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Abstract: Ligand-activated plasma membrane receptors follow pathways of endocytosis through the
endosomal sorting apparatus. Receptors cluster in clathrin-coated pits that bud inwards and enter the
cell as clathrin-coated vesicles. These vesicles travel through the acidic endosome whereby receptors
and ligands are sorted to be either recycled or degraded. The traditional paradigm postulated that the
endocytosis role lay in signal termination through the removal of the receptor from the cell surface.
It is now becoming clear that the internalization process governs more than receptor signal cessation
and instead reigns over the entire spatial and temporal wiring of receptor signaling. Governing the
localization, the post-translational modifications, and the scaffolding of receptors and downstream
signal components established the endosomal platform as the master regulator of receptor function.
Confinement of components within or between distinct organelles means that the endosome instructs
the cell on how to interpret and translate the signal emanating from any given receptor complex into
biological effects. This review explores this emerging paradigm with respect to the cancer-relevant
insulin-like growth factor type 1 receptor (IGF-1R) and discusses how this perspective could inform
future targeting strategies.

Keywords: insulin-like growth factor type 1 receptor; insulin receptor; RTK; GPCR; internalization;
endocytosis; endosome; biased signaling; ubiquitination; β-arrestin

1. Introduction

Inter-cell communication is at the very heart of organism function. As our single-celled ancestors
evolved to more and more complex organisms, the development of more specialized, specific,
and fine-tuned cellular signaling tools was essential. Many of these long-evolved core systems that
control cell survival/growth homeostasis are seized upon in the initiation and the maintenance of the
malignant phenotype [1]. Among them, the receptor for the insulin-like growth factor 1 (IGF-1R) is one
of the most evolved tools. The IGF-1R, the insulin receptor (IR), the insulin-related receptor (IRR) [2],
and the most recently added IR/IGF-1R hybrid receptor [3,4] share a common ancestor that can be

Cells 2019, 8, 1223; doi:10.3390/cells8101223 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0002-7786-112X
http://www.mdpi.com/2073-4409/8/10/1223?type=check_update&version=1
http://dx.doi.org/10.3390/cells8101223
http://www.mdpi.com/journal/cells


Cells 2019, 8, 1223 2 of 23

traced back 600 million years [5–7]. This primordial receptor was activated by only one ligand yet
orchestrated multiple cellular functions from cell growth and metabolism to proliferation and survival.
Somewhere along the evolutionary timeline towards mammals, both the primordial receptor and its
singular ligand sustained a series of duplications that led to the development of several specialized
receptors and ligands within the insulin/insulin-like growth factor (IIGF) family [8,9]. In mammals,
the IR preferentially binds insulin and is involved in the regulation of cellular metabolism. The IGF-1R
preferentially binds IGF-1 and IGF-2, although it can also be activated by insulin, and is implicated
mostly in cellular proliferation, differentiation, and survival.

Considering the IGF-1R’s key roles in fundamental biological processes, it is not surprising that
it is frequently found to be hijacked by awry oncogenic processes [10–12]. Extensive experimental
and epidemiological studies have thoroughly documented the link between malignancy and IGF-1R
across the majority of human cancer types. Not only is IGF-1R expression necessary for malignant
transformation by numerous major oncogenes, but receptor inhibition (either by suppressing expression
or activation) has been shown to lead to tumor cell growth inhibition [13–15]. As such, the IGF system
has emerged as an obvious target for cancer therapy, fueling development of several anti-IGF-1R drugs
and subsequent clinical trials [16–19]. In light of the structure-centered classification of the IGF-1R
as a receptor tyrosine kinase (RTK) (for extensive review, see [11]) early in the drug development
phase, inhibition of its kinase signaling was deemed the best anti-cancer strategy. To achieve this
goal, several small-molecule kinase inhibitors and agents preventing ligand–receptor interaction were
developed (Table 1) [20,21]. Most of the kinase inhibitors were soon abandoned, as they interfered with
cell metabolism by also inhibiting the IR. Within the category of agents preventing ligand–receptor
interaction, quite a few anti-IGF-1R antibodies were developed, and their efficacy tested in cell systems
by using receptor phosphorylation as the main read-out. The most effective in preventing IGF-1R
auto-phosphorylation were selected to be tested in clinical settings, yet in spite of promising preclinical
data, clinical trials did not deliver the expected results [19,22,23]. This failure has led the field to
question: is the inconsistency between outcomes in clinical and experimental settings a result of drug
ineffectiveness or ultimately the wrong target? [10,17,19,22].

It was proposed more than a decade ago that IGF-1R downregulation (i.e., removal of the receptor
from the cell surface) was a pre-requisite for any knock-on anti-neoplastic effects [13,24,25] and hence,
the concept of receptor downregulation began to look more and more like the missing piece of the
IGF-1R targeting puzzle. In this review, we examine IGF-1R downregulation and endocytosis as related
to the rise and fall of IGF-1R targeted cancer therapy [22].
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Table 1. Effect of IGF-1R targeting on receptor signaling and downregulation.

