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A B S T R A C T

Background: Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent malignancies in the world,
and tumor metastasis is still the main reason for disease progression. Accumulating evidence shows that
SH3BGRL2 may play a key role in tumor progression and metastasis. However, the role of SH3BGRL2 in ccRCC
has not been systematically investigated and remains elusive.
Methods: The clinical significance of SH3BGRL2 was evaluated by bioinformatic analysis and tissue microarray
(TMA) samples. SH3BGRL2 expression was determined by RT-PCR, western blot and immunohistochemistry
staining. Tumor suppressive effect of SH3BGRL2 was determined by both in vitro and in vivo studies. Western
blot, chromatin immunoprecipitation assay and luciferase report assay were applied for mechanism dissection.
Findings: SH3BGRL2 was crucial for epithelial-mesenchymal transition (EMT) progression and metastasis in
ccRCC. Clinically, SH3BGRL2 was identified as an independent prognostic factor for ccRCC patients. Gain- and
loss-of-function results suggested that SH3BGRL2 played a critical role in cell proliferation, migration and inva-
sion. Mechanistically, we found that SH3BGRL2 acted as a tumor suppressor through Hippo/TEAD1 signaling,
then TEAD1 altered Twist1 expression at the transcriptional level via directly binding to its promoter region.
Interpretation: Our findings established that SH3BGRL2 performed as a tumor suppressor and modulator via
Hippo/TEAD1-Twist1 signaling in ccRCC, and the alteration of SH3BGRL2 could serve as a functional response
biomarker of tumor progression and metastasis in ccRCC.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Renal cell carcinoma (RCC) is one of the most common cancers in
the world, accounting for 4.2% of all new cancer cases [1]. Clear cell
renal cell carcinoma(ccRCC), which also known as kidney renal clear
cell carcinoma (KIRC), is the most common subtype of RCC and
accounts for 80% of all kidney cancers [2]. Although several treat-
ments may be beneficial for patients with localized ccRCC, but tumor
metastasis is still the main reason for disease progression, and about
30% of patients will relapse after initially surgical resection [3, 4].
Therefore, exploring new molecules involved in ccRCC progression
and metastasis is the key to finding new targets for ccRCC treatment.

SH3BGRL2, was first identified in 2002, belong to SH3BGR family,
which includes SH3BGR, SH3BGRL, SH3BGRL2 and SH3BGRL3 [5].
Recent study found the expression of SH3BGR family varies signifi-
cantly at different developmental stages and organ types, suggesting
that abnormal expression of SH3BGR members may lead to a variety
of diseases [6]. However, biological functions of SH3BGR family mem-
bers are still largely unclear. Previous study reported SH3BGR sup-
presses cell migration and angiogenesis in Kaposi’s Sarcoma [7].
Interesting, Wang et al. suggested SH3BGRL may be an oncogene in
mice, but as a tumor suppressor gene in human [8]. Xu et al. found
SH3BGRL as a novel prognostic biomarker is down-regulated in acute
myeloid leukemia [9]. Our previous study and another group also
found SH3BGRL3 could be as a biomarker in kidney and bladder
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Research in context

Evidence before this study

Emerging studies found the expression of SH3BGR family varies
significantly at different developmental stages and organ types,
suggesting that abnormal expression of SH3BGR members may
lead to a variety of diseases. Recently, our study and another
study showed that SH3BGRL3 promotes kidney cancer and
bladder cancer progression. However, as a novel gene in
SH3BGR family, the function of SH3BGRL2 is still largely
unknown in clear cell renal cell carcinoma (ccRCC).

Added value of this study

Our findings revealed for the first time that SH3BGRL2 downre-
gulation was commonly detected in high-grade ccRCC and
might serve as a biomarker or even a therapeutic target for
ccRCC patients. Additionally, gain- and loss-of-function results
suggested that SH3BGRL2 played a critical role in ccRCC tumor
growth and metastasis. Mechanistically, we found that
SH3BGRL2 acted as a tumor suppressor through Hippo/TEAD1/
Twist1 signaling pathway.

