibited a reduced
frequency of naïve CD8+ T cells (Figure 3A) and an increased
frequency of activated (HLA-DR+) CD8+ T cells (Figure 3B). In
addition, contrary to what we observed in the CD4+ T cell
compartment, these patients exhibited significantly increased
frequencies of CD8+ TEM cells (Figure 3C) and CD8+ TEMRA

cells (Figure 3D) with no differences in the frequency of TCM

cells (not shown). A disaggregated analysis of the patients
according to their mutation revealed that regardless of their
mutation, most patients exhibited this skew toward an activated
phenotype in the CD8 T cell compartment characterized by more
activated and effector memory CD8+ T cells (Figures 3E–H).
Therefore, our results demonstrate that the dysregulation of the
immune system in these patients encompasses naïve, activated,
effector memory and terminal effector subsets of CD8+ T cells.
B Cells Subsets Varies Among Patients
With Immune Dysregulation
We also analyzed the B cell compartment in the patients, but we
were unable to perform this analysis in P7 because she was under
Rituximab treatment and then she underwent hematopoietic stem
cell transplantation. To identify the different B cell subpopulations,
we use the gating strategy outlined in Supplementary Figure 1C.
Analyzed as a group, most PIRD patients exhibited an increased
frequency of TBL (Figure 4A), with no major changes in the
frequency of naïve B cells (Figure 4B) and CD21low B cells (with
the exception of five CVID patients, Figure 4C), a significant
reduced frequency of Sw-MBL (Figure 4D) and variable
frequencies of PBC (Figure 4E). The disaggregated analysis of
the patients according to their mutation revealed that, compared
to HD, two STAT1 GOF, five CVID, one CTLA4 and the CD25
deficient patients presented increased frequencies of TBL (Figure
4F). Also, the STAT1 GOF and five of the CVID patients
presented increased frequencies of naïve B cells in blood, while
one CTLA4 and the STAT5b patients presented reduced
frequencies of naïve B cells in blood (Figure 4G). The
disaggregated analysis of the patients revealed that the only
group that exhibited higher frequencies of CD21low B cells were
the CVIDdys patients, and this increase was significant when
compared to CVIDno-dys patients (Figure 4H). In addition, the
CVIDdys patients presented a significant reduction in the frequency
of Sw-MBL cells, while one of the CTLA4 and the STAT5b deficient
patients exhibited increased frequencies of these cells in blood
(Figure 4I). Moreover, no differences between CVID patients
with and without dysregulation were observed. In the PBC
compartment, we observed a strikingly high frequency of PBC in
the STAT5b deficient patients and a less marked increase in two of
three STAT1 GOF, the two CTLA4, and two of the four CVIDno-dys

patients (Figure 4J). Overall, our results unravel a profound
dysregulation in the B cell compartment, in some cases
characterized by a prevalence of most immature/naïve B cells
(such as in STAT1 GOF and CVID patients with dysregulation)
and in other cases characterized by a prevalence of most activated/
differentiated B cells (such as in STAT5b deficient and one CTLA4
patient, and in some CVID patients without dysregulation).
A B

D

E F

G H

C

FIGURE 2 | Relative frequencies of cTfh and their subsets in PIRD patients.
The frequency of CD4+CD45RA-CXCR5+ cTfh cells in a cohort of 24 HD and
14 patients with dysregulatory syndrome PID (A) and their distribution in each
group of this cohort (B) were depicted. Also, the frequencies of CCR6-

CXCR3+ (cTfh1, C) and CCR6+CXCR3- (cTfh17, D) cells within cTfh cells in
this cohort, and the distribution of the frequencies of CCR6-CXCR3+ (cTfh1,
E) and CCR6+CXCR3- (cTfh17, F) cells in each group of this cohort were
depicted. In addition, the cTfh1/cTfh17 ratio (G) and its distribution in each
group of this cohort (H) are shown. Horizontal lines in (A, C, D) represent the
mean of each group. P1 (STAT1 GOF) and P11 (CVID) were under treatment
(as detailed in Supplementary Table 1). Gray areas in (B, E, F) indicate the
10th and 90th percentiles of HD for each parameter. An unpaired parametric t-
Student test with Welch´s correction was used in (A, C, D); a non-parametric
test with Dunn’s post hoc was used in (B, E, F). An unpaired non-parametric
t-Student test with Mann-Whitney U test was used in G. *p < 0.05; **p <
0.01; ***p < 0.001; ****p < 0.0001.
October 2020 | Volume 11 | Article 576724
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Correlation Between cTfh17 Cells and
Sw-MBL Cells
As Tfh cells are specialized in providing help to B cells during the
GC reaction and considering the altered frequencies in the cTfh
and B cell compartments detected in these patients, we evaluated
whether the frequency of cTfh is associated with the frequency of
different B cell subsets. Although there was no correlation
between cTfh and any B cell population (TBL, naïve B cells,
CD21low B cells, Sw-MBL, and PBC, not shown), we observed a
significant positive correlation between the frequencies cTfh17
cells and Sw-MBL (Figure 5A) and between the frequency of Sw-
MBL and serum IgG (Figure 5B). Overall, these results
demonstrate that the dysregulation in the B cell compartment
Frontiers in Immunology | www.frontiersin.org 6
of the patients is associated with abnormalities in the cTfh cell
subsets and that such alterations are associated with a disbalance
in the amount of IgG in serum. Of note, in P9, P10, P13, and P15
we could evaluate their phenotypes prior and after treatment and
observed no major differences in the T and B cells subsets.
DISCUSSION