Compound

IGF-1R Downstream Signaling

IGF-1R
Downregulation

β-arr
SignalingpIGF-1R

pAKT pERK

Original
Report Follow up Original

Report Follow up

IGF-1R Monoclonal Antibodies

Cixutumumab
(IMC-A12) ↓ [20] ↓ [20] ↓ [20] ↓ [26] Yes [20]

Teprotumumab
(R1507) ↓ [21] ↓ [21] → [21] ↑ [27] Yes [21] β-arr1 [27]

Dalotuzumab
(MK-0646) ↓ [28] NI ↓ [29,30] NI → [30,31] Yes [28,30]

Ganitumab
(AMG 479) ↓ [32] ↓ [32] NI → [33] Yes [32]

Robatumumab
(SCH717454) ↓ [34] ↓ [34] ↓ [34] ↓ [35] Yes [34]

AVE1642
(EM164) ↓ [36] ↓ [36] ↓ [36] → [37] Yes [36]

Figitumumab
(CP-751) ↓ [38] ↓ [38] NI ↑ [39]

→ [40] Yes [38] β-arr1 [39]

αIR3 ↓ [41] NI ↓ [42] NI ↓ [43]
↑ [44] NI

Tyrosine Kinase Inhibitors

BMS-536924 ↓ [45] ↓ [45] ↓ [45]

OSI-906
(linsitinib) ↓ [2] ↓ [2] ↓ [2] ↓ [46] NI

AXL1717
(PPP) ↓ [47] ↓ [47] ↓ [47] ↓ [48]

↑ [49] Yes [50] β-arr [49]

BMS-754807 ↓ [51] ↓ [51] ↓ [51] ↓ [52] NI NI

AG-1024
(Tyrphostin) ↓ [53] NI ↓ [54] NI ↓ [55] NI NI

NVP-AEW541 ↓ [56] ↓ [56] ↓ [56] ↓ [57,58] NI NI

KW-2450 ↓ [59] ↓ [59] ↓ [59] NI NI

NI: Not investigated; ↓: inhibition; ↑: activation;→: no changes; β-arr: β-arr signal.

2. Receptor Internalization: The RTK Route

RTK endocytosis, i.e., the internalization and the trafficking of receptors inside the cell, was long
believed to solely serve to terminate RTK signaling. However, more recent studies have demonstrated
that RTKs actually continue to signal along the endocytic pathway. Hence, it is acknowledged today
that the endocytic platform acts more as a master-regulatory device governing the spatio-temporal
signaling, the distribution, and ultimately the biological outcome.

Plasma membrane receptors start their life-span synthesized in the endoplasmic reticulum and are
then transported through the Golgi apparatus and delivered to the plasma membrane. Here, mature
receptors accumulate, primed for their function to sense the extra-cellular environment. Eventually,
plasma membrane receptors undergo endocytosis (internalization), by which they re-enter the cell,
pass through the acidic endosomal system, and are processed for either recycling (returned to the
plasma membrane) or undergo lysosomal or proteosomal degradation. Some degree of basal turnover
is likely to go on with all receptors, which is thought to maintain receptor homeostasis at the plasma
membrane. Some receptors internalize independently of a ligand (e.g., the transferrin receptor) [60–62];
however, receptor internalization is primarily ligand-dependent. Constitutive (ligand-independent)
receptor endocytosis is a slow process and occurs at a similar rate to other membrane proteins [63].
Altogether, the rates of constitutive internalization, recycling, and degradation determine the half-life
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of an RTK and can vary greatly depending on receptor, cell type, and patho-physiological condition.
For example, the half-life of the colony stimulating factor 1 receptor (CSF-1R) in macrophages is less than
1 h [64,65], whereas for the epidermal growth factor receptor (EGFR) in carcinoma cells, it is 24 h [66].
The IIGF family receptors are likely somewhere in the middle, with estimates around 6–7 h [67].
Canonical internalization of RTKs occurs after the binding of their respective ligands. Ligand binding
causes auto-phosphorylation of the RTK intracellular tyrosine kinase domain as well as activation
of the internalization signals (e.g., the conjugation of ubiquitin), allowing recruitment of adaptor
molecules for the endocytosis machinery. For this reason, RTK internalization is often recognized
as being coupled to kinase activation; ligand binding initiates both processes, greatly intensifying
internalization rates, and is ultimately responsible for the downregulation of RTK populations [68–70].

2.1. Receptor Ubiquitination

Originally believed to serve as a label for protein degradation, it is now well accepted that
the ubiquitin tagging of receptors serves as a sorting signal that directs subcellular trafficking.
Ubiquitination is the covalent attachment of a 7 kDa ubiquitin polypeptide to lysine residues of
a target protein. This process is orchestrated by the sequential action of E1, E2, and E3 ligase
enzymes [71]. E1 and E2 load E3 with the ubiquitin, and E3 transfers it to the target protein and hence
provides substrate specificity [72]. Proteins can be mono-ubiquitinated (addition of a single ubiquitin
moiety), multi-ubiquitinated (at multiple lysine residues), or poly-ubiquitinated (addition of ubiquitin
chains) [73,74]. Poly-ubiquitination can occur in a straight chain or branched, depending on which of
the lysine residues within one ubiquitin molecule the subsequent ubiquitin molecule is attached to.
Old or damaged cytosolic proteins are labeled with a poly-ubiquitin chain, which is then recognized
and degraded by the proteasome constructed of multi-subunit proteolytic enzymes situated in the
cytoplasm. In addition to the degradation of cytosolic proteins, ubiquitination tagging serves as a
barcode to dictate the trafficking and the ultimate fate of the RTK through endosomal sorting. All major
RTK subtypes are ubiquitinated upon growth factor stimulation. They can be mono-ubiquitinated or
poly-ubiquitinated, and the type of modification regulates their ensuing fate [11,74].

