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Abstract: Background: Epidemiological studies suggest a possible relationship between metabolic
alterations, cardiovascular disease and aggressive prostate cancer, however, no clear consensus has
been reached. Objective: The aim of the study was to analyze the recent literature and summarize our
experience on the association between metabolic disorders, aggressive hormone-naïve prostate cancer
and cardiovascular disease. Method: We identified relevant papers by searching in electronic databases
such as Scopus, Life Science Journals, and Index Medicus/Medline. Moreover, we showed our
experience on the reciprocal relationship between metabolic alterations and aggressive prostate cancer,
without the influence of hormone therapy, as well the role of coronary and carotid vasculopathy in
advanced prostate carcinoma. Results: Prostate cancer cells have an altered metabolic homeostatic
control linked to an increased aggressivity and cancer mortality. The absence of discrimination of
risk factors as obesity, systemic arterial hypertension, diabetes mellitus, dyslipidemia and inaccurate
selection of vascular diseases as coronary and carotid damage at initial diagnosis of prostate cancer
could explain the opposite results in the literature. Systemic inflammation and oxidative stress
associated with metabolic alterations and cardiovascular disease can also contribute to prostate cancer
progression and increased tumor aggressivity. Conclusions: Metabolic alterations and cardiovascular
disease influence aggressive and metastatic prostate cancer. Therefore, a careful evaluation of obesity,
diabetes mellitus, dyslipidemia, systemic arterial hypertension, together with a careful evaluation of
cardiovascular status, in particular coronary and carotid vascular disease, should be carried out after
an initial diagnosis of prostatic carcinoma.

Keywords: prostate cancer; obesity; diabetes mellitus; systemic arterial hypertension; dyslipidemia;
cardiovascular disease

1. Introduction

Androgens play a key role in the development, growth and maintenance of prostate cells, as well
as carcinogenesis and prostate cancer (PCa) progression [1,2]. Androgen dependence of PCa was first
demonstrated in humans by Huggins in 1941 [3]. This assumption rationalized the “Historical myth”
of androgen deprivation therapy for decades as a gold standard treatment in advanced and metastatic
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PCa [4,5]. After an average time of 12 to 33 months, despite the testosterone castration levels, PCa
recovered and evolved towards a castration-resistant stage with limited effective treatment options [6].
Median survival of castration-resistant metastatic PCa was estimated not to exceed 25 months [7].

Metabolic alterations play a key role in manifesting this mechanism. Particularly PCa express
profound metabolic reprogramming favoring biosynthesis processes and limiting catalytic mechanisms.
Therefore, the metabolism of PCa represents a new therapeutic target and can offer new opportunities in
the prevention and diagnosis of advanced PCa, independently from androgen ablation therapy [8–11].

Although numerous studies showed a possible association between metabolic disorders and
aggressive PCa, the literature has often been limited and unambiguous.

Given that more and more epidemiological investigations showed that most patients with PCa
died due to causes other than cancer, especially for cardiovascular events [12–14], the aim of the
study was to analyze the recent literature and summarize our experience on the association between
metabolic alterations and aggressive hormone-naïve PCa as well as the prevalence of cardiovascular
damage, both at the initial diagnosis and in the advanced metastatic stage.

2. Materials and Methods

2.1. Identification of Studies

We identified significant recent papers in electronic databases as Scopus, Life Science Journals,
and Index Medicus/Medline.

Studies were discovered using the following key words: prostate cancer, diabetes mellitus,
dyslipidemia, obesity, systemic arterial hypertension, cardiovascular disease.

2.2. Inclusion Criteria

Working separately, reviewers selected all qualified studies in full text. To be included,
articles had to (1) evaluate the association between aggressive PCa, metabolic alterations and/or
cardiovascular disease; (2) contain an original data analysis and (3) from a peer reviewed journal.
Articles were excluded if the clinical study (1) did not analyze a reciprocal relationship between PCa,
metabolic alterations and/or cardiovascular disease (2) presented only as a case report or had an
inappropriate design.