Implications of all the available evidence

Our findings identified SH3BGRL2 as a novel tumor suppressor
gene that modulates the metastatic potentials of ccRCC, and
suggested that SH3BGRL2 servered as a clinical biomarker and
SH3BGRL2/ Hippo/TEAD1/ Twist1 signaling pathway might be a
promising therapeutic target for ccRCC.
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cancer [10, 11]. SH3BGRL2, as a new member of the SH3BGR family,
containing a Src homology 3 (SH3) and an ENA/VASP Homology 1
(EVH1) domain, located in the nucleus and in the perinuclear region
[5]. Considerable evidence suggests that SH3 and EVH1 domain plays
a central role in cell growth, adhesion and migration [12, 13], indicate
SH3BRGL2 may involve in a variety of biological procession. Tong et
al. reported that SH3BGRL2 might play a crucial role in nervous sys-
tem development and intestine formation in zebrafish model [6].
Recently, emerging studies reported SH3BGRL2 were significantly
down-regulated in esophageal squamous cell carcinoma [14] and
ovarian cancer [15], which meant SH3BGRL2 might play a key role in
tumor suppression. However, the detailed function of SH3BRGL2 in
tumor, especially in ccRCC, remains elusive.

Hippo pathway is a highly conserved signaling pathway, which
mainly comprises large tumor suppressor 1/2 (LATS1/2), yes associa-
tion protein (YAP) and TEA domain (TEAD) transcription factors [16].
Decreased LATS1/2 expression contributed to many types of tumor
progression, such as colorectal cancer and lung cancer [17, 18]. Our
previous study also found loss of LATS1/2 are correlated with poor
survival in RCC patients [19]. Once hippo signaling is activated, YAP is
phosphorylated and then degraded in the cytoplasm. But when YAP
is activated, it localizes in the nucleus and binds to TEAD, then drives
tumor growth and metastasis [20]. Moreover, YAP could also pro-
mote tumor angiogenesis and dasatinib resistance in renal cell carci-
noma [21, 22]. However, whether YAP promotes ccRCC metastasis
remains unclear.

In this study, we first investigated the biological mechanism of
SH3BGRL2 in ccRCC. Surprisingly, we found that the expression of
SH3BGRL2 was significantly reduced in tumor tissues and cells, and
its low expression predicted a poor prognosis in patients with ccRCC.
Subsequently, our gain- and loss-of-function experiments indicated
SH3BGRL2 significantly inhibited proliferation, migration and inva-
sion of tumor cells. Further studies found that SH3BGRL2 could
inhibit the metastasis of ccRCC by regulating Hippo/TEAD1 signaling
pathway, then TEAD1 altered Twist1 expression at the transcriptional
level via directly binding to its promoter region. Collectively, our
results indicated SH3BGRL2 might serve as a biomarker in judging
the tumor progression and as a new target for ccRCC treatment.

2. Materials and methods

2.1. Clinical tissues

Three independent cohorts of ccRCC surgical specimens were
obtained from Shanghai Tenth People’s Hospital. For group 1, tissue
microarrays (TMAs), 112 ccRCC and 30 adjacent non-tumor tissues
were collected. For group 2, 16 fresh clinical samples were collected
for further PCR, western blot (WB) and Immunohistochemistry (IHC)
detection. For group 3, 5 patients suffered recurrence were enrolled.
Their matched adjacent normal tissues, primary tumor, and recurrent
tumor tissues were collected for further WB assay. The tissue samples
used for the study were conformed to the 1975 Declaration of Hel-
sinki and was approved by the ethics committee of Shanghai Tenth
People’s Hospital, School of Medicine in Tongji University. Informed
consent was obtained from all patients.

2.2. Cell culture and lentivirus transfection

HK2, A498, 769-P, ACHN, 786-O, Caki-1and Caki-2 were obtained
from Cell Bank of the Chinese Academy of Sciences. HK2 cells were
cultured in Keratinocyte Serum Free Medium and the other tumor
cell lines were cultured in Dulbecco's modified Eagle's medium. All
cells were supplemented with 10% fetal bovine serum, 1% penicillin/
streptomycin and cultured in humidified chamber at 37 °C under 5%
CO2. The lentivirus packaging were using 239T cells. Briefly speaking,
the pLKO.1 and pWPI plasmids were used as vector, psPAX2 and
pMD2.G were used as packaging and envelop plasmids. The target
sequences used in this study are listed in Supplemental Information,
Methods and Materials.

