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ABSTRACT The physiology of organisms depends on inter-organ communication in response to changes in
the environment. Nuclear receptors are broadly expressed transcription factors that respond to circulating
molecules to control many biological processes, including immunity, detoxification, and reproduction.
Although the tissue-intrinsic roles of nuclear receptors in reproduction have been extensively studied, there
is increasing evidence that nuclear receptor signaling in peripheral tissues can also influence oogenesis. We
previously showed that the Drosophila nuclear receptor Seven up (Svp) is required in the adult fat body to
regulate distinct steps of oogenesis; however, the relevant downstream targets of Svp remain unknown.
Here, we took an RNA sequencing approach to identify candidate Svp targets specifically in the adult female
fat body that might mediate this response. svp knockdown in the adult female fat body significantly
downregulated immune genes involved in the first line of pathogen defense, suggesting a role for Svp
in stimulating early immunity. In addition, we found that Svp transcriptionally regulates genes involved in
each step of the xenobiotic detoxification response. Based on these findings, we propose a testable model in
which Svp functions in the adult female fat body to stimulate early defense against pathogens and facilitate
detoxification as part of its mechanisms to promote oogenesis.
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Nuclear receptors are evolutionarily conserved systemic physiology
sensors that act as transcriptional regulators throughout the body to
control a diverse array of biological processes, including female
reproduction (Mouzat et al. 2013; Mazaira et al. 2018). For example,
Estrogen Receptor global knockout results in elevated steroid syn-
thesis, reducing the number of growing follicles and preventing
meiotic oocyte progression (Lubahn et al. 1993; Liu et al. 2017).
Global knockout of Liver X Receptors disrupts meiosis resumption
and reduces mammalian fertility (Mouzat et al. 2013), whereas

COUP-TFs are required in the mammalian uterine muscle for
placenta formation and embryo implantation (Petit et al. 2007;
Zheng et al. 2010). However, how nuclear receptor function in
specific peripheral tissues influences oogenesis in adult females is
understudied.

The Drosophila ovary is an ideal model to investigate how nuclear
receptor action in peripheral tissues remotely influences oogenesis.
The Drosophila ovary is composed of 16-20 ovarioles, and each
ovariole has an anterior germarium followed by chronologically
arranged developing follicles. Each germarium houses two to three
germline stem cells (GSCs) in a specialized niche, and GSCs divide
asymmetrically to self-renew and produce a cystoblast that undergoes
four incomplete mitotic divisions to form a 16-cell cyst (one oocyte
plus 15 supporting nurse cells). Follicle cells surround the 16-cell cyst
to form a follicle that buds from the germarium and develops through
14 stages of oogenesis to form a mature oocyte (Figure 1A,B)
(Greenspan et al. 2015; Laws and Drummond-Barbosa 2017). Many
steps of oogenesis, including maintenance of GSCs, early germline
cyst survival, vitellogenesis (i.e., yolk uptake), and ovulation, are
highly sensitive to physiological inputs (Drummond-Barbosa 2019).
Notably, each of these processes has been shown to be controlled by
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nuclear receptors [reviewed in (Ables and Drummond-Barbosa 2017;
Laws and Drummond-Barbosa 2017)].

Nuclear receptors have been shown to control Drosophila oogen-
esis through intrinsic and extrinsic mechanisms (Ables and Drum-
mond-Barbosa 2017). The best characterized Drosophila nuclear
receptor, EcR (FBgn0000546, FXR/LXR homolog), is required in
ovarian cell types for regulation of GSC maintenance, early germline
cyst survival and development, oocyte meiosis entry, and lipid uptake
in later follicles (Ables and Drummond-Barbosa 2010; König et al.
2011; Morris and Spradling 2012; Sieber and Spradling 2015). E78
(FBgn0004865, potential PPAR homolog) is required for follicle
development/survival (Ables and Drummond-Barbosa 2010), E75
(FBgn0000568, potential REV-ERB homolog) is cell autonomously
required for vitellogenesis (Buszczak et al. 1999; Ables and Drum-
mond-Barbosa 2010), and HR39 (FBgn0261239, LRH1 homolog) and
Ftz-F1 (FBgn0001078, SF1 homolog) are required for ovulation (Sun
and Spradling 2013; Knapp et al. 2020). In addition to having these
ovary-intrinsic roles, nuclear receptors can also function in peripheral
tissues to control oogenesis, as recent studies show (Sieber and
Spradling 2015; Weaver and Drummond-Barbosa 2019). For exam-
ple, EcR is required in the central nervous system to regulate female
feeding behavior and thereby support egg production (Sieber and
Spradling 2015). More recently, we showed that the nuclear receptor
Svp is required in adult female adipocytes and hepatocyte-like
oenocytes (collectively referred to as the fat body herein) to regulate
distinct steps of oogenesis (Weaver and Drummond-Barbosa 2019).
Specifically, Svp (FBgn0003651) is required in adipocytes to control
GSC maintenance and early germline cyst survival, whereas Svp is
required in oenocytes for survival of vitellogenic follicles (Figure 1C)
(Weaver and Drummond-Barbosa 2019). However, the mechanisms
underlying how nuclear receptor activity in peripheral tissues regu-
lates oogenesis are not well understood.