2.3. Our Experience

In the second part of article we finally focused and synthesized our personal experience
regarding the relationship between aggressive hormone-naive PCa, metabolic disorders and
cardiovascular damage.

3. Results and Discussion

3.1. Literature Review

3.1.1. Prostate Cancer and Diabetes Mellitus

The conversion of glucose to ATP, even in the presence of high levels of oxygen, occurs via the
anaerobic effect (Warburg effect) in tumor cells due to the irreversible damage of the respiratory chain
in the first phase of cancerogenesis. This results in ATP production at a rate 100 times faster than
mitochondrial oxidation [8]. In the early stages of PCa, a widespread increase in lipogenesis directly
coupled with glucose and glutamine metabolism is associated with PCa progression, worse prognosis
and shorter survival [15,16].

Epidemiological studies show a conflicting association between Type 2 diabetes mellitus (DMII)
and PCa. These inconsistent results are attributed to changes in insulin concentration during DMII
development and progression. The risk of PCa, in particular, is associated with high insulin levels
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and insulin resistance. Consequently, it has hypothesized that the incidence rate of PCa increased
in subjects with recent diagnosis of DMII, characterized by hyperglycemia and hyperinsulinaemia,
and decreased with DMII progression [17–19]. Hyperinsulinaemia appears to be linked not only to a
higher incidence of PCa, but also to an increased Gleason Score (GS) and cancer mortality, although
not all studies are consistent [20–26].

The protect study showed that DMII was inversely associated only with differentiated PCa
(Gleason Score 2–6), but not with poorly differentiated PCa [27]. Other studies, however, showed an
inverse association between DMII and PCa for both high and low-grade tumors [22,28,29].

In the investigations in which an inverse relationship between DMII and PCa has been observed,
this association appears to be more significant with the duration of DMII, but this does not seem to
conform with all the studies that have examined the duration [28].The unanimity of the results
was negatively affected by the absence of discrimination in diabetic status in clinical trials and
mostly by inaccurate selection of comorbidities. This reflected a different impact of DMII on the
incidence of PCa and in particular on tumor aggressivity [17,23,30–32]. Moreover, recent studies
suggest that obesity, hypertension, DMII, hypercholesterolemia, in combination, can play a role in
the development of high-grade PCa (GS ≥ 7) as well as in tumor progression [16,33]. Western diet
with a high carbohydrate rate supports tumor progression in murine models and a high protein diet
with a low-carbohydrate diet inhibits intratumoral androgen synthesis and castration-resistant cancer
growth [34]. Therefore, it’s possible to hypothesize how a Mediterranean regimen characterized by a
high consumption of vegetables, fruits, legumes, nuts, fish, can positively impact on a natural history
of PCa and concomitant cardiovascular disease [35–38].

Moreover diet/genome interactions may influence the metabolic response to diet components
and the susceptibility to PCa risk and progression, directly or indirectly altering gene expression or
structure, while also modulating cell proliferation/apoptosis, DNA damage and repair, inflammation,
oxidant/antioxidant balance and angiogenesis. Consequently, dietary interventions based on
nutritional status, genotype analysis and “precision nutrition” can be used to establish specific
nutritional guidelines to prevent or cure metabolic alterations and PCa [39–41].

3.1.2. Prostate Cancer and Dyslipidemia

Prostate cancer cells have an altered metabolic homeostatic control and increased endogenous
cholesterol biosynthesis, with accumulation in tumor cells [42]. Cholesterol plays a key role
in metastatic tumor progression by acting as a mediator in cell proliferation, inflammation and
steroidogenesis [43,44].

Epidemiological and pre-clinical studies suggest that elevated levels of serum cholesterol could
play a role in PCa progression through increased production of androgens by prostate cancer cells and
activation of androgen receptors [42,45,46].