2.3. Western blot

Western blot assay were performed as described previously [23].
Briefly speaking, cells were lysed in RIPA lysis buffer containing PMSF
on ice. The concentrations of proteins were determined using a BCA
protein kit (Beyotime, China) and whole lysates were mixed with
6 £ SDS loading buffer, heated at 100 °C for 10 min. A total of 30 mg
of protein from each sample were loaded, running and then trans-
ferred to PVDF membranes. Immunoreactive bands were visualized
using ECL western blot kit. The detailed antibodies are listed in Sup-
plemental Information, methods and materials.

2.4. RNA extraction and quantitative real-time PCR

Total RNA was extracted using an RNeasy mini kit (Qiagen, Ger-
many). The RNA concentration was measured using Nanodrop 2000
(Thermo Scientific, USA). cDNA was synthesized using the QuantiTect
Reverse Transcription Kit (Qiagen) with the primers (Sangon Biotech,
Shanghai, China) according to the manufacturer’s instructions.
GAPDHwas used to correct the difference in template input. The rela-
tive RNA expression was calculated using the 2�DCT method. The
detailed primers are listed in Supplemental Information, Methods
and Materials.

2.5. Cell proliferation, colony formation, wound healing and Matrigel
invasion assays

Cell proliferation was measured by CCK-8 Kit according to the
manufacturer's protocols. For colony formation assay, cells were
seeded in 6-well plates at a density of 5 £ 102 cells per well then
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stained and photographed after 2 weeks. Wound healing assay were
used to detect cell migration ability as previously describe [24]. Cell
invasion assay were performed using matrigel-coated chamber
(Corning, USA). In brief, 5 £ 104 ccRCC cells with serum-free media
were seeded into the upper chambers and stained after 24 h.

2.6. Tissue microarray and immunohistochemistry

The production of tissue microarray (TMA) was as described pre-
viously [25]. Briefly, a 0.6 mm diameter cylinder was used to take the
core from the representative area of each tissue and the tissue cylin-
der was placed in a paraffin block. Immunohistochemistry (IHC)
experiments were performed as previously described [26]. In general,
tissue sections were incubated with primary antibodies and placed at
4 °C overnight, then secondary antibodies were incubated at room
temperature. IHC staining was independently assessed by three expe-
rienced pathologists. The immunoreactive score representing the
proportion of positively stained tumor cells were graded as: 0
(<10%); 1 (11%�25%); 2 (26%�50%); 3 (51%�75%) and 4 (>75%). The
intensity of staining was determined as: 0 (no staining); 1 (weak
staining = light yellow); 2 (moderate staining = yellow brown); and 3
(strong staining = brown). A semiquantitative scoring criterion was
used, in which the staining index (values 0�12) were calculated by
multiplying the staining intensity and the positive cells proportion.
Finally, cases were classified into two different groups: low expres-
sion cases (score 0�6) and cases with high expression (score 7�12).

2.7. Chromatin immunoprecipitation assay

The CHIP assay were in accordance with the Cold Spring Harbor
protocol [27]. Briefly speaking, cells were treated with 1% formalde-
hyde at room temperature for 10 min to cross-link DNA. After sonica-
tion, cross-linked chromatin was pre-cleared with A/G-agarose
beads, then immunoprecipitated with anti-TEAD1 antibody over-
night at 4 °C. For the negative control, IgG was used. Specific primers
for amplifying the target sequence of the human Twist1 promoter are
listed in Supplemental Information, Methods and Materials. PCR
products were identified by agarose gel electrophoresis.

2.8. Luciferase reporter assay

Human Twist1 promoter region was constructed into pGL3-basic
vector (Promaga, USA). Then cells were seeded in 24-well plates and
transfected with cDNA via Lipofectamine 3000 (Invitrogen). pRL-TK
was used as negative control. The luciferase activity measured were
based on the manufacturer's manual (Promega).