Ubiquitin conjugation sites have been mapped within the IGF-1R, and mutational analysis
studies have characterized their roles in subcellular trafficking [11,69,75,76]. Sepp-Lorenzino et al. [77]
described IGF-1R degradation by a proteasome-mediated route in order to explain Herbymicin
A-induced IGF-1R downregulation. Herbymicin A promoted IGF-1R degradation only in the presence
of a functional ubiquitin E1 enzyme. Further, its action was prevented by proteasome inhibitors
but insensitive to lysosomal inhibitors. Since then, four distinct E3 ubiquitin ligases have been
recognized to promote IGF-1R ubiquitination and its subsequent degradation: Mdm2 [76], Nedd4 [78],
c-Cbl [79], and HRD1 [80]. This complexity suggests a function-dependency to the ubiquitination
processing [68]. The majority of reports thus far indicate that ubiquitination of the IGF-1R is mostly a
ligand-dependent process—stimulation with IGF-1 rapidly induces receptor ubiquitination (within
5 min) with subsequent endocytosis. This can be seen on a receptor population level after about 6 h as
detectably lower IGF-1R expression levels in whole cell lysates [69,79]. To unpick the interplay between
the E3 ubiquitin ligases, Sehat et al. reported that low doses of IGF-1 (5 ng/mL) led to Mdm2-mediated
ubiquitination, whereas high doses (50–100 ng/mL) led to c-Cbl-mediated receptor ubiquitination [79].
Mechanistically, Mdm2 and c-Cbl are RING-type E3 ligases, making them capable of acting alone,
whereas Nedd4 is a HECT E3 ubiquitin ligase. However, it has been demonstrated that Mdm2 and
Nedd4 bind the IGF-1R via the adaptor proteins β-arrestin [81,82] and Grb 10 [83], respectively. Such
additional control layers suggest that the adaptor proteins may determine substrate specificity [68].

The placement and the arrangement of ubiquitin molecules encodes instructions for further
receptor processing. Mdm2 has been shown to attach K63-conjugated ubiquitin chains, whereas c-Cbl
attached K48-conjugated ubiquitin chains [79]. This divergence can then be followed in the subsequent
internalization routes and receptor fate [68].
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2.2. Clathrin-Dependent and Independent Receptor Internalization

Ubiquitinated receptors are brought back into the cell via the formation of pits, which burrow
inwards from the plasma membrane. Upon ligand activation, many RTKs are found to localize to
clathrin-coated pits [84–86]. Internalization can be blocked by chemical inhibitors of clathrin and small
interfering RNAs (siRNA) against clathrin heavy chain. Such studies conclude clathrin-mediated
endocytosis to be the predominant internalization route for this receptor family. Proteins that contain
ubiquitin-interacting motifs (UIMs), such as epsin and Eps15, scaffold the receptor to components of
the clathrin coat, e.g., AP-2 (appendage domain) as well as the terminal domain of clathrin heavy chain.
In this way, clathrin coat components entrap their activated-RTK pit cargo. In the most well studied
example, the EGFR–ligand complex can be detected in clathrin-coated vesicles 2–5 min after EGF
stimulation [87–90]. Rate elucidation studies have demonstrated that clathrin-mediated endocytosis is
the fastest pathway but can become saturated if a large number of receptors are activated. In such
cases, a slower clathrin-independent endocytosis contributes significantly [91]. This is evidenced
in that siRNA against clathrin considerably impairs EGFR internalization only when low EGF is
used [92]. Similar domains and pathway compensations were then reported for both the IR and the
IGF-1R [79,93,94]. Clathrin-independent pathways are of two main types; early studies described a
macropinocytosis-like process involving actin cytoskeletal rearrangements and membrane ruffling [87].
It is worth noting that studies have shown IGF-1R modulation by elements of the adhesion-associated
protein complexes, including the discoidin domain receptor 1 (DDR1) [95], a non-integrin collagen RTK,
and the non-receptor tyrosine adhesion kinase FES-related (FER) [96], meaning that the extracellular
matrix and the adhesion signaling also contribute to IGF-1R subcellular trafficking. The second route
is defined through its sensitivity to inhibitors of caveolae and cholesterol-disrupting agents [79,92,97].
Confocal microscopy with immuno-fluorescent localization demonstrates that the IGF-1R can localize
with both the lipid raft caveolar marker tyrosine phospho-caveolin-1 (pY14) and also the early endosome
marker EEA-1, meaning it can be internalized via both clathrin-dependent or clathrin-independent
(caveolar) routes [79]. Aligning with context-dependent ligase recruitment, co-localization of the IGF-1R
with phospho-caveolin occurs at high IGF-1 doses (100 ng/mL) and is enhanced by c-Cbl overexpression
and decreased by Mdm2 overexpression. On the other hand, IGF-1R/clathrin co-localization occurs
at low IGF-1 (5 ng/mL) doses and is enhanced by Mdm2 overexpression and inhibited by c-Cbl
overexpression [79]. One possible scenario is sequential ligase action, with Mdm2 predominance at
physiological ligand concentrations followed by c-Cbl at higher ligand concentrations that saturate the
clathrin-dependent internalization route [69,79]. This plethora of E3 ligases and receptor processing
ultimately ensures flexibility to IGF-1R function for specific cellular needs.

