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Abstract
Brain and/or lung injury is the most frequent cause of admission to
critical care units and patients in this setting frequently develop
multiple organ dysfunction with high rates of morbidity and
mortality. Mechanical ventilation is commonly used in the manage-
ment of these critically ill patients and the consequent inflammatory
response, together with other physiological factors, is also thought
to be involved in distal organ dysfunction. This peripheral
imbalance is based on a multiple-pathway cross-talk between the
lungs and other organs, including the brain. Interestingly, acute
respiratory distress syndrome survivors frequently present some
cognitive deterioration at discharge. Such neurological dysfunction
might be a secondary marker of injury and the neuroanatomical
substrate for downstream impairment of other organs. Brain-lung
interactions have received little attention in the literature, but recent
evidence suggests that both the lungs and brain are promoters of
inflammation through common mediators. This review addresses
the current status of evidence regarding brain-lung interactions,
their pathways and current interventions in critically ill patients
receiving mechanical ventilation.

Introduction
Critically ill patients frequently develop multiple organ
dysfunction syndrome [1,2] independently of the nature of the
original disease. Mechanical ventilation is often an indis-
pensable part of life support in these patients, improving gas
exchange and decreasing muscle workload. Despite these
therapeutic effects, however, mechanical ventilation may
cause lung damage and inflammation (biotrauma) that can be
propagated to distal organs. This is thought to close a feed-
back loop and contribute further to ventilator-induced lung
injury [3,4]. This peripheral homeostatic imbalance is based
on a multiple-pathway cross-talk between the lungs and other
organs, including the brain.

In critically ill patients, neurological dysfunction might be a
secondary marker of damage, and the neuroanatomical
substrate for downstream impairment of other organs [5,6].

Several reports indicate that the local inflammatory response
within the central nervous system may lead to altered
systemic immune and inflammatory responses [7]. This
bench-to-bedside review focuses on the roles the lung and
brain play in the control of general homeostasis in critically ill
patients.

Brain-lung interactions
From the lung to the brain
Multiple organ dysfunction syndrome is the main cause of
morbidity/mortality in acute respiratory distress syndrome
(ARDS) patients [8,9]. Interestingly, most ARDS survivors
show persistent cognitive deterioration at discharge [10,11].
The underlying mechanisms are unknown, but hyperglycemia,
hypotension and hypoxia/hypoxemia in the intensive care unit
are significantly correlated with unfavorable neurological
outcome [12-16]. The integrity of brain function depends on
regular oxygen and glucose. Tight control of glycemia
decreases the incidence of polyneuropathy in critically ill
patients [17]. Hypoxemia is implicated in ARDS-induced
brain dysfunction and in generalized cerebral atrophy. The
response to hypoxia is due, in part, to the hypoxia-inducible
transcription factors (HIF)-1alpha and HIF-2alpha, which
regulate the expression of several genes related to
angiogenesis, energy metabolism, cell survival or neural stem
cell growth [18,19]. There is currently no consensus about
the actions of HIFs on neuronal survival after ischemia/
hypoxia. The hypoxia-induced impairment of oxidative
phosphorylation and the generation of free radicals have also
been proposed as pathogenic mechanisms in chronic
neurodegenerative diseases [20,21].

Novel laboratory research questions the precise mechanisms
through which acute lung injury (ALI) provokes neuronal
damage. Hippocampus integrity is essential for learning,
memory and cognition. In a porcine model, a higher degree of
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hippocampal neuronal damage was related to hypoxemia
induced by lung injury rather than to that induced by a
decreased oxygen supply [22]; the immune response
triggered by ALI might be a plausible explanation for this [23].

The normally tight endothelia of the blood-brain barrier (BBB)
and blood-lung barrier transduce signals from blood to brain
or lung cells [24,25]. Interestingly, both barriers become
more permeable in some pathophysiological states, facilita-
ting the humoral communication pathway between the brain
and lungs [26]. Circulating levels of S-100B protein from
astrocytes and neuronal-specific enolase are considered a
good marker of brain damage [27]. S-100B levels reportedly
increase with the development of encephalopathy in patients
with severe sepsis and septic shock and in those with post-
traumatic stress one year after suffering moderate cranio-
encephalic trauma [28,29]. In pig models of ALI and
endotoxemic shock, the increase in S100-B correlates with
the degree of brain damage and increased permeability of the
BBB [22]. S-100B and neuronal-specific enolase might,
therefore, be potential markers of cerebral damage and BBB
alterations in ARDS patients [28].

Endotoxin administration in rats appears to induce systemic
inflammation together with activation of central nervous
system microglia and astroglia. This is followed by cell death
in different regions of the brain, with the hippocampus being
one of the most vulnerable regions [30,31]. In patients in
septic shock, breakdown of the BBB, assessed by magnetic
resonance imaging, has been observed. It is also associated
with a poor outcome and sepsis-associated delirium in these
patients [32,33]. Such evidence suggests that ALI might
have implications on brain dysfunction after intensive care
unit stay, but such involvement is as yet poorly understood.

From the brain to the lung
It is fairly well established that brain injury itself and its
neurological sequels are the main causes of death or
disability in this setting. Nevertheless, emerging evidence
shows that extracerebral dysfunctions, mainly respiratory
failure, are common and increase morbimortality [34]. Two
studies have reported that one-third of acute brain injured
patients developed ALI, worsening clinical outcome [34-37],
but the causes remain obscure. The mechanisms include
neurogenic lung edema, inflammatory mediators, nosocomial
infections and adverse effects of neuroprotective therapies
[34]. Brain injury might also increase lung vulnerability to
subsequent injurious mechanical or ischemia-reperfusion
insults, thereby increasing the risk of subsequent lung failure.
In massive brain injury rabbits, we observed increased
susceptibility of lungs to ventilator-induced lung injury when
compared with intact brain animals at similar ventilatory
settings [38].