The Drosophila fat body is a major endocrine organ with energy-
intensive metabolic and immune roles (Arrese and Soulages 2010),
raising many possibilities as to how Svp activity in adipocytes and
oenocytes might remotely control oogenesis. Multiple studies have
explored the nutrient sensing and metabolic roles of the fat body in
regulating larval growth (Colombani et al. 2003; Hennig et al. 2006),
in mobilizing lipids in response to starvation (Chatterjee et al. 2014),
in controlling lifespan (Giannakou et al. 2004; Hwangbo et al. 2004),
and in reproduction (Armstrong et al. 2014; Matsuoka et al. 2017;
Armstrong and Drummond-Barbosa 2018). The function of the fat
body as a major immune-responsive tissue has also been character-
ized (Lemaitre and Hoffmann 2007). In response to infection, the fat
body activates nuclear factor-kB (NF-kB) signaling to produce and
secrete antimicrobial peptides (AMPs) into the hemolymph (Lemaitre
and Hoffmann 2007; Buchon et al. 2014; Roth et al. 2018; Suzawa et al.
2019). There is also evidence that the fat body acts as a detoxification
tissue based on the expression of members of the Cytochrome P450
(Cyp450) superfamily of monooxygenases, which are enzymes in-
volved in metabolizing foreign substances and drugs (Feyereisen
1999; Chung et al. 2009) and implicated in resistance to insecticides
(Terhzaz et al. 2015). In this study, we used transcriptomics to identify
candidate target genes downstream of Svp in the adult female fat body
and generate hypotheses for future investigation into the molecular
mechanisms underlying Svp control of oogenesis. Specifically, we took
an RNA sequencing approach to compare the transcriptome of fat
bodies from adult females with svp RNAi knockdown to that of control
RNAi female fat bodies. We found that svp knockdown significantly
reduces the expression levels of genes involved in the first line of
defense against pathogens. In addition, Svp targets are significantly

enriched for genes involved in xenobiotic detoxification responses. We
propose a model according to which Svp normally functions in the
adult female fat body to stimulate early immunity (and prevent later
activation of the immune deficiency pathway) and to neutralize toxic
compounds to facilitate their elimination from the body, thereby
promoting optimal conditions for oogenesis.

MATERIALS AND METHODS

Drosophila strains and culture conditions
Drosophila strains and cultures were maintained on medium containing
58 g/ml molasses, 46.5 g/ml yellow cornmeal, 4.7 g/ml agar, 17.4 g/ml
active dry yeast, 0.1% tegosept, and 7.25 mM Propionic Acid at 22-25�.
The previously described Gal4 lines, adipocyte-specific 3.1Lsp2-Gal4
(Lazareva et al. 2007; Armstrong et al. 2014) and PromE800-Gal4
(Billeter et al. 2009;Weaver andDrummond-Barbosa 2019), alongwith
the previously described temperature-sensitive tub-Gal80ts transgene
(Mcguire et al. 2003), were recombined by standard crosses to generate
the PromE800-Gal4 tubGal80ts; 3.1Lsp2-Gal4 double driver specifi-
cally targeting both oenocytes and adipocytes with temporal control.
UAS-LucJF01355 (Matsuoka et al. 2017) was obtained from the Bloo-
mington Drosophila Stock Center and UAS-svpGD1546 was obtained

Figure 1 Svp functions through unknown downstream targets in the
adult female fat body to regulate oogenesis. (A) Drosophila ovariole
showing an anterior germarium followed by progressively older folli-
cles. Each follicle represents a 16-cell germline cyst (one oocyte and
15 supporting nurse cells; light blue) surrounded by follicle cells (gray).
(B) Germarium showing 2-3 germline stem cells (GSCs; dark blue) in a
niche composed of somatic cells, including cap cells (yellow). GSCs give
rise to cystoblasts that divide to form 16-cell cysts. Germline cysts are
surrounded by follicle cells (gray) to bud from the germarium as a new
follicle. (C) Svp is required specifically in adult female adipocytes to
promote GSC maintenance and early germline cyst survival, and in
oenocytes for survival of vitellogenic follicles.
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from the Vienna Drosophila Resource Center (VDRC). Balancer
chromosomes and other genetic elements are described in Flybase
(www.flybase.org).