2.9. Xenograft tumor and metastasis assay

The animal experiment was approved by the animal committee of
Tongji university. For tumor growth model, 2£ 106 cells with Lucifer-
ase reporter were injected subcutaneously into the flanks of nude
mice. The tumor growth was measured every week and mice were
sacrificed four weeks later. The tumor volume was calculated by
length £ width2 £ 0.5. To generate tumor metastasis model, 2 £ 106

cells were suspended in 100ml of PBS and injected into the tail vein
of nude mice. Metastases were monitored through IVIS Lumina II sys-
tem (Caliper Life Sciences, Hopkinton, MA). The bilateral lung tissues
were excised and photoed, then fixed with 4% paraformaldehyde at
room temperature and analyzed by HE staining. Mouse survival was
monitored after tumor transplantation.

2.10. Statistical analysis

Statistical analysis was performed using SPSS 23.0 software (IBM,
USA). For comparisons, the Chi-square (x2), Student’s t-test and One
way ANOVA were used, as appropriate. The optimal cut-off value was
determined by a ROC curve analysis in MedCalc software (MedCalc,
Korea). Survival curves were calculated using the Kaplan-Meier
method and differences were assessed by log-rank test. The Cox pro-
portional hazards model was used to determine risk factors, which
were screened by univariate analysis. Statistical significance was
indicated by p values *p < 0.05, **p < 0.01 and ***p < 0.001.

3. Results

3.1. The pattern and significance of SH3BGRL2 in TCGA

To determine the role of SH3BGRL2 in ccRCC, we firstly detected
the expression level of SH3BGRL2 in TCGA and GEO database. Inter-
estingly, SH3BGRL2 was downregulated in tumor tissues compared
with normal kidney tissues from TCGA database (Fig. 1a left). In addi-
tion, decreasing of SH3BGRL2 was observed in ccRCC metastatic-PDX
tissues when compared with primary-PDX tissues (Fig. 1a right). Sub-
sequently, the TCGA data showed that patients with lower expression
levels of SH3BGRL2 had worse survival (Fig. 1b) and shorter disease-
free survival rate (Fig. 1c). Furthermore, statistical analysis revealed
that SH3BGRL2 expression was correlated with TNM stage (Fig. 1d-f),
pathology histologic grade (Fig. 1g), clinical stage (Fig. 1h) and tumor
recurrence (Fig. 1i) in TCGA patients (Supplementary Table 1), and 3
studies in Oncomine (www.oncomine.org) also confirmed these find-
ings (Supplementary Fig. 1a-h). Besides, we also found the expression
level of SH3BGRL2 in ccA subtype was higher than ccB subtype(Sup-
plementary Fig. 2), which suggested a better long-term prognosis
[28]. More importantly, according to the pathological grade and clini-
cal stage classification, patients in each stage or grade with
SH3BGRL2 low expression had poorer survival with those with
SH3BGRL2 high expression (Supplementary Fig. 3a-h).

To evaluate whether the expression levels of SH3BGRL2 was asso-
ciated with prognosis of ccRCC patients, based on the optimal cut-off
values of SH3BGRL2 (Supplementary Fig. 4a-b), the 533 ccRCC
patients were divided into two groups: SH3BGRL2 high expression
group and SH3BGRL2 low expression group (Supplementary Table 1).
Univariate Cox proportional hazards regression analysis showed that
advanced TNM stage, pathological grade, clinical stage, recurrence
status and low expression of SH3BGRL2 were correlated with poorer
overall survival (Fig. 1j, Supplementary Table 2). In addition, the mul-
tivariate Cox regression analysis revealed SH3BGRL2, combined with
tumor metastasis and advanced clinical grade stage, were indepen-
dent prognostic factors for ccRCC patients (Fig. 1k, Supplementary
Table 2). These data suggested that SH3BGRL2 played a vital role in
tumor progression and metastasis in ccRCC.

Moreover, analysis of TCGA database showed that SH3BGRL2 was
significantly decreased in various types of human cancer, such as
breast, uterus, esophagus, brain, blood, lung and skin cancer (Supple-
mentary Fig.5a), and SH3BGRL2 down regulation correlated with
poor prognosis in human cancers, including ovarian cancer, thyroid
carcinoma, pheochromocytoma and paraganglioma, lung adenocarci-
noma, head-neck squamous cell carcinoma and breast cancer(Sup-
plementary Fig.5b), which indicated that SH3BGRL2 might be a
critical tumor suppressor gene in various tumors.