Cholesterol would then act as the precursor of intratumoral androgen biosynthesis [42,47].
Increased serum cholesterol levels were correlated with tumor volume, intratumoral testosterone
levels and the expression of key steroid genes, such as CYP17A, suggesting that one of the intratumoral
androgen sources would be represented by de novo steroid synthesis from circulating serum
cholesterol [42]. Tumors in hypercholesterolemic environment also exhibits lower levels of apoptosis,
increased activation of Akt kinase, related to aggressive PCa and increased vascularization [48,49].
Animal pre-clinical studies demonstrate that hypercholesterolemia was associated with increased PCa
risk and metastatic progression [50]. In addition, increased cholesterol levels have been identified in
PCa bone metastases, along with an increased expression of enzymes involved in steroidogenesis.
In particular, the effects of CYP17A (which converts progestins into androgens), 17-keto-reductase
(which converts androstenedione into testosterone) and 5α-reductase 1 (which converts testosterone
into dihydrotestosterone) [51–53] can be seen in Figure 1.
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Figure 1. Intratumoral de novo steroid synthesis from circulating serum cholesterol. Increased 
cholesterol and progesterone levels have been identified in prostate cancer along with an increased 
expression of enzymes involved in steroidogenesis, in particular, CYP17A, 17-keto-reductase and 5α-
reductase 1. 

Overall clinical trials reveal that hypercholesterolemia causes increased risk of PCa or aggressive 
disease, while statins reduce the risk of advanced disease [43,54–56].The mevalonate pathway was 
essential for the production of cholesterol and isoprenoids and had direct effects on the growth and 
progression of prostate cancer cells [57,58].The transcriptional regulation of the enzymes involved in 
this pathway occurs through the activation of SREBP-2, a regulator of androgenic synthesis which is 
itself regulated by androgens [59].The SREBP-2 expression increased during tumor progression, was 
significantly higher after castration and lost its inhibition feedback in tumor cells [55]. The drugs that 
most inhibited the Mevalonate pathway are nitrogen-containing bisphosphonates (N-BPs) and 
statins. Both have antitumor activity through effects on both bone tissue and cholesterol metabolism. 
In particular, observational studies show an inverse association between the use of statins and PCa 
progression, with a significant reduction in the risk of advanced disease with long-term use of statins, 
especially when used for more than 5 years and before tumor development [47,60–64]. These data 
suggest that an early approach based on the reduction of cholesterol levels before the onset of PCa 
could be an effective prevention and treatment strategy for PCa. In particular, prostate cancer cells 
increased the expression of Farnesil Pyrophosphate Synthetic Enzyme (FPPS), a key enzyme of the 
mevalonate pathway, detecting its correlation with PCa progression [65]. This enzyme is an 
important mediator of T cell activity essential for the elimination of tumor cells through the immune 
system [66]. FASN (Fatty Acid Synthase) catalyzed the synthesis of palmitate through the 
condensation of malonyl-CoA and acetyl-CoA. Its expression progressively increased during the 
natural history of PCa and reached maximum values in the androgen-independent PCa with bone 
metastases [67]. FASN inhibitors have been used to dysregulate lipid metabolism inhibiting PCa 
progression and causing cell death. FASN inhibition showed citotoxic and anti-proliferative activity 
in PCa cells, inducing apoptosis and reducing the lipid content in cancer cells in a concentration and 
time-dependent manner. FASN inhibitors induced degeneration and atrophy of prostatic tissue 
independently of the androgen status [68,69]. 

Figure 1. Intratumoral de novo steroid synthesis from circulating serum cholesterol.
Increased cholesterol and progesterone levels have been identified in prostate cancer along with an
increased expression of enzymes involved in steroidogenesis, in particular, CYP17A, 17-keto-reductase
and 5α-reductase 1.