Tissue-specific RNAi
Females of genotypes y w; PromE800-Gal4 tubGal80ts; 3.1Lsp2-Gal4/
UAS-hairpin (for adult fat body-specific RNAi) were raised at 18� [the
permissive temperature for Gal80ts (Mcguire et al. 2003)] to prevent
RNAi induction during development. Zero- to 2-day-old females
were maintained at 18� for 3 days with y w males, and then switched
to 29� (the restrictive temperature for Gal80ts) for 5 days to induce
RNAi in the adult fat body (i.e., in both adipocytes and oenocytes).
We chose this time point of svp RNAi in part because knockdown of
svp specifically in adult oenocytes decreases egg production after
5 days (Weaver and Drummond-Barbosa 2019). We also note that,
although reduced GSC numbers are only observed after 7-10 days
of svp knockdown (Weaver and Drummond-Barbosa 2019), any
changes in gene expression resulting from decreased Svp activity
that could be causally involved in the increased rate of GSC loss would
necessarily precede any observable decrease in GSC numbers. UAS-
LucJF01355 was used as an RNAi control. For all conditions, medium
was supplemented with wet yeast paste.

RNA isolation
Abdominal carcasses from 100 females of each genotype were
dissected in Grace’s medium supplemented with 10% fetal bovine
serum (FBS; Sigma). Fat body cells were dissociated from abdominal
carcasses with 500 ml dissociation buffer [0.5% Trypsin (Sigma) plus
1 mg/ml collagenase (Sigma) in 1x PBS] per 50 carcasses for 30 min at
room temperature. Samples were gently agitated every 5 min to
facilitate separation of cells from the cuticle. 500 ml of Grace’s media
plus 10% FBS was added to stop the enzymatic reaction and super-
natants were placed in new tubes. Carcasses were rinsed with Grace’s
medium plus 10% FBS and the two supernatants per genotype were
combined. Dissociated cells were centrifuged at 3.3 rpm for 5 min at
room temperature. Supernatants were removed and cells were im-
mediately lysed in 250 ml lysis buffer from the RNAqueous-4PCR
DNA-free RNA isolation for RT-PCR kit (Ambion). RNA was
extracted from all samples following the manufacturer’s instructions.
Three independent experiments were performed for RNA sequencing
and RT-qPCR analysis.

RT-qPCR
RNA from abdominal carcasses was extracted as described above.
cDNA was synthesized from 500 ng of total RNA for each sample
using Supercript II Reverse Transcriptase (ThermoFisher) according
to the manufacturer’s instructions. Table S1 lists all primers used in
this study. PowerUp SYBR Green Master Mix (ThermoFisher) was
used for quantitative PCR. The reactions for three independent
biological replicates were performed in triplicate using LightCycler
96 (Roche). Amplification fluorescence threshold was determined by
LightCycler 96 software, and DDCT were calculated using Microsoft
Excel. Rp49 transcript levels were used as a reference. Fold change of
transcript levels were calculated using the equation 2-DDCt (Microsoft
Excel).

RNA sequencing and data analysis
cDNA library construction, Illumina sequencing, and differential
expression analysis was performed by Novogene Bioinformatics
Technology Co., Ltd (Beijing, China). The cDNA libraries were

prepared using the NEBNext Ultra RNA Library Prep Kit for Illumina
(New England Biolabs) according to the manufacturer’s instructions.
The cDNA library for each sample was quality assessed using an
Agilent Bioanalyzer 2100, and library preparations were sequenced
on a NovaSeq6000 platform with PE150 read lengths.

Reads obtained from sequencing were aligned to the D. melanogaster
reference genome using the TopHat read alignment tool (Trapnell et al.
2009) for each of the sequencing datasets. The reference sequences were
downloaded from the Ensembl project website (useast.ensembl.org).
TopHat alignments were used to generate read counts for each gene
using HTSeq (Anders et al. 2015), which were subsequently used to
generate the differential expression results using the DESeq2 R
package (Anders et al. 2015). Gene ontology (GO) enrichment of
differentially expressed genes was analyzed by the clusterProfiler R
package (Yu et al. 2012). Enriched genes with a corrected P value of
less than 0.05 were considered significant.

Data availability
Drosophila strains are available upon request. The data and analyses
in this paper are described in the main figures. The raw data and
processed data files are available through the NCBI GEO accession
number GSE159703 and are also provided as supplemental tables.
Supplemental material available at figshare: https://doi.org/10.25387/
g3.13122728.