Neurogenic pulmonary edema is a well-recognized complica-
tion of central nervous system insult [5,6]. It has been

attributed to a massive catecholamine release after massive
brain injury [1,39], causing a hypertensive crisis and followed
by neurogenic hypotension. Avlonitis and colleagues [40]
prevented inflammatory lung injury in rats by preventing the
hypertensive response by means of alpha-adrenergic antago-
nist pretreatment. This strategy reduced systemic inflam-
mation and preserved capillary-alveolar membrane integrity. In
the same study, control of neurogenic hypotension with
noradrenaline improved the systemic inflammatory response
and oxygenation [40]. Since up-regulation of pro-inflammatory
mediators could occur in all organs, early anti-inflammatory
treatment and vasoactive agents might be warranted in the
management of the brain-dead donor.

Brain microglia and astrocytes become the main source of
inflammatory mediators during acute brain injury. Increased
BBB permeability in this scenario allows the passage of
mediators from brain to periphery, provoking a transcranial
gradient that can originate secondary complications and
multiorganic dysfunction [41-44]. Experimentally induced
cerebral hemorrhage injury increased the expression of
intercellular adhesion molecules and tissue factor in both brain
and lungs, and lungs showed a progressive neutrophil
recruitment with disruption of alveolar structures [39]. More-
over, traumatic brain injury in rats progressively damaged intra-
cellular membranes in type II pneumocytes and persistently
increased lipid peroxydation in the lung [45]. Immune defense
of the airways might also be altered in the very early stages of
brain injury. Interestingly, early ultrastructural damage to the
tracheobronchial epithelium, with further progression over
time, has been described in a rat model of traumatic brain
injury [34,46]. These findings might suggest that early
alterations in the airway defense mechanisms are partly
responsible for the high incidence of ventilator-associated
pneumonia in brain injured patients [47,48].

Lungs and brain share some identical biochemical mediators
of inflammation that can be released to the bloodstream and
sensed at a distance through the interaction with specific
receptors [49]. In the lung, local activation and recruitment of
defence cells causes extravasation of circulating leukocytes
[50], contributing to the release of chemokines and cell
adhesion molecules and ultimately leading to altered tissue
remodelling [51,52]. In this regard, Skrabal and colleagues
[53] found increased plasma (protein) and lung (protein and
mRNA) tumor necrosis factor-α, IL-1β and IL-6 levels in brain-
dead pigs. Peripheral organs or blood cells cannot be ruled
out as the main source of cytokines, but the damaged brain
might be an important site of cytokine production and
distribution.

The autonomic nervous system should also be considered in
this neuro-immune crosstalk. Systemic inflammation is con-
trolled, in part, by the vagus nerve (the cholinergic anti-
inflammatory pathway), and, in the critical care scenario, such
control might be influenced by both acute brain injury and
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sedation [31,54,55]. Sympathetic nervous system activation
may be involved in ‘remote’ ischemic preconditioning [56].
Ischemic preconditioning is an endogenous mechanism that
can protect different organs (for example, brain or lungs)
through the development of an adaptive local or remote
response to ischemia. The mechanism of ischemic pre-
conditioning involves both triggers and mediators and a
complex second messenger chain that includes adenosine,
nitric oxide, heat shock proteins, mitogen-activated protein
kinases, and mitochondrial ATP-dependent potassium
channels. Oxygen free radicals also appear to be involved,
playing a paradoxical protective role [57,58]. The exact
signalling pathway of this response is still under investigation
but it may open a new field in therapeutic strategies in the
clinical context of the critically ill patient submitted to
mechanical ventilation.

Therapeutic implications
Prevention of neurological disorders secondary to ARDS is of
paramount importance, but information that could influence
the clinical management of these patients is, unfortunately,
scarce. Avoiding hypoxemia and maintaining appropriate
arterial pressure and glycemia should have a positive effect
on neurological outcome. Prevention of secondary ischemic
insults after severe head injury is a commonly used
therapeutic approach. High vascular flow is a recognized
experimental factor that promotes lung injury [59], and this
can be further aggravated if the lungs are predisposed.
Robertson and colleagues [60] found that the incidence of
ARDS was five-fold higher in severely head-injured patients
when they were treated with a protocol that preserved
cerebral blood flow by maintaining cerebral blood pressure
above 70 mmHg. Several aspects of ventilation management
in neurocritical care have implications in both brain and lung
injured patients. Koutsoukou and colleagues [61] found
deterioration in lung elastance on day 5 in brain-damaged
patients mechanically ventilated without positive end-
expiratory pressure (PEEP), again suggesting a seeding
effect of brain injury in distant organs. In a similar context, the
application of PEEP levels that inadvertently increase alveolar
dead space may alter cerebral hemodynamics. Mascia and
colleagues [62] found that PEEP-induced overdistension and
associated elevation of arterial carbon dioxide tension
(PaCO2) was followed by an increase in intracranial pressure.
Although specific evidence-based recommendations on how
to set ventilators in acute lung and brain injury are lacking,
clinicians must ensure protection for both organs. Further
studies of optimal ventilatory patterns are clearly warranted in
mechanically ventilated patients with mild to severe brain
injury and also in possible organ donors [63,64].

Conclusion
In patients with brain injury and acute lung failure, prevention
of inadvertent ischemic brain insults and the use of protective
lung strategies are mandatory. Since the cross-talk between
the brain and lungs may occur through different pathways,

greater control of physiological variables might be important
to protect the brain, even when it is not the primary injured
organ. Brain damage after acute lung injury may constitute an
exciting new field of research to reduce morbidity and
mortality of critically ill patients.
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