Overall clinical trials reveal that hypercholesterolemia causes increased risk of PCa or aggressive
disease, while statins reduce the risk of advanced disease [43,54–56].The mevalonate pathway was
essential for the production of cholesterol and isoprenoids and had direct effects on the growth and
progression of prostate cancer cells [57,58].The transcriptional regulation of the enzymes involved in
this pathway occurs through the activation of SREBP-2, a regulator of androgenic synthesis which
is itself regulated by androgens [59].The SREBP-2 expression increased during tumor progression,
was significantly higher after castration and lost its inhibition feedback in tumor cells [55]. The drugs
that most inhibited the Mevalonate pathway are nitrogen-containing bisphosphonates (N-BPs)
and statins. Both have antitumor activity through effects on both bone tissue and cholesterol
metabolism. In particular, observational studies show an inverse association between the use of statins
and PCa progression, with a significant reduction in the risk of advanced disease with long-term
use of statins, especially when used for more than 5 years and before tumor development [47,60–64].
These data suggest that an early approach based on the reduction of cholesterol levels before the
onset of PCa could be an effective prevention and treatment strategy for PCa. In particular, prostate
cancer cells increased the expression of Farnesil Pyrophosphate Synthetic Enzyme (FPPS), a key
enzyme of the mevalonate pathway, detecting its correlation with PCa progression [65]. This enzyme
is an important mediator of T cell activity essential for the elimination of tumor cells through the
immune system [66]. FASN (Fatty Acid Synthase) catalyzed the synthesis of palmitate through the
condensation of malonyl-CoA and acetyl-CoA. Its expression progressively increased during the
natural history of PCa and reached maximum values in the androgen-independent PCa with bone
metastases [67]. FASN inhibitors have been used to dysregulate lipid metabolism inhibiting PCa
progression and causing cell death. FASN inhibition showed citotoxic and anti-proliferative activity
in PCa cells, inducing apoptosis and reducing the lipid content in cancer cells in a concentration
and time-dependent manner. FASN inhibitors induced degeneration and atrophy of prostatic tissue
independently of the androgen status [68,69].
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3.1.3. Prostate Cancer and Obesity

Adipose tissue is an active endocrine tissue capable of regulating prostate metabolic activity and
influencing carcinogenesis and especially tumor progression [70–75].

The relationship between PCa and obesity, although subject to numerous studies, remains
controversial at present. A possible explanation for this is due to the insufficient evaluation and control
of possible concomitant metabolic factors associated with obesity such as systemic arterial hypertension
(SAH), DMII, and dyslipidaemia, as well as a different design of the studies. Recent studies showed
that the association between PCa and obesity could vary according to tumor grade, highlighting a
direct relationship between adipose tissue and aggressive cancer and an inverse association with
low-grade tumors [76–81]. However, not all studies were consistent and some clinical trials showed no
relationship between obesity and tumor aggressiveness [82–84].

Leptin and adiponectin, adipokines produced by adipose tissue, regulated the action of Insulin
on the glucose cellular uptake and reduced the metabolism of fatty acids. Leptin increased lipolysis,
insulin sensitivity, inflammation and thromboembolism. In obesity in particular, leptin was increased
and negatively affected cell differentiation, the risk of tumor progression, cell migration and prostate
angiogenesis, by inducing pro-angiogenic factors [78–86].

Adiponectin, on the other hand, was reduced in obesity and adversely affected the histological
grade and stage of PCa. In vitro studies showed that Adiponectin inhibited cell growth
and proliferation in PCa and antagonized the proliferative effects of Leptin and IGF-1 in the
androgen-independent PCa [87]. In addition to its effects on prostate cell proliferation, adipose tissue
reduced the production of anti-inflammatory adipocytes such as adiponectin and increased the release
of pro-inflammatory adipocytes such as leptin causing a chronic inflammatory state and prostatic
tumor progression [6,74,78]. In particular, the expansion of adipose tissue caused the development of
an inflammatory environment with increased secretion of cytokines such as IL-6, TNFα and MCP1.
They in turn acted as attractants for further immune cells and created an environment that perpetuates
immune infiltration and the production of inflammatory cytokines. Lipid inflammatory mediators
such as arachidonic acid, eicosanoids, prostanoids and leukotrienes had also been increased [88].
Hormonal and inflammatory obesity-related alterations could therefore significantly contributed
to prostate tumor growth and progression through the promotion of mitogenesis (Leptin, IGF-1,
Insulin etc), angiogenesis (VEGF, IL6, IL8 etc) and tumor invasiveness (Leptin, IL6, etc.) [47,89].