RESULTS AND DISCUSSION

Expression levels of 132 transcripts are altered when
svp is knocked down in the fat body
We previously showed that Svp is required in the adult female fat
body to regulate distinct aspects of oogenesis (Weaver and Drum-
mond-Barbosa 2019); however, the downstream factors mediating
those effects are unknown. To identify downstream targets of Svp in
the adult female fat body, we performed RNA sequencing analysis of
fat bodies from fat body-specific Luc control RNAi and svp RNAi
females (Figure 2A). We knocked down svp in the entire fat body of
adult females for 5 days, using the combined adipocyte-specific
3.1Lsp2-Gal4 (Lazareva et al. 2007; Armstrong et al. 2014) and
oenocyte-specific PromE800-Gal4 (Billeter et al. 2009; Weaver and
Drummond-Barbosa 2019) drivers with tub-Gal80ts (Mcguire et al.
2003), prior to fat body dissections and RNA sequencing performed
in triplicate. RT-qPCR analysis showed that svp transcript levels were
significantly decreased by 21% in svp knockdown relative to control
fat bodies (Figure 2B). [We note that this modest knockdown is
sufficient to cause significant changes in oogenesis (Weaver and
Drummond-Barbosa 2019), consistent with physiological regulators
being highly sensitive to environmental and physiological fluctua-
tions. In fact, we previously showed that similarly modest changes in
the levels of single amino acid transporters in adipocytes also lead to
increased GSC loss (Armstrong et al. 2014)]. RNA sequencing pro-
duced an average of 38,389,394 reads across the six sequencing
libraries, ranging from 35.1 to 43.3 million reads per sample (Table
1), of which an average of 96% were mapped to the Drosophila
melanogaster genome. Based on the analysis of those reads, over
16,000 transcripts were identified in the adult female fat body, with
the majority (81%) representing protein-coding genes (Figure 2C;
Table S2). In addition to protein-coding genes, our RNA sequencing
analysis also identified transcripts for mitochondrial genes, long non-
coding RNAs (lncRNAs), small nucleolar RNAs (snoRNAs), micro-
RNAs (miRNAs), and additional RNA subtypes (Figure 2C). Our
samples were enriched for mRNAs using oligo(dT) beads for poly(A)
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selection; however, this method does not completely eliminate non-
coding RNAs, especially those containing poly(A) tails (Cai et al.
2004; Wilhelm et al. 2008; Cabili et al. 2011). Comparison of the
identified protein-coding genes with our previous iTRAQ adult
female fat body proteomic data (Matsuoka et al. 2017) revealed
almost 2,000 common genes between the two datasets (Figure 2D;
Table S3), representing �75% of the total proteins we identified by
iTRAQ (Matsuoka et al. 2017). These results suggest that our tran-
scriptomic and proteomic approaches reproducibly identified many
of the genes expressed in the adult female fat body.

Differential expression analysis identified 132 genes with signif-
icantly altered transcript levels between the Luc control RNAi and svp
RNAi groups (Figure 2E,F). Of those genes, 71 were downregulated
(indicating genes normally positively regulated by Svp; Table S4),
whereas 61 genes were significantly upregulated (indicating genes
normally negatively regulated by Svp; Table S5). Of the upregulated
genes, 92% were protein-coding genes and the remainder were
identified as lncRNAs (Figure 2G). In addition, analysis using the
gene group resource GLAD (Hu et al. 2015) classified most upregu-
lated genes as encoding proteins that are either transmembrane,
secreted, part of the matrisome, or do not belong to a specific category
(referred to as “None,” Figure 2H). A small subset of genes were singly
classified as encoding mitochondrial proteins, serine proteases, phos-
phatases, or methyltransferases (Figure 2H; listed as “Other”). In-
terestingly, a small subset of downregulated genes was identified as
encoding proteins that are part of the “matrisome,” which form or
remodel the extracellular matrix (Davis et al. 2019) (Figure 2H). The
majority of downregulated genes were identified as protein-coding
genes (Figure 2G), with most of those classified as encoding trans-
membrane or secreted proteins by GLAD analysis (Figure 2H).
Similar to the case for upregulated genes, genes encoding serine
proteases, kinases, and methyltransferases (referred to as “Other”)
were also identified among downregulated genes (Figure 2H).

Multiple nuclear receptors have known roles in adipocytes in
regulating lipid metabolism or controlling insulin secretion/sensitiv-
ity in mammals and Drosophila [reviewed in (King-Jones and
Thummel 2005; Liu et al. 2015)]. For example, HNF4A-deficient
mice are glucose intolerant and display impaired glucose-stimulated
insulin secretion (Gupta et al. 2005), whereas mice heterozygous for
the Svp homolog COUP-TFII have reduced adiposity and increased
insulin sensitivity (Li et al. 2009). InDrosophila,Hnf4 (FBgn0004914)
is required for lipid mobilization and b-oxidation in response to
starvation in larvae (Palanker et al. 2009), whereas loss of svp in the
larval fat body impairs lipid turnover and insulin signaling (Musselman
et al. 2018). Surprisingly, however, the list of genes with significantly
altered expression in the svp RNAi fat body was not enriched for genes
encoding metabolic proteins based on GLAD or Gene Ontology (GO)
analysis. In fact, genes encoding members of the insulin signaling,
acetyl-CoA production, or b-oxidation pathways were not differen-
tially expressed in svp knockdown fat bodies compared to RNAi
controls (Table S2). These results suggest that, in stark contrast to
known roles of nuclear receptors in regulatingmetabolic processes (e.g.,
HNF4, ERR, HR96) (Palanker et al. 2009; Sieber and Thummel 2009;
Tennessen et al. 2011), Svp activity in the adult female fat body
regulates genes that control other biological functions instead.