After internalization of the receptor–ligand complex, the next steps involve the turnover of
components. Using selective inhibitors and mutational studies, the sorting mechanisms begin to
be pieced together. Members of all RTK subfamilies undergo this agonist-triggered accelerated
lysosomal/proteasomal degradation, and therefore ligand-dependent global receptor downregulation
is a hallmark of this receptor family. Overall, a lysosomal inhibitor has a much greater impact
on wild-type IGF-1R degradation than a proteasome inhibitor, indicating that the IGF-1R is
predominantly degraded through the lysosome and less by proteosomal action. It is, of course,
feasible that part of the receptor is degraded via the proteasome and part is degraded lysosomaly.
ATP-deficient mutants are not degraded at all, supporting the model of ligand-dependency and/or
phosphorylation requirement [10,69,79]. In addition, the C-terminal tail of the receptor is a requirement
for ubiquitination—a receptor that is functional in kinase activity but harbors a c-terminal tail
truncation cannot be ubiquitinated [10,69,79,81,83,98,99]. Increasing the complexity of the system,
ubiquitin-mediated control goes beyond the receptor to its docking station (e.g., IRS) and downstream
signaling effectors [100]. The layers of regulation imposed upon the IGF-1R’s intracellular journey by
ubiquitination were recently extensively reviewed in [68].



Cells 2019, 8, 1223 6 of 23

2.3. Subcellular Receptor Trafficking

Clathrin-dependent and -independent endocytosis both deliver receptor–ligand cargo to early
endosomes located in the cell periphery. In most cases, the receptor–ligand complex remains intact,
although the ligand can dissociate in the acidic environment of the endosome. In such cases, the released
ligands are contained in the vesicular part of the endosome, whereas unoccupied receptors congregate
in tubular extensions (membrane area) [63].

From this point, receptors can rapidly recycle back from early endosomes to the plasma membrane
in a process known as back fusion. As the early endosome matures and moves towards the peri-centriolar
region, its biochemical composition changes with increasing luminal acidification. The membrane
invaginates inwards to create intra-luminal vesicles (ILVs), at which point the endosome is referred to
as a multi-vesicular body (MVB) [101]. At this level, membrane invaginations have shifted the RTKs
into the intra-luminal vesicles. If destined for recycling, RTKs can also be delivered to Rab11-containing
recycling compartments; however, this is generally a slower route (30–60 min) than back fusion from
earlier endosomes (2–5 min) [102]. As endosomal maturation continues, recycling cargo and early
markers such as Rab5 and EEA1 are lost, and late endosomal markers such as Rab7 enrich [103].
Late endosomes fuse with primary lysosomes, and RTKs that reach this point are degraded by
proteolytic enzymes. It is worth noting that many studies in this field do not dissociate recycling from
degradation, and therefore reported rate alterations are likely composite images of changes in the
relationship between the two intertwined. The specific contribution of receptor recycling on expression
levels is rarely considered for the RTK family. However, one study does attribute considerable recycling
to the IR system [104].

Another fate of the endocytosed RTK is the fusion of MVBs with the plasma membrane and
the release of its contents as “exosomes”. Discovered in the context of removal of the transferrin
receptor [105] during maturation of reticulocytes and termed “selective externalization”, this process
has now been demonstrated for many physiological and pathological instances/cargo. Many RTKs
have been reported to be released by cells in this way, including EGFR [106–109], IGF-1R [110,111],
and MET [112]. The intricacies of how this mediates inter-cellular signaling and expands the signal
profile of RTKs are just starting to be understood. Research has intensified in this area due to the
discovery that cancer cells upregulate exosome production, and their cargo can have cancer-promoting
effects on recipient cells. For example, exosomes released from melanoma cells that carry MET educate
bone marrow progenitor cells towards a pro-metastatic phenotype [112].

RTKs and their endosomal sorting machinery were heavily investigated in close association with
their kinase activity and due to their involvement in oncogenesis. Yet, over the last two decades,
experimental, clinical, and epidemiological data clearly demonstrate that RTKs operate in a close
relationship with the larger super-family of G protein-coupled receptors (GPCRs) in a wide range of
physiological and pathological processes. The GPCR family has its own trafficking process orchestrated
by the β-arrestin/G protein-coupled receptor kinase (GRK) system. The more knowledge we garner
in this context demonstrates that the cross-talk between the two receptor systems goes beyond
transactivation to the very heart of GPCRs’ internalization machinery [10,23,113–115].

3. Receptor Internalization: The GPCR Route

GPCRs, also known as 7 transmembrane domain receptors, comprise the largest family of cell
surface receptors in mammalian cells. They are functionally much more diverse than the RTKs,
spanning nearly every physiological process in the human body from nerve transmission to hormone
signaling [116,117]. As evidence to their critical roles in controlling physiological and pathological
processes, at least a third of the drugs approved within the last decades target GPCRs [116,118–120].
Yet, in spite of their dominance in the drug discovery field, a rather small fraction have anti-neoplastic
indications—only 4.4% of the drugs on the market (21/475 in 2017) and 7.1% of the agents presently
investigated in clinical trials (23/321 in 2017) [116]. They receive relatively minor attention when
compared to the small-scale family of RTKs, of which targeting agents with cancer indications are



Cells 2019, 8, 1223 7 of 23

approved every year. For instance, in 2015, there were 21 approved drugs only in the category
of small molecule tyrosine kinase inhibitors, while many more were evaluated in advanced-phase
clinical trials [121]. The number of studies assigning GPCR roles in oncogenesis is growing rapidly in
recent years; therefore, it may be reasonable to claim that GPCRs’ current position in anti-cancer drug
development is just the tip of the iceberg and that their therapeutic potential is narrowly exploited.