3.1.4. Prostate Cancer and Systemic Arterial Hypertension

Only few studies have explored the association between SAH and PCa. Beebe-Dimmer et al.
found a positive association between SAH and PCa [90]. Han et al. showed that diastolic pressure was
positively associated with Prostate Specific Antigen (PSA) serum levels [91]. Subsequent studies,
however, did not demonstrate a statistically significant association between SAH and PCa
incidence [16]. On the other hand, a significant relationship between arterial SAH, advanced PCa
and the risk of biochemical recurrence was demonstrated [92–95]. It has also been showed that
patients with PCa with SAH and overweight had a significantly lower survival time than control
subjects [94]. Preclinical evidence showed that the use of Beta Blockers could affect PCa progression;
in particular, sympathetic nerve stimulation was able to induce metastases in prostate tumor models
and the administration of beta blockers was capable to prevent the effect of adrenergic stimulation on
the promotion of metastases [96,97]. The main mediator of these effects was the β-adrenergic receptor,
which was also implicated in the tumor-immune system response [98]. Moreover, recent clinical trials
confirmed these findings in humans by demonstrating that the use of Beta Blockers was associated
with reduced mortality in patients with high-risk or metastatic PCa at the time of diagnosis [99,100].
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3.2. Personal Experience

3.2.1. Obesity and Aggressive Prostate Cancer

In our experience, similar to the most recent literature, we showed that obesity was associated,
both individually and in combination with cardiovascular risk factors, with aggressive PCa. A reverse
association was instead observed between obesity and non-aggressive PCa, at initial diagnosis [101].
In particular, obese patients with early PCa had a higher risk of developing high-grade PCa compared to
non-obese patients with PCa [101–103]. Several hypotheses could explain the association between obesity
and high-grade PCa. The literature suggested that obesity could be associated with biological changes
(e.g., inflammation, insulin resistance, angiogenesis, cell migration) and modification of adipokine levels
related to aggressive tumor phenotype. It had also been reported that Adiponectin was involved in the
regulation of metabolic homeostasis (in particular regulation of glucidic and lipid metabolism), inhibition
of inflammation, atherogenesis, angiogenesis and cell migration [104–106].

Adiponectin levels were reduced in obesity, coronary heart disease and tumors such as PCa,
with a negative association with histology and cancer stage [76,107]. In vitro, adiponectin inhibited
cell growth and proliferation in the prostate, while in androgen-independent cancer tumor cells
antagonized the proliferative effects of leptin and IGF-1 [85].

Leptin act directly on prostate cancer cells by affecting steroid activity, cell cycle regulation,
and insulin activity [108]. In particular, Leptin increased lipolysis, insulin sensitivity, inflammation and
thromboembolism [104]. It influenced cellular differentiation and cancer progression, cell migration,
tumor angiogenesis and promoted advanced PCa through induction and activation of pro-angiogenic
factors [78,85,86,109,110].

It was hypothesized that low adiponectin levels and high levels of leptin and resistin observed
in obese patients could be involved in prostate cancer aggressiveness. Recent studies confirmed
these hypotheses, showing that high levels of leptin could be correlated with a worse grade and
tumor stage, while high levels of adiponectin were associated with a less aggressive tumor grade and
stage [78,81,111]. This suggests that low levels of adiponectin and high levels of leptin observed in
obese patients could be related with the development of high-grade PCa.

In vitro studies confirmed these results showing that specific genetic polymorphisms in leptin
and adiponectin as their receptors were associated with PCa proliferation and progression, through
increased inflammation, angiogenesis, worse pathological grade, metabolic syndrome, closely
associated with aggressive PCa [111–113].