Svp induces genes involved in the early defense against
microorganisms in the adult female fat body
To narrow down our list of candidate Svp targets, we first determined
whether genes whose fat body expression levels were altered with a

log2 fold change of at least 61.5 when svp was knocked down in the
adult female fat body belonged to common categories or pathways.
Interestingly, we found that Svp positively regulates genes encoding
proteins with roles in immunity, including those involved in particle
recognition (e.g., PGRP-SC2, FBgn0043575), melanization and clot-
ting (e.g., y, FBgn0004034), as well as anti-microbial peptides (e.g.,
Drsl4, FBgn0052282) (Figure 3A). For example, three microbial
recognition proteins, which recognize bacteria through pattern
recognition receptors and act upstream of the Toll and immune
deficiency (IMD) pathways (Lemaitre and Hoffmann 2007), were
significantly downregulated when svp was knocked down in the
adult female fat body (Figure 3A-C). Peptidoglycan recognition
protein (PGRP-SC2), whose transcript was downregulated with a
log2 fold change of -3.2 (i.e.,�9-fold) by svp RNAi (Figure 3A,B), is
a secreted protein that scavenges bacteria in the hemolymph to
prevent activation of the IMD pathway (Figure 3C) (Bischoff et al.
2006; Paredes et al. 2011). The immunoglobulin-superfamily receptor
Down syndrome adhesion molecule 4 (Dscam4, FBgn0263219),
whose transcript was downregulated with a log2 fold change of
-4.4 by svp RNAi (Figure 3A,B), is a transmembrane protein required
for phagocytic uptake of bacteria (Figure 3C) (Watson et al. 2005).
CG7763 (FBgn0040503) was downregulated with a log2 fold change
of -2.6 (Figure 3A,B) and encodes a predicted member of the C-type
lectin family, which has been implicated in recognition of lipopoly-
saccharide [a component of gram negative bacterial cell walls (Zhang
et al. 2013)] (Figure 3C) (Theopold et al. 1999). Drsl4, which encodes
an antifungal peptide with homology to Drs (Jiggins and Kim 2005),
was also significantly downregulated (log2 fold change of -1.9; Figure
3A,B) in the svp knockdown adult female fat body.

In addition to the responses involved in recognizing foreign
pathogens upon injury and infection, another important immune
defense is proper wound healing (Theopold et al. 2004). At the site
of injury, a melanization cascade is initiated; melanization requires
recognition of a pathogen (through pattern recognition receptors)
followed by activation of phenoloxidase by serine proteases to
ultimately produce melanin, which crosslinks and encapsulates
microbes (Bidla et al. 2005; Binggeli et al. 2014). In addition to
melanization, clotting is critical for limiting hemolymph loss as well
as for physically immobilizing bacteria (Goto et al. 2003; Theopold
et al. 2004). Our RNA sequencing analysis identified eight genes
with roles in promoting melanization and clotting that are positively
regulated by Svp in the adult female fat body (Figure 3D,F). For
example, the y gene, downregulated with a log2 fold change of -4
(i.e., 16-fold) by svp RNAi (Figure 3D,E), is required for melanin
production (Biessmann 1985; Whittkopp et al. 2002). Of the clot-
ting genes regulated by Svp (Figure 3D,E), Fbp1 (FBgn0000639)
encodes a known clotting factor originally isolated from larval
hemolymph clots (Scherfer et al. 2004), and obst-j (FBgn0036940)
encodes a chitin-binding protein that is upregulated in response to
bacterial infection (Rynes et al. 2012). Lsp1a (FBgn0002562) and
Lsp1b (FBgn0002563) encode predicted hemocyanins [proteins with
known roles in regulating immunity (Coates and Nairn 2014)] and
were also isolated from larval hemolymph clots (Scherfer et al.
2004). CG11313 (FBgn0039798), which is downregulated with a
log2 fold change of -3.9 upon svp RNAi (Figure 3D,E), encodes a
predicted serine protease that has potential roles in immunity
(Karlsson et al. 2004).