Despite the staggering diversity of extracellular signals that they respond to, mechanistically, GPCRs
share remarkably similar machinery for signaling activation and receptor trafficking [11,113,114,122,123].
The classical paradigm (Figure 1A) describes GPCRs carrying out a six-phase functional journey,
including G protein signaling activation and GRK-dependent phosphorylation of serine residues
of the receptor, which triggers β-arrestin recruitment with subsequent receptor desensitization,
internalization/trafficking, and a second signaling wave [11,81,124–127].
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Figure 1. IGF-1R as a receptor tyrosine kinase (RTK)/G protein-coupled receptors (GPCR) functional
hybrid model. (A) Classical mechanism of signaling activation and receptor trafficking of GPCRs:
(1) Ligand-binding induced receptor activation leads to GDP exchange for GTP on the G protein
α subunit, resulting in the dissociation into Gα and Gβγ subunits. G protein subunits then
interact with second effector proteins to promote several downstream pathways. (2) The increased
concentration of Gβγ subunits initiates G protein-coupled receptor kinase (GRK) recruitment.
(3) GRKs phosphorylate the receptor at c-terminal serine/threonine residues, recruiting β-arrestins.
(4) β-arrestins bind to the phosphorylated receptor, preventing G protein coupling and impeding
further G protein signaling. (5) The receptor becomes desensitized and is internalized and trafficked
through recycling or degradation pathways. (6) By acting as a scaffold, β-arrestin initiates a second
wave of downstream signaling [mitogen-activated protein kinase (MAPK) is illustrated]. (B) IGF-1R
shares GPCR functionality in signaling and trafficking: (1) The ligand-activated IGF-1R facilitates G
protein subunit dissociation and subsequent downstream G protein signaling. In parallel, receptor
autophosphorylation activates classical kinase signaling. (2) GRKs phosphorylate the receptor at C
terminal serine residues. (3) β-arrestins are recruited, which (4) prevents further G protein coupling and
initiates the desensitization and the internalization of the receptor. (5) Once internalized, the receptor
is directed for recycling or degradation. (6) β-arrestins control the activation of secondary wave of
kinase-independent signaling.

3.1. G Protein Signaling

Unlike RTKs, GPCRs lack intrinsic catalytic activity and therefore rely on the interaction with their
namesake G proteins for signaling activation. Ligand-binding to the GPCR induces conformational
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change within the receptor that promotes the coupling of heterotrimeric G proteins. The active receptor
catalyzes the exchange of GDP to GTP on the G protein α subunit (Figure 1A) [128]. The heterotrimeric
G proteins use this additional energy to dissociate into Gα and Gβγ subunits [129], thus triggering the
classical “G protein signaling pathway”. Both effectors interact with downstream proteins to initiate
several signaling branches, including the mitogen-activated protein kinase (MAPK) cascade, cyclic
adenosine monophosphate (cAMP), Phosphoinositide 3-kinase (PI3K)-Akt, and protein kinase A (PKA)
(Figure 1A) [127,130]. This activity continues until the system initiates negative feedback to turn off

signaling (G protein desensitization). One such feedback determinant, increased Gβγ concentration,
triggers GRKs recruitment to the vicinity of the activated receptor, commencing the “turning off”
process. G protein desensitization occurs because the GRK-mediated phosphorylation event promotes
the enrollment of a family of proteins known as β-arrestins to the receptor, which physically interrupt
the receptor-G protein coupling [123,131].

3.2. GRK/β-arrestin-Dependent Receptor Desensitization

The first GRK isoforms were discovered almost half a century ago, when proteins capable of
desensitizing the rhodopsin photoreceptor and the β2-adrenergic receptor via phosphorylation were
identified [132–135]. The human genome encodes seven GRK isoforms (GRK1–GRK7); GRK2/3/5/6
are ubiquitously expressed in all tissues, while GRK1/4/7 show specific expression [136]. All isoforms
phosphorylate unique serine and threonine residues of the intracellular domains (third cytoplasmic
loop) and/or the C-termini of activated receptors [131,137]. GRKs’ kinase domain active structure is
stabilized by the docking interaction with the agonist-coupled GPCRs, and thus the phosphorylation
of the substrates commences [138,139]. Based on their structural resemblance, the GRKs are grouped
into three subfamilies [140]. The GRK1 family includes GRK1 and 7, prenylated at their C-termini to
enable their membrane localization [139,141]. The GRK2 family includes GRK2 and 3, which display
cytoplasmic localization and translocate to the membrane following association with heterotrimeric
G protein βγ-subunits released upon receptor activation of G proteins [142,143]. Members of the
GRK2 family share approximately 84% sequence similarity, containing a pleckstrin homology (PH)
domain, which controls G protein mediated translocation [129,144,145]. The GRK4 family comprises
isoforms 4, 5, and 6 positioned at the plasma membrane due to their ability for direct PIP2 binding [146].
Unlike other members of the GRK family, GRK5 and GRK6 can phosphorylate both active and inactive
receptors [139,143]. All GRK-mediated phosphorylation engages the second major component of the
system—a family of proteins named arrestins, as they were originally discovered to cease or “arrest”
the G protein signaling [129,147].

There are four isoforms of arrestins (1–4) encoded in the human genome; arrestins 1 and 4 are
solely expressed in the retinal tissue, while arrestins 2 and 3 (also known as β-arrestins 1 and 2,
respectively) are ubiquitously expressed in all tissues [148]. Although β-arrestins 1 and 2 have a
largely similar structure and can partially substitute for each other in knock-out mouse models [149,
150], they can play similar, distinctive, or opposite roles in the regulation of GPCRs [151–153].
The GRK-dependent phosphorylation regulation of arrestin recruitment gave rise to the development
of a “barcode hypothesis” [125,136]. By translating a specific receptor conformation into patterns
of β-arrestin recruitment and interaction, GRKs are said to establish a barcode across serine and
threonine residues on the C-terminal tail, thus regulating receptor functionality [154,155]. The two-step
GPCR desensitization hypothesis whereby a family of Ser-Thr protein kinases (GRKs) specifically
phosphorylate ligand-activated GPCRs, creating binding sites for arrestins to prevent further G protein
recruitment, is termed heterologous desensitization (Figure 1A) [126,127,129,154,156–160].