PIRD constitute an evolving group of diseases that lead to an altered
immune homeostasis resulting in inappropriate tolerance,
autoimmunity, allergy and/or inflammation (1, 2, 12, 49, 50). In
this work, we explored the T and B compartments of a cohort of 15
A B D

E F

G H

C

FIGURE 3 | Relative frequencies of CD8+ T cells subsets in PIRD patients. The frequency of CD45RA+CD27+CD8+ (naïve) T cells (A), HLA-DR+CD8+ (activated) T
cells (B), CD45RA-CD27-CD8+ (TEM) cells (C) and CD45RA+CD27-CD8+ (TEMRA) cells (D) in a cohort of 16 HD and 15 patients with dysregulatory syndrome PID
were depicted. Horizontal lines represent the mean of each group. The distribution of the frequencies of CD45RA+CD27+CD8+ (naïve) T cells (E), HLA-DR+ CD8+

(activated) T cells (F), CD45RA-CD27-CD8+ (TEM) cells (G) and CD45RA+CD27-CD8+ (TEMRA) cells (H) in each group of this cohort was also depicted. P1 (STAT1
GOF) and P11 (CVID) were under treatment (as detailed in Supplementary Table 1). Gray areas indicate the 10th and 90th percentiles of HD for each parameter. An
unpaired parametric t-Student test with Welch´s correction was used in (A–C). An unpaired non-parametric t-Student test with Mann-Whitney U test was used in (D).
a non-parametric test with Dunn’s post hoc was used in (E–H). *p < 0.05; **p < 0.01; ***, p < 0.001.
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PIRD patients that share clinical features such as autoimmunity and
recurrent infections. Although we used a limited number of patients
within each group, our study highlights the utility of FC as a suitable
tool to characterize different T and B cells subsets and their
alterations in these diseases with clinically overlapping features.
Also, our findings contribute to unravel phenotypic alterations that
might be associated, at least in part, with some of the clinical
manifestations observed in these patients.

Phenotype analysis evidenced that the main discriminating
variable among these overlapping diseases were found within the
CD4+ compartment. PIRD patients presented increased frequencies
of cTfh cells, known to be effector T cells that provide B cell help
which results in B cell expansion, immunoglobulin class switch,
affinity maturation and secretion of high-affinity antibodies by PBC
(32, 51, 52). Therefore, the abnormal frequencies of cTfh seen in
patients likely impacts on B cell help for antibody production and
contribute to their clinical picture, especially, in PIRD with
autoimmune and inflammatory conditions (53, 54). Accordingly,
increased frequencies of cTfh cells have been involved in the
pathogenesis of several autoimmune diseases and their frequency
Frontiers in Immunology | www.frontiersin.org 7
positively correlated with serum autoantibody titers (35, 55). The B-
cell lymphoma 6 protein (Bcl-6) transcription factor is essential for
Tfh development (56, 57) and it has been observed that STAT5
protein is a negative regulator of Bcl-6 (58–61). Moreover, mouse
models evidenced that STAT1 activity is essential for IL-6-mediated
Bcl-6 induction for early Tfh differentiation (62). Therefore, our
observations in PIRD patients might be the consequence of an
altered signaling necessary to balance Tfh development, as STAT1
GOF and STAT5b patients may exhibit a constitutive Bcl-6
expression that shifts CD4 T cell differentiation to the Tfh lineage.
In addition, cTfh17 and cTfh2 subsets are highly proficient cTfh
effectors that promote immunoglobulin class switching and
generation of Sw-MBL and PBC due to their high IL-21 secretion
ability (28, 34, 35). We observed that some patients with PIRD
displayed impaired frequency distribution of the cTfh1 and cTfh17
subsets with impaired cTfh1/cTfh17 ratio. In particular, STAT1
GOF and CVID patients with dysregulation exhibited low
frequencies of cTfh17 but increased frequencies of cTfh1 cells,
reduced frequencies of Sw-MBL and hypogammaglobulinemia
(with the exception of P1 that coursed with autoimmune hepatitis
A B D