3.2. Dysregulated SH3BGRL2 in ccRCC indicates a poor prognosis

Considering the SH3BGRL2 expression level in TCGA database was
detected by RNA sequencing. Thus, we analyzed a large cohort of clin-
ical samples both in RNA and protein level to verify the results in
TCGA database. Consistently, SH3BGRL2 expression was lower in
62.5% ccRCC patients than paired adjacent normal tissues (Fig. 2a).
WB assays also confirmed the RT-PCR findings (Fig. 2b). Moreover,
the expression levels of SH3BGRL2 showed a decreasing trend in
matched adjacent non-tumor tissue, primary tumor, and recurrence
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Fig. 1. The Pattern and Significance of SH3BGRL2 in TCGA. a. The expression of SH3BGRL2 in ccRCC from TCGA database(left) and GEO database(right). b-c. Kaplan�Meier analy-
sis indicated that higher expression of SH3BGRL2 was associated with longer overall survival(b) and disease-free survival(c). d-i. The expression of SH3BGRL2 in different grades
and stages: tumor stage(d), lymphatic invasion(e), metastasis status(f), pathological grade(g), clinical stage(h), recurrence status(i). j-k. The outcomes of univariate(j) and multivari-
ate(k) analysis. The HRs are presented as the means (95% confidence interval). The n values indicate the number of patients. Error bars represent SD of the mean. (Student's t-test,
one-way ANOVA).
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samples from 5 recurrent patients (Fig. 2c), which consistent with
TCGA analysis results.

Next, the correlation between SH3BGRL2 and ccRCC prognosis
was evaluated. Immunohistochemistry (IHC) staining showed
SH3BGRL2 expression was shrinking continuously in clinical Fuhr-
man stage (Fig. 2d and 2f), and also downregulated in 112 ccRCC
tissues compared with 30 normal kidney tissues (Fig. 2e). Moreover,
patients with lower SH3BGRL2 expression were correlated with the
advanced tumor stage (Fig. 2g, Table 1) and metastasis status (Fig. 2h,
Table 1). Kaplan�Meier analysis showed that the 5-year overall sur-
vival rate for ccRCC patients with lower SH3BGRL2 expression signifi-
cantly reduced when compared with the patients with higher



Fig. 2. Dysregulated SH3BGRL2 in ccRCC indicates a poor prognosis. a-b. RT-PCR(a) and western blot(b) analysis of SH3BGRL2 expression levels in 16 ccRCC tissues and paired
non-tumor kidney tissues. c. Western blot analysis of SH3BGRL2 expression in matched para-tumor, primary-tumor and recurrent tumor tissues. d-e. Representative TMA images
show SH3BGRL2 staining(d), and comparison of the IHC score between tumor and non-tumor kidney tissues(e). f-h. The expression of SH3BGRL2 in different grades and stages:
fuhrman grade(f), tumor stage(g) and metastasis status(h). i. Kaplan�Meier analysis of TMA patients with low versus high expression levels of SH3BGRL2. The n values indicate the
number of patients. Error bars represent SD of the mean.
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SH3BGRL2 expression (Fig. 2i). More importantly, expression of
SH3BGRL2 was correlated with OS (p = 0.031, hazard ratio (HR)=
0.329, Table 2), which was consistent with our previously TCGA
results (Fig. 1k and 1l).

Taken together, combined public RNA-seq data with our clinical
data, these findings indicated that downregulation of SH3BGRL2 might
play a potential role to promote the malignant progression of ccRCC.

3.3. SH3BGRL2 inhibited proliferation, migration and invasion of ccRCC
cells

Next, the biological functions of SH3BGRL2 in ccRCC progression
were investigated. In order to choose the most suitable RCC cell lines,
we detected SH3BGRL2 expression level in human renal proximal
tubular epithelial cells HK2, clear cell renal cell carcinoma (ccRCC) line
A498, 769-P, 786-O, Caki-1 and papillary renal cell carcinoma (pRCC)
cell lines ACHN, Caki-2. Real-time PCR and western blot showed that
SH3BGRL2 mRNA and protein expression, respectively, were markedly
downregulated in all RCC cell lines compared to primary normal HK2
cells (Fig. 3a and 3b). At last, we chose to establish SH3BGRL2 stable
knockdown (choose the high efficiency SH1) in 786-O (Fig. 3c left,
which has more endogenous SH3BGRL2) and overexpression in A498
cell lines (Fig. 3c right, which has less endogenous SH3BGRL2). Strik-
ingly, CCK-8 assay showed SH3BGRL2 depletion enhanced 786-O cell
line proliferation (Fig. 3d left), and SH3BGRL2 overexpression reduced
it in A498 cell line (Fig. 3d right). The colony formation assay also dem-
onstrated these findings (Fig. 3e and 3f). Results of both wound-heal-
ing assay and transwell assay revealed that the 786-O sh-SH3BGRL2



Table 1
Correlation between clinic-pathological parameters of patients enrolled.