3.3. Receptor Internalization, Trafficking, and Second-Wave Signaling

Once recruited to the transmembrane docking site, β-arrestins block the coupling sites for the
G proteins, bringing their signaling to an end [123,131]. The desensitized receptor is internalized,
which can lead to either recycling of the receptors to the plasma membrane or degradation. The wide
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repertoire of isoforms of the GRK/arrestin families allows for a spectrum of potential patterns (barcodes),
which translate into distinct fates for the receptor complex [123,129,131,155].

β-arrestins promote GPCR endocytosis by mediating an interaction between the C-terminus and
the heavy chain of clathrin and β-subunit of adaptor protein-2 (AP2) [139,161]. In much the same
way as described earlier for RTKs, GPCRs are then concentrated in clathrin-coated pits, internalized,
and finally follow steps in accordance with the isoform of β-arrestins employed in the downregulation.
Although discovered and named for their signal arresting role, it is now clear that this under-represents
reality. In addition to interrupting the receptor-G protein coupling and impairing the G protein
signaling, β-arrestins 1 and 2 themselves activate their own signaling pathways, such as MAPK, PI3K,
and NF-κB cascades, by acting as scaffold proteins [162–167]. Differential affinities for the β-arrestin
isoforms separate GPCRs into two major classes. Class A members such as the dopamine D1A receptor,
the µ-opioid receptor, and the β2 adrenergic receptor bind β-arrestin 2 with greater affinity than
β-arrestin 1, recycle rapidly, and transiently activate MAPK. Class B members such as the angiotensin
II type 1A receptor and the vasopressin V2 receptor bind both isoforms with equal affinity, recycle
slowly, and sustain MAPK signaling [168–171].

Despite original models, it is now clear that internalization of a receptor does not necessarily mean
immediate cessation of all associated signaling. Ligand-mediated endocytosis is multi-functional;
although endosomal acidic dissociation of the ligand–receptor complex can attenuate any signal
originating from it, the endosome can also facilitate the interaction between the internalized receptor
and the downstream signaling molecules [172–174], best illustrated by the case of the arrestins.
As multi-functional adaptor molecules, arrestins govern GPCR physiology, but does their affiliation lie
solely with this receptor family?

4. IGF-1R as an RTK/GPCR Functional Hybrid

The work that identified Mdm2 as a novel E3 ubiquitin ligase for the IGF-1R [76,175] shed light
on remarkable parallels between this receptor and the larger (but believed to be separate) family of
GPCRs. The adaptor molecule that brings Mdm2 to the ligand-activated IGF-1R was discovered to be
the master regulator of GPCR biology, β-arrestin [81,176]. This work showed that, similar to GPCRs,
β-arrestins not only aid IGF-1R internalization but initiate their own second wave of signaling through
the MAPK/ERK pathway (Figure 1B). Intriguingly, β-arrestin-mediated ERK activation occurs even
in conditions with tyrosine kinase domain inhibited or mutated versions of the IGF-1R [49,81,177].
This dual role of β-arrestin 1 in the case of IGF-1R downregulation and signaling activation was
reminiscent of its role in the GPCR family; while internalizing the ligand-activated receptor, β-arrestins
also activate the MAPK pathway [11,68,81,178] (Figure 1B). Functional antagonism has also been
revealed in regard to β-arrestin isoforms at the IGF-1R. Both isoforms co-immunoprecipitate with
IGF-1R; however, the ligand-occupied receptor has greater affinity for β-arrestin 1. This association
lasts longer and sustains MAPK/ERK signaling [81,98]. Conversely, β-arrestin 2 has greater affinity for
the ligand-unoccupied receptor. This interaction is transient and can trigger receptor ubiquitination
and degradation but without any signal activation [81,98] (Figure 1B).