3.2.2. Obesity, Diabetes Mellitus and Aggressive Prostate Cancer

Obesity was a well-known risk factor for DMII. Since obesity was a factor involved both in
the development of DMII and in the aggressive PCa, we analyzed the possibility of an association
between DM and aggressive PCa hormone-naïve and demonstrated that DMII was associated with
high-grade PCa, but only in obese subjects [101]. These observations agreed with the data reported
in recent studies and suggested that DMII could be associated with aggressive PCa, but only in
patients with concomitant obesity, whereas DMII wasn’t associated with high-grade PCa in non-obese
patients [23,31,114]. Recent data from 119315 subjects with DM in order to examine the relationship
between Metformin exposure and PCa risk indicate that there is no association between the use of
Metformin and PCa respect to tumor grade [115]. However, the effects of antidiabetic agents in PCa
development, aggressiveness and progression remain unclear. Specifically, the literature reports a
conflicting relationship between the use of Metformin and PCa, demonstrating a reduced or increased
risk or no association [116–123]. It is possible to hypothesize that a combination of biological factors
may be responsible for the discrepant association between DMII and high-grade PCa. The link
between obesity, DMII and PCa may be related to insulin resistance, hyperinsulinemia, reduced
IGFBP (Insulin-like Growth Factor Binding Proteins), increased bioavailability of IGF-1 (Insulin-like
Growth Factor-1), steroid hormones (reduced levels of androgens, increased estrogen Levels)
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and inflammatory markers [124–126]. In particular, hyperinsulinemia promoted prostatic cancer
aggressiveness and progression [127]. In addition, insulin secretory capacity was higher in obese
patients with DMII than non-obese patients with DMII [125]. DMII and obesity were associated with
low serum testosterone levels and increased estrogen levels, correlated with high-grade PCa [23].
Some reports have suggested that low levels of testosterone were associated with aggressive PCa,
inadequate treatment after radical prostatectomy, high-grade PCa (Gleason Score 8–10) and locally
advanced prostate cancer (pT3 and pT4) [128–131]. These observations suggest a possible role of sex
steroid hormones in the contribution of obesity and DMII in high-grade PCa.

Systemic inflammation can also contribute to increased tumor aggressivity in obesity and DMII.
DMII and obesity are in fact inflammatory conditions associated with increased cytokine production
such as Tumor necrosis factor (TNFα), Interleukin (IL) 6 and IL8 [132]. These cytokines stimulate
the Nuclear Factor KappaB pathway (NF-kB), directly related to lymph node invasion and
androgen-independent progression in PCa [133,134]. We have previously reported an important role
of inflammation and the immune system as regulators of physiology and pathology of PCa [101,134].
Chronic inflammation and oxidative stress associated with both DMII and obesity could thus contribute
to PCa development and progression [135,136].

3.2.3. Systemic Arterial Hypertension, Dyslipidemia and Aggressive Prostate Cancer

We analyzed the association between arterial hypertension and PCa in patients with PCa hormone
naïve both at the initial diagnosis [103] and in the advanced metastatic phase [137]. We showed that
the presence of arterial hypertension and obesity were significantly associated with aggressive PCa
(OR 2.84, p < 0.05). In non-obese patients, however, no relationship was established between high
blood pressure and PCa.

Previous studies have analyzed the association between arterial hypertension and PCa, but the
results were conflicting, demonstrating either reduced risk or a positive association [93,138–140].
Similarly, the use of antihypertensive drugs as beta-blockers was linked to both decreased risk of
PCa and cancer mortality as well as to an increased risk of PCa progression and death, showing
inconclusive results [100,141–143].