Clinical
characteristics

No.of patients
(n = 112)

SH3BGRL2 low
(n = 64)

SH3BGRL2 high
(n = 48)

P valuea

Age (years) 0.544
�60 64 35 29
>60 48 29 19
Gender 0.134
Male 74 46 28
Female 38 18 20
Tumor size 0.784
�4 cm 52 29 23
>4 cm 60 35 25
Laterality 0.091
Left 55 27 28
Right 57 37 20
Fuhrman grade 0.269
G1-2 47 24 23
G3-4 65 40 25
T stage 0.001*
Ⅰ-Ⅱ 71 32 39
Ⅲ-Ⅵ 41 32 9
Metastasis 0.019*
No 94 52 42
Yes 18 4 14

* Statistically significant (p < 0.05).
a p value from Chi-square test.
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cells had a higher wound-closure rate and more capacity of cell inva-
sions than mock control cells(Fig. 3g and 3i), whereas the A498 OE-
SH3BGRL2 cells had a slower migratory and less invasive capacity than
vector control cells(Fig. 3h and 3j). Therefore, our in vitro data showed
SH3BGRL2 played a suppressive role in regulation of proliferation,
migration, and invasion in ccRCC cells.
3.4. SH3BGRL2 suppressed the growth and metastasis of ccRCC cells in
vivo

The above data demonstrated that SH3BGRL2 might acted as a
tumor suppressor gene to deplete ccRCC cell proliferation, migration
Table 2
Univariate and multivariate cox proportional regression analysis with overall survival.

Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

Age (years)
�60 1.000 0.012* 1.000 0.020*
>60 2.550(1.229�5.290) 2.500(1.152�5.423)

SH3BGRL2
Low 1.000 0.001* 1.000 0.031*
High 0.195(0.075�0.510) 0.329(0.119�0.905)

Gender
Female 1.000 0.536 NA
Male 0.782(0.360�1.701)

Tumor size
�4cm 1.000 0.430 NA
>4cm 1.338(0.649�2.761)

Laterality
Left 1.000 0.283 NA
Right 0.675(0.330�1.383)

Fuhrman grade
G1-2 1.000 0.002* 1.000 0.335
G3-4 4.598(1.756�12.036) 1.769(0.554�5.645)

T stage
Ⅰ-Ⅱ 1.000 <0.0001* 1.000 0.286
Ⅲ-Ⅵ 6.134(2.730�13.784) 1.714(0.637�4.610)

Metastasis
No 1.000 <0.0001* 1.000 0.001*
Yes 7.739(3.743�16.000) 4.233(1.766�10.148)

CI confidence interval, HR hazard ratio.
* Statistically significant (p < 0.05)

p value from Cox regression analyses.
and invasion. We next explored SH3BGRL2 function in vivo. The 786-
O/sh-SH3BGRL2 cells were inoculated into the flank of nude mice. As
In Vivo Imaging Systems (IVIS) showed, SH3BGRL2 knocked-down
significantly promoted tumor proliferation (Fig. 4a), evidenced by
larger tumor volume (Fig. 4b) and heavier tumor weight (Fig. 4c).

To further explore the effects of SH3BGRL2 in tumor metastasis,
786-O cells labeled with luciferase were injected into tail vein of nude
mice. Increased luciferase signal in tumors of the sh-SH3BGRL2 group
was detected by the IVIS, showing SH3BGRL2 knocked-down pro-
moted ccRCC cell metastases (Fig. 4d). HE analysis also showed an
increase of pulmonary nodules metastasis in sh-SH3BGRL2 group com-
pared with control group (Fig. 4e and 4f). Consistently, metastatic foci
volume of the sh-SH3BGRL2 group in lung and liver were larger than
the control group (Fig. 4g and 4h), and more lung and liver metastases
occurred in sh-SH3BGRL2 group (Fig. 4i and 4j). More importantly,
SH3BGRL2 knocked-down impaired mouse survival (Fig. 4k). Collec-
tively, these observations demonstrated that inhibition of SH3BGRL2
might promote the growth and metastasis of ccRCC cells in vivo.