Recognized as a universal mechanism of GPCR regulation, β-arrestins bind to the receptor
following phosphorylation of specific serine residues by the G protein-coupled receptor kinases (GRKs).
This warranted investigation into the mechanism of β-arrestin binding to the IGF-1R, which revealed
that GRK-mediated receptor phosphorylation coordinates this process [124] (Figure 1B). There seems to
be contrasting roles between GRK2 and 6, whereby phosphorylation of serine residues on the receptor
C-terminal tail by either isoform encodes a barcode for subcellular fate [124] (Figure 1B). Specifically,
GRK2 phosphorylation promotes transient β-arrestin 2 binding and predominance for receptor
recycling, whereas GRK6 promotes a stable receptor/β-arrestin 1 interaction that leads to receptor
complex degradation [124] (Figure 1B). The body of work that uncovered this shared functionality
also shed light on a new onco-relevant link between the IGF-1R and the crucial tumor suppressor,
p53. Transcriptional links between the two pathways have been well established—wildtype but not
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mutant p53 suppresses IGF-1R gene transcription, part of the mechanism by which p53 can arrest the
cell cycle [179–181]. The discovery of Mdm2/β-arrestin-mediated IGF-1R ubiquitination also exposed
IGF-1R and p53 protein co-dependency, as they compete for the same E3 ligase, Mdm2 [76,81,175,176].
Furthermore, by controlling the relative expression of the arrestin isoforms, we demonstrated knock-on
effects on p53 levels. Imbalance towards the β-arrestin 1 isoform via overexpression or silencing of
β-arrestin 2 sustains MAPK signaling and keeps p53 at basal low levels (Figure 2C) [98,99]. The opposing
scenario—imbalance towards β-arrestin 2—circumvents MAPK signaling and causes p53 levels to
accumulate (Figure 2D), leading to cell cycle arrest and decreased viability of melanoma cells [98,99].
This scenario does, however, require functional p53, highlighting an interesting therapeutic scenario in
the group of wildtype p53 cancers [98,99,182].
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Figure 2. Therapeutic implications for IGF-1R downregulation as related to various types of associated
signaling activation. (A) Balanced signaling: IGF-1 (balanced agonist) binds to the receptor and equally
activates all downstream signaling in a balanced manner—G protein, kinase, and β-arrestin 1/β-arrestin
2 signaling (β-1/β-2). Receptors can then be either degraded or recycled. This results in moderate
intensity pERK and basal p53 levels. (B) Balanced inhibition: small interfering RNAs (siRNA)/short
hairpin RNAs (shRNA)-mediated IGF-1R depletion results in inhibition of all downstream signaling.
This strategy diminishes pERK and slightly elevates p53 levels. (C) β-Arrestin 1 biased signaling:
Anti-IGF-1R antibodies [Figitumumab, also known as CP-751871 (CP in the Figure)] treatment results
in receptor degradation with β-arrestin 1-biased signaling and sustained pERK activity, and β-arrestin
1 signaling predominance maintains low p53 levels. (D) β-Arrestin 2 biased signaling (β-arrestin
2 overexpression/β-arrestin 1 inhibition): the receptor preferentially binds β-arrestin 2, generating
a transient pERK signal and receptor recycling. β-arrestin 2 signaling (or absence of β-arrestin 1
signaling) increases p53 levels, possibly by sequestering both β-arrestin 1 and Mdm2 in the cytoplasm.
(E) β-Arrestin2 biased signaling (Nutlin-3 treatment): small molecule Nutlin-3, a promising therapeutic
option, activates transient ERK signaling and produces a boost of p53, mimicking the pattern observed
upon β-arrestin 2 overexpression.

Initially suggested by the peculiar sensitivity of the IGF-1R to the Gi protein inhibitor,
pertussis toxin [114,183], and having been fully explored by extensive studies since then, it is
now clear that the IGF-1R makes direct use of all GPCR signaling components: G proteins, GRKs,
and β-arrestins [11,39,68,81,98,124,176]. While examples of RTKs/GPGRs family crosstalk have been
known for quite some time [15], this is distinct from that which can occur at the IGF-1R, whereby this
receptor is directly utilizing GPCR components of G proteins, GRKs, and β-arrestins and can activate a



Cells 2019, 8, 1223 11 of 23

signal cascade in a kinase domain-independent fashion. By all functional definitions, the IGF-1R has
shown itself capable of classification as a functional GPCR. In respect of the evidence, we advocate that
the IGF-1R should be regarded as an RTK/GPCR functional hybrid [10,11,23] and that this paradigm
should be used for drug development. This is especially important, as targeting strategies designed
under a kinase-only paradigm have already proven to be insufficient and thus outsmarted by this
complex network.

5. Discussion: Therapeutic Implications

Over the last few decades, the potential of IGF-1R as a target for cancer treatment has been
extensively investigated and almost exclusively aligned to the kinase-fits-all model. Nevertheless,
the critical role of receptor removal from the cell surface was openly recognized from the beginning,
which was exemplified when Renato Baserga stated, in 2005, “An antibody against the IGF-IR, to be
effective, has to inhibit the binding of both IGF-1 and IGF-2, induce the downregulation of the receptor,
and have little or no effect on the IR signaling” [13]. This concept, fundamentally true for all anti-IGF-1R
strategies, emerged from the early antisense-based experimental work, which described complete
inhibition of cancer cells growing in monolayer or as xenografts in animal models [13]. The corollary
of these studies is that preventing the receptor’s de novo synthesis (e.g., antisense, siRNA) results
in an overall decrease of IGF-1R expression and all of its signaling branches (Figure 2). This process
is similar to the one employed by the cells in basal conditions in that it diminishes the downstream
signaling in a balanced manner (Figure 2). In place of gene silencing (not yet possible in humans),
kinase inhibitors or the antibodies-based strategy targeting IGF-1R are preferred in clinical settings.
Just like anti-sense strategies, all antibodies and all kinase inhibitors against IGF-1R tested thus far in
clinical trials (Table 1) were confirmed to preclude kinase-dependent signaling activation [verified
as decreased phosphorylated-(p-)IGF-1R]. However, with the notable exception of picropodophyllin
(PPP) [47,48,184,185], all kinase inhibitors had no effects on IGF-1R expression at the cell surface
(Table 1). It is worth mentioning that, in the case of kinase inhibitors, both pERK and pAkt were
employed to verify the inhibition of downstream signaling, and they were found to be decreased in a
balanced manner (Table 1). Once more, PPP was the exception, demonstrating biased pERK activation
linked to the downregulation process [49]. On the other hand, when it came to targeting antibodies,
pAkt was always employed as a surrogate to verify decreased downstream IGF-1R signaling, whereas
pERK was found to be reduced, increased, or was not investigated (Table 1). Follow up studies
confirmed pAkt inhibition but discovered that pERK, in different experimental models, demonstrated
a great degree of variability (Table 1).