E F G

IH J

C

FIGURE 4 | Relative frequencies of B cells subsets in PIRD patients. The frequency of CD38++CD24++ cells (TBL, A), IgD+CD27- cells (naïve B cells, B)
CD19+CD21lowCD38+/- cells (CD21low B cells, C), IgD-IgM-CD38+/- cells (Sw-MBL, D) and CD38++CD27++ cells (PBC, E) in a cohort of HD (n = 5 for TBL, n = 11 for
naïve B cells, n = 9 for CD21low B cells, n = 13 for Sw-MBL and n = 6 for PBC) and 14 patients with dysregulatory syndrome PID were depicted. Horizontal lines
represent the mean of each group. The distribution of the frequencies of CD38++CD24++ cells (TBL, F), IgD+CD27- cells (naïve B cells, G) CD19+CD21lowCD38+/-

cells (CD21low B cells, H), IgD-IgM-CD38+/- cells (Sw-MBL, I), and CD38++CD27++ cells (PBC, J) in each group of this cohort were also depicted. P1 (STAT1 GOF)
and P11 (CVID) were under treatment (as detailed in Supplementary Table 1). Gray areas indicate the 10th and 90th percentiles of HD for each parameter. An
unpaired non-parametric t-Student test (Mann-Whitney U test) was used in (A–E); a non-parametric test with Dunn’s post hoc test was used in (F–J). *p < 0.05;
**p < 0.01; ***p < 0.001.
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and hypergammaglobulinemia). Conversely, the patient with the
STAT5bmutation presented an opposite phenotype as the observed
in the asymptomatic mutation carrier of the CTLA-4 family (P8),
who presented high frequencies of Sw-MBL and never displayed
hypogammaglobulinemia. Other two affected family members
carrying the same CTLA-4 mutation (P6 y P7) presented with
CVID phenotype. Strikingly, the values of cTfh1 and cTfh17 (and
the corresponding ratio) within the CVID group without
dysregulation were quite different from those of the CVID with
dysregulation, for which their assessment may contribute to the
differential diagnosis of both kind of CVID patients. Also, our
results unraveled a positive correlation between cTfh17, Sw-MBL,
and IgG in serum, suggesting that the assessment of the global
frequency of cTfh cells does not contribute to the diagnosis. Instead,
the assessment of the cTfh1 and cTfh17 distribution (and
eventually, the calculation of the cTfh1/cTfh17 ratio) in patients
with PIRD may contribute to a better classification of these
heterogeneous group of PID, as increased proportions of cTfh2
and cTfh17 may contribute to the exacerbated humoral responses
and autoantibody production as seen in other autoimmune diseases
(34–36).

Other interesting findings were that all PIRD patients
presented low frequencies of naïve CD4+ and CD8+ cells with
a concomitant increased frequency of activated CD4+ and CD8+

T cells. Within the subsets of memory T cells, the patients
presented increased frequencies of TCM CD4+ T cells and TEM

and TEMRA CD8+ T cells, which was not present in the CVID
group without dysregulation. Since memory T cells display a
lower activation threshold, it is possible that the increased
frequencies of memory T cells in the PIRD patients also
contribute to the autoimmune picture observed in these
patients (63, 64). Therefore, our results indicate that PIRD
patients exhibit a skew toward an activated/memory phenotype
within the T cell compartment, which probable is the
consequence of the underlying mutation and the chronic
antigenic stimulation that they experience during recurrent
infections, and that might be associated with their
inflammatory symptoms and autoimmune conditions.
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The IL-2/CD25/STAT5b signaling axis plays a non-redundant
role driving Treg cells development (65, 66) and activates B
lymphocyte-induced maturation protein-1 (Blimp-1), thus
inhibiting Bcl-6 and regulating B cell responses (61, 66–70).
Interestingly, most patients of our cohort exhibited low
frequencies of Treg (they were absent in the STAT5b and CD25
patients). Moreover, CTLA-4 is expressed in Treg cells and plays a
key role in their suppressive function (16, 71, 72) These findings
suggest that a disbalance in these cells might also be involved in the
generation of auto-antibodies inPIRDpatients that escape from the
tolerance checkpoints of the GC. Furthermore, the low frequencies
of Tregmay likewise affect “Regulatory Follicular T cells” (Tfr) that
specifically regulate Tfh activity, B cell activation and GC reactions
(55, 73–75), further increasing the susceptibility to the development
of autoimmunity in PIRD patients, as an imbalance between Tfh
and Tfr has been associated with autoimmune diseases (76, 77).