3.5. SH3BGRL2 inhibited epithelial�mesenchymal transition (EMT) of
ccRCC cells

To dissect the detailed mechanism of SH3BGRL2, we analyzed the
ccRCC RNA expression profiles from TCGA database. Interestingly, GO
enrichment showed that SH3BGRL2 might participate in membrane
related processes, such as hippo signaling, cell junction and endothe-
lium development (Fig. 5a; Supplementary Fig. 6a-f; Table S3). Gene
set enrichment analysis (GSEA) showed SH3BGRL2 expression was
significantly positive with renal system process (Fig. 5b) and cell-cell
junction (Fig. 5c), which means SH3BGRL2 might paly pivotal role in
renal system and tumor EMT progression.

Previous studies reported that most of ccRCC were derived from
renal tubular epithelial cells, and epithelial-mesenchyme transition
(EMT), is a key event that occurs during the cancer invasion and
metastasis with epithelial origin [29, 30]. Based on this, the expression
of EMT markers was detected both in mRNA and protein level. The
results indicated that ZO-1 and E-cadherin, which epithelial marker,
were decreased, whereas the levels of mesenchymal markers includ-
ing N-cadherin, Vimentin and Twist1 were all increased in 786-O sh-
SH3BGRL2 cells (Fig. 5d and f). Conversely, upregulated of SH3BGRL2
in A498 cells led to upregulation of ZO-1 and E-cadherin but downre-
gulation of N-cadherin, Vimentin and Twist1 (Fig. 5e and g). The
immunofluorescence assay also confirmed these results (Fig. 5h).
Therefore, SH3BGRL2 acted as a suppressor of EMT in ccRCC cells.

3.6. SH3BGRL2 regulated ccRCC cell proliferation and EMT via Hippo
signaling pathway

Hippo signaling pathway plays a vital role in many physiological
processes including cell proliferation, differentiation, survival and
metastasis [19, 31, 32]. Moreover, GO enrichment (Fig. 5a) and GSEA
analysis (Fig. 6a) showed SH3BGRL2 expression was positively with
hippo signaling pathway. The pathway enrichment analysis by Gene-
MANIA [33] also showed that the hippo signaling pathway was sig-
nificantly enriched with SH3BGRL2 (Fig. 6b). Additionally, SH3BGRL2
expression was positively correlated with LATS1 and LATS2 expres-
sion in TCGA database (Fig. 6c-d). Therefore, we wondered whether
SH3BGRL2 functioned in ccRCC through regulating hippo signaling
pathway. As expected, western blot showed that LATS1, LATS2 and
phosphorylation of YAP were significantly downregulated in 786-O
sh-SH3BGRL2 cells (Fig. 6e). Conversely, upregulating SH3BGRL2 in
A498 cells led to upregulation of LATS1, LATS2 and phosphorylation
of YAP (Fig. 6f). Previous study indicated when hippo signaling acti-
vated, YAP would be phosphorylated and then degraded in the cyto-
plasm. But when YAP actived, it would localize to the nucleus and
binds to TEAD, then drives tumor growth and metastasis [20].