Intriguingly, in contradiction with the classical paradigm postulating kinase activity/downregulation
interdependency, all antibodies proved very effective at downregulating the IGF-1R (Table 1).
This process occurred very fast in cell lines models (1–4 h) and was also confirmed in xenografts models
(Table 1), yet the clinical results are far from what was expected. We and others demonstrated that
antibody-induced IGF-1R downregulation stabilizes a biased receptor conformation that preferentially
activates kinase-independent β-arrestin 1 signaling (Figure 2 and Table 1) and not only promotes MAPK
enhancement but also represses the tumor suppressor p53 activation (Figure 2), which could explain the
cancer cell survival, the augmented metastatic potential, and the overall limited response to this single
agent therapy [10,39,98,99,182]. It should be noted here that there were some exceptions [186]. Firstly,
most antibodies do show response in in vivo models, and secondly, clinical response to single-agent
anti-IGF-1R is reported in some patients, particularly in Ewing’s sarcoma. A number of reasons are
suggested for this unique efficacy, including that it derives from their genetic hallmark: the direct
connection between their oncogenic fusion EWS/ETS transcripts and the IGF system [34,187–189].
In such cases, the aberrant EWS/ETS transcript likely influences IGF signaling to such a degree that
the impact of an antibody shifts the balance differently than the norm. Whilst hoping that these few
success cases could offer important insight into the mechanisms, anti-IGF-1R therapy is still yet to
reach clinical practice in the treatment of Ewing’s sarcoma patients, nor any other cancer types [190].
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The prerequisite for efficient targeting of receptor removal set against the reality that its downregulation
triggers signaling sustaining the cancer-phenotype presents a problem with no apparent way out.
However, a possible solution was revealed by studies demonstrating the molecular mechanism behind
arrestin involvement, i.e., opposing behaviors of the β-arrestin isoforms on IGF-1R downregulation and
signaling [98]. Both β-arrestins downregulate the receptor, however, β-arrestin 2 is more efficient in
conditions with low ligand availability. Most importantly, such conditions promote a GPCR class A-like
behavior of the IGF-1R with transient β-arrestin 2/receptor interaction and subsequent MAPK-biased
signaling and eventually with p53 reactivation (Figure 2) [98,99,182]. While uncovering antagonism
between the β-arrestin isoforms in controlling IGF-1R downregulation, it was demonstrated that
biasing the IGF system toward β-arrestin 2 decreases the viability and the metastatic potential of cancer
cells and hence could be considered an effective therapeutic strategy (Figure 2) [98,99,182]. Asβ-arrestin
2 is more efficient in downregulating the receptor in conditions with low ligand, another option could
be to develop therapeutic strategies involving ligand sequestration (e.g., anti-IGF antibodies or IGF
traps) whilst also tipping the arrestin balance toward β-arrestin 2.

It could be argued that destabilizing the β-arrestin 1/β-arrestin 2 equilibrium via transgenic
approaches encounters the same limitations as transgenic downregulation of the IGF-1R. Then again,
we have to consider the fact that Mdm2 co-orchestrates stress-induced survival pathways by acting as
ubiquitin ligase for IGF-1R, p53 and β-arrestins. Within this scenario, we recently demonstrated that
disruption of the Mdm2–p53 interaction by small molecule Nutlin-3 allows Mdm2 accumulation and
triggers IGF-1R/Mdm2 association with subsequent receptor ubiquitination and downregulation [99].
Under such conditions, the MAPK signaling associated with receptor downregulation is biased towards
βarrestin 2, is transient and not sufficient to provide protection for malignant cells (Figure 2) [98,99,182].
Add all of this to the reactivation of p53 and the possibility to control the β-arrestin recruitment via the
GRK system and a comprehensive anti-tumorigenic cellular scenario arises.

6. Concluding Remarks

The central roles in cancer of RTKs in general and IGF-1R in particular have been known for many
decades, and they serve as targets for many therapeutic approaches. In the post-trial years, various
reasons have been suggested for the failure of first-line strategies, most highlighting the unappreciated
complexity of the IGF-1R/IR system: including multiple ligands, hybrid receptors between the IGF-1R
and the IR, nuclear translocation of components, cross-talk to other pathways, as well as a lack of
patient selection markers, reasons which have been reviewed extensively elsewhere [17,18,22,190–194].
This review focuses on the IGF-1 and IGF-1R path due to its intense study in drug development
pipelines, however, this is not intended to reflect the importance of IGF-2 or IGF-2R. IGF-2 is by far the
most abundant peptide from the IIGF family in human circulation. Considering its much more limited
study, it is reasonable to claim that we are vastly under-informed on the specific contribution of this
arm to patho-physiology. This perspective is comprehensively reviewed by Holly et al. within this
special focus issue [195].

All the while, the traditional kinase-only model of activation is still prevalent in drug development.
With this review, we aim to draw a parallel with the more successful story of GPCR targeting, where the
naive ON/OFF model was abandoned more than a decade ago. For RTKs in general and IGF-1R in
particular, in addition to the classical kinase signaling, their ultimate biological effects are orchestrated
by several other post-translational modifications, interactions, and biological processes. It is now
clear that the endosome is deeply entrenched in growth factor receptor function. Defective vesicular
trafficking of growth factor receptors, including an imbalance between recycling versus degradation and
versus exosomal release, appears prevalent. Derailed endocytosis is thus emerging as a multi-factorial
hallmark of cancer cells [196]. There is now a critical need for a widespread update to the working
model that recognizes the intricacies of the IGF signaling system; only then will rational drug design,
therapeutic combinations, and real clinical benefits match the decades of supportive experimental data
in the field.
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