Pathogenetic mechanisms that potentially link obesity and hypertension to PCa aggressivity
are not known. It is possible to hypothesize that the link between obesity, arterial hypertension
and aggressive PCa has a close relationship with common biological mechanisms such as insulin
resistance, hyperinsulinemia and inflammation [144]. Chronic inflammation, reactive oxygen species
and the oxidative stress associated with both hypertension and obesity could contribute to tumor
progression [145–147]. In our experience, a statistically significant association between arterial
hypertension and advanced metastatic PCa was demonstrated with an OR of 4.5. In the same
study we also found that hypercholesterolemia, particularly high levels of total cholesterol and
LDL-C, were significantly associated with aggressive metastatic PCa with an OR of 3.28 [137]. Recent
studies indicated that hypertension, hypercholesterolemia, atherosclerosis, and a composite score of
metabolic factors were associated with advanced PCa, biochemical recurrence and increased tumor
mortality [28,93,139,148–151], as shown in Figure 2.

In our experience and consistent with these studies, we first highlighted a significant association
between arterial hypertension (in particular systolic arterial hypertension), hypercholesterolaemia
and coronary and carotid vascular disease in patients with advanced PCa and concomitant bone
metastases [136].
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Figure 2. Reciprocal relationship between prostate cancer and cardiovascular disease. Common risk
factors link prostate cancer and cardiovascular disease. It is possible to hypothesize that this relation
has a direct association with common metabolic components as obesity, dyslipidaemia, systemic
arterial hypertension, glucose intolerance, recent type II diabetes mellitus, metabolic syndrome,
atherosclerosis. These factors are associated with Insulin Resistance, hyperinsulinemia, oxidative
stress, inflammation and precocious vascular damage and are related to advanced prostate cancer, bone
metastases, biochemical recurrence and increased tumor mortality.

If confirmed in larger studies, our research suggests that hypertension, hypercholesterolemia and
atherosclerosis could be considered as “New Players” in advanced metastatic PCa and confirm common
etiopathogenetic mechanisms, as shown in Figure 3. A study by Thysel et al., analyzed metabolites
associated with PCa metastases and in particular identified high levels of cholesterol in bone metastases.
The authors proposed that prostate cancer cells synthesize cholesterol de novo as well as the involvement
of this metabolite through the surrounding environment [152], as shown in Figure 1.Medicina 2019, 54, x FOR PEER REVIEW  9 of 19 
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3.2.4. Metabolic Syndrome and Aggressive Prostate Cancer

The metabolic syndrome (MetS) is characterized by a cluster of comorbidities as visceral obesity,
hyperglycemia, systemic arterial hypertension and dyslipidaemia. Epidemiological Studies showed
conflicting results on the association between MetS and aggressive PCa [153–156].

Overall a lower survival time, shorter time to castration-resistant Pca, increased prostate
cancer-specific mortality, and biochemical recurrence were related to MetS [153,157].

Our group firstly investigate the association between MetS and high-grade PCa without the
influence of endocrine therapy, showing a significant relationship between MetS and aggressive PCa at
initial diagnosis (OR 1.87, p < 0.05) and a reduced risk of low-grade PCa (OR 0.53, p < 0.05). Moreover,
fasting glucose, triglycerides, waist circumference, systemic arterial hypertension were significantly
associated with high-grade PCa [158].

The metabolic alterations, chronic inflammation, oxidative stress associated to MetS may
contribute to PCa progression causing a chronic inflammatory condition that predisposes to aggressive
and metastatic PCa [145–147].

3.2.5. Hormone-naive Prostate Cancer and Vascular Damage

Epidemiological studies showed that cardiovascular disease is one of the major causes of death
in patients with PCa (30%) [159–161]. In our experience we analyzed the relationship between PCa
hormone-naive and carotid and coronary vascular disease, both at initial diagnosis of PCa [102,162]
and metastatic cancer [136]. In particular, we showed a significant association between bone metastases
and vascular pathology in advanced metastatic PCa with an OR of 3.8.