Nuclear receptors have reported roles in regulating immunity
(Glass and Ogawa 2006; Glass and Saijo 2010). For example, mam-
malian PPARg is required for wound healing and promotes the
transcription of anti-inflammatory genes in macrophages, whereas
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LXR is important for macrophage inflammatory responses [reviewed
in (Leopold Wager et al. 2019)]. Immune response genes are differ-
entially regulated in Drosophila mutants for Hr3 (FBgn0000448)
(Ruaud et al. 2010), Hnf4 (Barry and Thummel 2016), and Hr4
(FBgn0264562) (King-Jones et al. 2005), suggesting that nuclear
receptors also have immune response roles in invertebrates. However,
only the developmental and metabolic roles of these nuclear receptors
have been extensively studied [reviewed in (King-Jones and Thum-
mel 2005)]. Our RNA sequencing analysis suggests that Svp normally
functions in the adult female fat body as the first line of defense
against infections (e.g., microbial and viral recognition, peptidoglycan
scavenging, and clotting/melanization upon wounding), potentially
preventing activation of the IMD pathway (Lemaitre and Hoffmann
2007). Although we did not observe an increase in anti-microbial
peptide synthesis associated with IMD activation (Lee and Lee 2018),
it is possible that our time window of svp knockdown is insufficiently
long. In fact, a previous study in the larval fat body also showed that
Svp regulates immune response genes including PGRP-SC2 and
additional anti-microbial peptides (Musselman et al. 2018); however,
Svp negatively regulates these genes in this context (Musselman et al.
2018). The seemingly opposite regulatory roles of Svp in larvae
compared to adults could potentially be due to the organism’s distinct
physiology at different developmental stages. For example, in larvae,
nutrient availability plays a crucial role in growth and timing of

metamorphosis (Colombani et al. 2003); by contrast, adult females
have completed development but require large amounts of nutrients
and energy to support egg production (Laws and Drummond-Bar-
bosa 2017). The larval fat body is also remodeled during meta-
morphosis (Nelliot et al. 2006), which might alter the mechanisms
linking immunity to physiology. Indeed, the nuclear receptor HNF4
was recently shown to be required in oenocytes for the conversion of
larval lipid reservoirs into hydrocarbons for cuticular waterproofing
in adults (Storelli et al. 2019), suggesting that the fat body is subject to
different physiological demands depending on the developmental
stage. Collectively, our results suggest that Svp may function in the
adult female fat body to regulate genes that scavenge and eliminate

Figure 2 svp knockdown in the adult female fat body differentially regulates 132 genes. (A) Schematic of svp RNAi and RNA isolation in adult
females. (B) RT-qPCR analysis of svp from fat bodies of females at five days of fat body Luc control or svp RNAi showing the mean6SEM. �P,0.05.
(C) Pie chart showing the types of transcripts identified in the adult female fat body by RNA sequencing. (D) Venn diagram comparing the number of
genes identified by RNA sequencing to the number of genes identified by iTRAQ proteomic analysis (Matsuoka et al. 2017) in adult female fat
bodies. (E) Scatter plot of normalized transcript abundance in FPKM (fragments per kilobase of transcript per millionmapped reads) of control vs svp
knockdown fat bodies. Significantly upregulated genes, purple; significantly downregulated genes, green; unchanged, gray. (F) Volcano plot of
differentially expressed genes graphing the statistical significance [-log10(padj)] against themagnitude of differential expression (log2 Fold Change).
The horizontal dotted line represents P=0.05, such that all points above that line are considered statistically significant. (G) Classification of genes
corresponding to significantly changed transcript levels in svp RNAi compared to control RNAi. (H) Pie charts of protein-coding gene classifications
based on GLAD analysis for significantly downregulated (blue) and upregulated (purple) genes.

n■ Table 1 Total number of mapped reads for each RNA
sequencing library

Sample # of Reads
# of Mapped

Reads % Mapped

Luc control, Rep 1 38,922,918 38,040,044 97.73%
Luc control, Rep 2 40,188,640 38,345,558 95.41%
Luc control, Rep 3 41,454,476 39,698,160 95.76%
svp RNAi, Rep 1 41,454,476 43,317,932 96.71%
svp RNAi, Rep 2 36,380,868 35,132,654 96.57%
svp RNAi, Rep 3 38,922,918 37,253,098 95.71%
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foreign pathogens as a mechanism to prevent activation of the IMD
pathway [which is an energy-intensive process (Buttgereit et al.
2000; Davoodi et al. 2019)], thereby freeing up resources to support
reproduction in adult females.

Svp modulates the transcription of genes involved in
xenobiotic responses
As a second strategy to identify a select group of candidate Svp targets,
we also performed GO analysis [clusterProfiler R; (Yu et al. 2012)] of
transcripts that were significantly altered when svp was knocked
down in the adult female fat body. In accordance with the analysis
described above (of genes with a log2 fold change of at least61.5), the
GO analysis of our RNA sequencing data did not identify gene
enrichment for any specific nutrient or metabolic pathway. Instead,
GO analysis showed that a subset of genes involved in the response to
xenobiotics (pollutants, insecticides, and drugs) are significantly
regulated in response to svp knockdown (Figure 4A).