Regarding CD21low B cells, these cells have been found in
increased proportions in patients with several autoimmune
diseases, such as SLE and Sjögren’s syndrome (78). It has been
proposed that theydevelop fromMBL that haveundergone chronic
stimulation associatedwithcTfh1and IFN-gdysregulation (79–81).
However, in our study, we observed increased frequencies of
CD21low B cells only in CVIDdys patients that also exhibited
increased frequencies of TBL and reduced frequencies of Sw-MBL
as described by others (82–85). Therefore, the concomitant
accumulation of CD21low B cells and immature/naïve cells in
detriment of activated/effector cells that we observed in these
patients, together with additional observations that indicate that
CD21low B cells are IgM+IgD+CD27- support the idea that CD21low

B cells exhibit phenotypic features more closely related to naïve B
cells or B cells in early stages of activation.

Our results demonstrate that patients with PIRD course with
dissimilar phenotypes in the T and B cell compartments.
Therefore, immunophenotyping of peripheral blood cells may
provide physicians the opportunity to differentiate them and to
timely administer targeted therapies to alleviate their conditions
(86). Accordingly, administration of CTLA-4-Ig therapy promotes a
decrease in cTfh and the skew toward cTfh1 improving patients’
A B

FIGURE 5 | Correlation between cTfh17 cells, Sw-MBL cells, PBC, and serum IgG in PIRD patients. Correlation graphs between the frequency of cTfh17 cells and
Sw-MBL (A), and between Sw-MBL and IgG in serum (B) were depicted. Statistical analysis was performed using Spearman’s rank correlation and the values of r
and p are indicated in each graph.
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medical condition, a fact that indicates that cTfh monitoring by FC
constitutes a useful and sensitive manner to assess response to
treatment (87). Also, Sirolimus (SRL), received by P5, P7, P11 and
P15 during follow up, blocks mTOR and partially restores Treg
function through a FOXP3-independent mechanism (88) and
inhibits the differentiation of naive T cells into functional cTfh
cells, antagonizing Th1 and Th17 responses (88, 89). Nonetheless,
besides clinical improvement after receiving SRL, these patients did
not exhibit a restoration in their frequency of Treg nor a
normalization of the frequencies of cTfh and cTfh1/cTfh17 ratio.
These patients have received SRL since its indication and treatment
has been sustained since then, for which we were unable to perform
new analysis in treatment-free samples. However, these results
confirmed the same laboratory phenotype alterations seen prior to
treatment. Also, anti-CD20 mAb (received by P7, P9 and P10) has
been successfully used to ameliorate non-infectious complications in
CVIDdys patients not only due toB cells depletionbut alsopromoting
a rise in the frequency of Treg cells and a normalization of the Th1/
Th2 ratio in memory CD4+ T cells (90). However, the only effect we
could confirm during the follow up of these patients was the B cell
depletion inperipheral blood. Finally, corticosteroids affect immature
and mature T cells by repressing maturation, differentiation,
proliferation and inducing apoptosis, promoting a shift to Th2 cells
through negative regulation of T-bet (91, 92). Patients that received
thesedrugs (P1,P5,P12,andP13)didnotevidence suchphenotypical
changes. Accordingly, our data of the analysis of PIRD patients’
phenotypes along time, reinforces the idea that the observed
alterations would be consequence of their underlying disease/
mutation and the chronic activation/dysregulation state, and not
secondary to the treatment administered.

In summary, PIRD patients exhibit a skew toward an activated/
memory phenotype within the CD4+ and CD8+ T cell
compartment, accompanied by abnormal frequencies of Tregs,
cTfh and their cTfh1 and cTfh17 subsets that likely impact on B
cell help for antibody production and may contribute to their
autoimmune and inflammatory conditions. Therefore, assessment
of cTfh1 and cTfh17 cells by FC constitutes a simple and
straightforward tool for these complex clinical entities that may
impact early diagnosis and patients’ treatment.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
Frontiers in Immunology | www.frontiersin.org 9
ETHICS STATEMENT

The studies involving human participants were reviewed and
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85. López-Herrera G, Segura-Méndez NH, O’Farril-Romanillos P, Nuñez-Nuñez
ME, Zarate-Hernández MC, Mogica-Martıńez D, et al. Low percentages of
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