Consistent with our results, it was shown by Zoller et al. that the risk of coronary artery disease
augmented in the first 6 months after the diagnosis of cancer and in the specific case of PCa this risk
remained high for over 10 years. Furthermore, the risk of coronary artery disease was correlated
with the presence of metastases and cardiovascular risk factors [163]. Moreover, we found that 23%
of patients with hormone naïve localized PCa presented carotid vasculopathy (OR 2.43, p < 0.05),
whereas 17% of patients had a history of symptomatic coronary artery disease (OR 1.88, P < 0.05).
However, a limited number of studies explored the relationship between atherosclerotic vascular
disease and PCa. Some studies showed no association between atherosclerotic disease and PCa; while
others, similarly to our results, documented a possible relationship [164–167]. Consistent with our
research in a large prospective study, a high prevalence of cardiovascular risk factors and cardiovascular
disease (27%) has been demonstrated in PCa before ADT has begun. In particular, 19% and 8% of
patients had cardiac ischemic disease and cerebrovascular disease, respectively [168]. Similarly, in the
study REDUCES, the presence of coronary artery disease was associated with an increased risk of PCa
by 35% [169]. Similar results were obtained from Stamatiou et al. in an autopsy study, as evidenced
by the fact that patients with PCa had a greater risk of developing advanced coronary artery disease
than those without PCa [166]. Although there are no other studies that have assessed the presence of
carotid vascular damage in patients with PCa hormone naïve at initial diagnosis, the results of our
research are also consistent with a prospective study of Pereira et al. which showed that myointimal
carotid thickness was high at baseline in patients with PCa. In addition, another endothelial damage
marker, represented by VCAM-1 levels, was reduced in PCa patients after radiotherapy.

The authors hypothesize that the inflammatory process associated with neoplasia may have been
reduced with the treatment, despite the potential adverse effects of irradiation on vascularization.

It has been widely accepted in international literature that cancer cells can cause inflammatory
conditions characterized by high levels of inflammatory biomarkers such as reactive protein C,
prostaglandins, adhesion molecules, etc. [134,170,171]. If confirmed in other studies, the results
of our research suggest that CAD and CVD may represent new risk factors in PCa and suggest
common etiopathogenetic factors.

Atherosclerotic cardiovascular pathology and PCa could share common
etiopathogenetic mechanisms. Therefore, we hypothesized that they could be present in patients with
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PCa from initial cancer diagnosis even in the absence of hormone therapy [162] and could be associated
with subsequent phases of PCa progression to a more aggressive and metastatic phenotype [102,137].
Since inflammation was a factor that accompanies both atherosclerosis and activation of hemostasis
and tumor pathology, a possible relationship between inflammation, PCa, hemostatic activation
and vascular damage has been hypothesized. Based on this hypothesis, therefore, effective tumor
treatment could reduce tumor volume, associated inflammation, hemostatic activation and hence the
risk of vasculopathy [163].

4. Conclusions

Recent literature and our research showed that metabolic alterations and coronary and carotid
vascular disease influenced aggressive and metastatic PCa. Therefore, a careful evaluation of
cardiovascular risk factors should be carried out from the initial diagnosis of PCa, in particular
focusing on risk factors such as obesity, arterial hypertension and dyslipidaemia, together with a
careful evaluation of the concomitant presence of cardiovascular disease.

Overall, the results of our research add further motivation to control metabolic factors in PCa from
initial cancer diagnosis, even in the absence of hormone therapy, in order to reduce cardiovascular
risk and tumor progression. In addition, our results suggest that increased oxidative stress and a
permanent inflammatory state may predispose to a more aggressive and metastatic tumor phenotype.
Metabolic alterations can in fact create a favorable environment for tumor progression and cause an
inflammatory state that predisposes to vascular disease and PCa.

On the other hand, chronic inflammation and oxidative stress associated with metabolic damage
and atherosclerosis may also contribute to tumor progression, causing premature vascular and
prostatic damage.

The metabolic and cardiovascular profile evaluation at initial diagnosis of PCa, particularly
dyslipidemia, glucose intolerance, obesity, metabolic syndrome, might be used to discover new
markers for PCa monitoring and more importantly to identify novel personalized integrative therapies
targeting critical metabolic changes that sustain proliferation, migration, and invasion of PCa cells.
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