The breakdown of toxic molecules involves an elaborate three-
phase system tometabolize xenobiotics into innocuous molecules and
facilitate their excretion (Xu et al. 2005; Yu 2008). During phase I,
xenobiotics are oxidized by cytochrome P450 (Cyp450) monooxy-
genases to introduce reactive and polar groups to substrates (Yu
2008). These proteins are membrane-bound monooxygenases that are
involved in a wide array of physiological processes including detox-
ification, steroid metabolism, and fatty acid metabolism (Feyereisen
1999; Zangar et al. 2004; Xu et al. 2005). Xenobiotic metabolites

generated during phase I are further converted by phase II enzymes
[glutathione-S-transferases (GSTs), UDP-glucuronosyltransferases
(UGTs), and carboxylases] through conjugation reactions that add
functional side groups (such as hydroxyl, carboxyl, and epoxide) to
increase hydrophobicity (Yu 2008). Phase III transporters [ATP-bind-
ing cassette (ABC) transporters and Organic anion transport proteins
(Oatps)] act in the final phase of detoxification to export converted
organic products out of the cell (Groen et al. 2017).

Genes involved in each step of the xenobiotic response were
altered when svp was knocked down in the adult female fat body.
Genes encoding members of the Cyp450 family (Cyp12d1-d, Cyp4e3,
and Cyp4p2), which initiate phase I of the detoxification process (Xu
et al. 2005), were significantly downregulated in svp knockdown fat
bodies (Figure 4B-D). One exception was the gene phm (FBgn0004959),
encoding a Cyp450 family member involved in ecdysteroid bio-
synthesis (Chávez et al. 2000), which was upregulated in the absence
of svp (Table S5). Transcription of the phase II enzyme gene, GstD5
(FBgn0010041), was also significantly decreased in svp RNAi fat
bodies (Figure 4B,C), suggesting that Svp normally induces expres-
sion of these genes. By contrast, genes encoding metallothionein
(Mtn) proteins were significantly upregulated in svp knockdown fat
bodies (Figure 4B-D), suggesting that Svp activity in the adult female
fat body represses these genes. Mtn proteins are xenobiotic-induced
enzymes involved in heavy metal detoxification and protection
against free radicals, and have been implicated in the response to
xenobiotic and immune stress (Figure 4D) (Bonneton et al. 1996).

Figure 3 Knockdown of svp in adult female fat bodies reduces expression of genes involved in bacterial recognition, melanization, and clotting. (A)
Classification of genes significantly downregulated with a log2 fold change of -1.5 or higher. (B) Quantification of normalized transcript expression
(FPKM) for significantly downregulated recognition genes in control and svp RNAi fat bodies. Data shown as mean6SEM. �P ,0.05; ���P ,0.001,
two-tailed Student’s t-test. (C) Cartoon of peptidoglycan recognition proteins (bound to peptidoglycan present in cell walls of most bacteria, yellow
circles), whose transcripts are significantly downregulated by svp RNAi. (D) Quantification of normalized transcript expression (FPKM) for
significantly downregulated melanization and clotting genes in control and svp RNAi fat bodies. Data shown as mean6SEM. �P ,0.05;
��P ,0.01; ���P ,0.001, two-tailed Student’s t-test. (E) Simplified cartoon of the melanization and clotting cascade in response injury. Proteins
encoded by significantly downregulated genes in the absence of svp are included.
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Additionally, genes encoding detoxification phase III transporters
(Oatps) were also upregulated in the fat body in the absence of svp
(Figure 4B-D; Table S5). Interestingly, svp knockdown did not affect
the transcript levels of cap-n-collar [cnc (FBgn0262975); encodes
Nrf2 homolog] or forkhead box, sub-group O [foxo (FBgn0038197)](Table
S2), which encode known regulators of detoxifying and antioxi-
dant genes (Ma 2013; Klotz et al. 2015). Comparison of known
Cnc targets identified by microarray (Misra et al. 2011) with those
determine by our RNA sequencing analysis identified 22 common
transcripts (Table S6), consisting mostly of the detoxifying pro-
teins described above. In addition, comparison of Svp-regulated
genes with FOXO targets identified by ChIP-seq (Birnbaum et al.
2019) revealed at least 10 common transcriptional targets, in-
cluding Cyp4e3 (FBgn0015035) (Table S7). Thus, Svp appears to

share some common targets involved in xenobiotic responses with
Cnc and Foxo.

It is conceivable that the upregulation of Mtn and Oatp transcripts
is a secondary consequence of the downregulation of Cyp4e3 when
svp is knocked down in the adult female fat body. It was previously
shown that loss of Cyp4e3 in Malpighian tubules increases the levels
of hydrogen peroxide and induces JAK/STAT and NF-kB-mediated
stress responses (Terhzaz et al. 2015). Mtn transcription is induced in
mammalian hepatic cell lines in response to hydrogen peroxide
(Dalton et al. 1994). Mtns are able to scavenge a variety of reactive
oxygen species (ROS), including hydrogen peroxide (Inoue et al.
2009), suggesting that Mtns protect against oxidative stress in addi-
tion to regulating metal abundance. Therefore, we speculate that svp
knockdown in the fat body may cause the accumulation of toxic

Figure 5 Model for proposed
role of Svp in the adult female
fat body to regulate oogenesis.
Our previous work showed that
Svp is required in adult female
adipocytes to control GSC num-
ber and early germline cyst survival
and in oenocytes for vitellogenic
follicle survival. This study iden-
tifies potential downstream tar-
gets for Svp and suggests the
model that Svp activity in the fat
body might promote oogenesis
through a mechanism involving

an enhancement of the initial defense against bacteria (to prevent full immune activation) and of Cyp450 detoxification mechanisms
(to inhibit secondary stress response pathways).

Figure 4 Differentially expressed transcripts are significantly enriched for genes involved in xenobiotic responses. (A) Gene ontology (GO) analysis
of significantly upregulated (purple) and downregulated (green) genes in svp RNAi females compared to Luc control. (B) Some of the genes
significantly enriched based on GO analysis that are up- or downregulated in the absence of svp. (C) Quantification of normalized transcript
expression (FPKM) for significantly enrichedgenes in control and svp RNAi fat bodies. Data shown asmean6SEM. �P,0.05; ��P,0.01; ���P,0.001,
two-tailed Student’s t-test. (D) Simplified cartoon of detoxification of xenobiotics. Cyp4e3 and Cyp4p2 are predicted to localize to the endoplasmic
reticulum (UniProt.org), whereas Cyp12d1-d is predicted to localize to the mitochondrial inner membrane (UniProt.org).
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molecules (as a result of Cyp4e3 downregulation), leading to in-
creased expression of Mtns and Oatps to eliminate these compounds
from the cell.

Exposure to xenobiotics has long been known to result in per-
turbations of the immune system (Luster et al. 1989). In addition to
their role in metal metabolism, Mtns have also been implicated in
immune functions. Specifically, transcription of mammalian hepa-
tocyte MT-1 is activated by STAT binding in response to lipopoly-
saccharide exposure (Arizono et al. 1995; Coyle et al. 2002),
suggesting that under increased immune challenge Mtns possibly
act as antioxidants in response to inflammation (Arizono et al.
1995). It is unclear whether Drosophila Mtn proteins have roles in
regulating the immune response or whether they are induced
downstream of the JAK/STAT pathway [potentially also down-
stream of reduction of Cyp4e3 (Terhzaz et al. 2015)]. In addition, it
is unclear whether knockdown of svp in adult female fat bodies
activates the JAK/STAT pathway. Nevertheless, it would be in-
teresting to investigate whether the increased transcription of Mtn
and Oatp genes observed when svp is knocked down might reflect
the regulatory cross-talk between Mtns and immune response
pathways. Collectively, our RNA sequencing results suggest that
loss of svp and the reduced expression Cyp450 xenobiotic response
genes in the adult female fat body could potentially result in
accumulation of toxic compounds, causing activation of secondary
downstream stress mechanisms.

Oogenesis is an energy-intensive process that is tightly regulated
to ensure reproductive success (Schwenke et al. 2016; Laws and
Drummond-Barbosa 2017). Mounting a full immune response and
chemically inactivating harmful toxins from the body also require a
significant amount of energy (Buttgereit et al. 2000). Our RNA
sequencing analysis of potential Svp targets in the adult female fat
body suggests that Svp normally functions to: 1) enhance the initial
organismal defense against microorganisms and thus prevent a full
immune response (e.g., involving the IMD pathway); and 2) optimize
the levels of Cyp450s for detoxification of xenobiotics to prevent
activation of stress response pathways. Through these actions, Svp
might help allocate resources to promote distinct aspects of oogenesis
(Figure 5). This model will be tested in future studies, and many
additional questions remain regarding this potential model and
beyond. For example, it is unknown whether, upon svp knockdown,
reduced expression of bacterial recognition proteins (and thereby
hampered initial bacterial defense) might lead to the activation of the
humoral/IMD immune system at a later time point in the fat body. It
is also possible that reduced levels of detoxification enzymes in the
absence of svp might result in the accumulation of xenobiotics that
activate an immune response, reminiscent of mammalian innate
T-cells that recognize and process allergens and other environmental
chemicals prior to their presentation to lymphocytes (Minnicozzi
et al. 2011; Germolec et al. 2017; Maeda et al. 2019). It is also not
known at this point whether these changes in immune function and
xenobiotic response in the absence of svp occur in adipocytes,
oenocytes, or both cell types, or what their functional consequence
is to the steps of oogenesis affected by adipocyte/oenocyte Svp activity
(Weaver and Drummond-Barbosa 2019). Finally, it remains to be
tested whether the differentially expressed genes identified in our
dataset contribute to the regulation of the processes of oogenesis that
are affected by svp knockdown in adipocytes and oenocytes (Weaver
and Drummond-Barbosa 2019). Deciphering the complex mecha-
nisms of Svp activity in the adult female fat body and how they
regulate distinct aspects of oogenesis will be a fertile area for future
research.
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