Fig. 3. SH3BGRL2 inhibited proliferation, migration and invasion of ccRCC cells. a-b. RT-PCR(a) and western blot(b) analysis of SH3BGRL2 expression levels in different RCC cell
lines and normal HK2 cell line. c. Western blot assays validating the efficiencies of SH3BGRL2 knockdown in 786-O cells (left) and overexpression in A498 cells (right). d. CCK-8
assay analyzing cell proliferation in 786-O cells (left) and A498 cells (right). e-f. Colony formation assay assessing cell proliferative ability in 786-O cells (e) and A498 cells (f). g-h.
Cell migratory ability was assessed by wound healing assay in 786-O cells (g) and A498 cells(h). i-j. Transwell assay assessing cell invasion ability in 786-O cells (i) and A498 cells
(j). Data are given as mean § SD.*P< 0.05, **P < 0.01, ***P < 0.001 (Student's t-test).
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Consistent with those studies, SH3BGRL2 knockdown promoted
(Fig. 6g and 6h) and overexpression of SH3BGRL2 inhibited (Fig. 6i
and 6j) nuclear translocation of YAP and TEAD1 enrichment. Further-
more, LATS1 and LATS2 were significantly decreased in metastasis
ccRCC (Fig. 6k and 6n), advanced pathological grade (Fig. 6i and 6o)
and clinical stage (Fig. 6m and 6p) in TCGA database. The
Kaplan�Meier analysis also revealed that patients with higher LATS1
or LATS2 expression in ccRCC had significantly long OS and DFS (Sup-
plementary Fig.7a-b).

To illustrate whether hippo signaling pathway was critical for
SH3BGRL2 mediated ccRCC cells growth and metastasis, we treated
786-O/sh-SH3BGRL2 and A498/OE-SH3BGRL2 cells with YAP-
TEAD1 specific inhibitor Peptide 17 [34] and OE-TEAD1. The results
revealed that the Peptide 17 or OE-TEAD1 significantly alleviated



Fig. 4. SH3BGRL2 suppressed the growth and metastasis of ccRCC cells in vivo. a. Representative images of BALB/c nude mice injected with 786-O cells subcutaneously. b. Analy-
sis of tumor volume of mice measured every week (n = 4 per group). c. Analysis of tumor weight of xenograft tumors(n = 4 per group). d. Representative images of metastasis by an
in vivo bioluminescence imaging system. e. HE images of pulmonary micro-metastases. f. the number of pulmonary metastasis in each group. g-h. Macroscopic appearance of lung
(g) and liver(h) metastatic nodule. i-j. The number of mice with lung(i) and liver(j) metastases in each group (n = 8 per group). k. Mice survival curves (n = 8 per group). Data are
given as mean § SD.*P < 0.05, **P< 0.01, ***P< 0.001 (Student's t-test, Chi-square test).
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or promoted the effects of SH3BGRL2 on proliferation (Fig. 7a and
7b, Supplementary Fig. 8), migration (Fig. 7c and 7d) and invasion
(Fig. 7e and 7f, Supplementary Fig. 9) in ccRCC cells. Meanwhile,
western blot assay indicated that the EMT related marker protein
level were reversed in 786-O sh-SH3BGRL2 cells treated with
Peptide 17(Fig. 7g) and in A498 cells co-transfected with
SH3BGRL2 and TEAD1(Fig. 7h). Collectively, these results demon-
strated that SH3BGRL2 inhibited the proliferation, migration and
invasion abilities of ccRCC cells through activating LATS1/2-YAP-
TEAD1 signaling pathway.



Fig. 5. SH3BGRL2 inhibited epithelial�mesenchymal transition (EMT) of ccRCC cells. a. Chord graph representing 18 differentially expressed genes between SH3BGRL2 high
expression group and SH3BGRL2 low expression group and the association of these genes to the corresponding raft-related GO terms. b-c. GSEA plot showed SH3BGRL2 level was
positively correlated with renal system process(b) and cell-cell junction(c) in the TCGA dataset. d-e. mRNA expression of EMT-related markers were detected in 786-O cells (d) and
A498 cells (e). f-g. Protein expression of EMT-related markers were detected in 786-O cells (f) and A498 cells (g). h. Immunofluorescence assays detected ZO-1 expression in 786-O
and A498 cells. Data are given as mean § SD.*P< 0.05 (Student's t-test).
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3.7. TEAD1 promoted EMT by transcriptional up-regulation TWIST1

TEAD1, as a co-transcriptional activator of YAP, mediates YAP-
induced cell growth, oncogenic transformation, and EMT in many
cancers [35-37]. Our above data indicated SH3BGRL2 inhibited ccRCC
cells EMT through YAP-TEAD1 pathway. In addition, we found
SH3BGRL2 influence Twist1 expression at the mRNA and protein lev-
els (Fig. 5d-g). In particular, Twist1, as a key regulator in the EMT pro-
gram [38], were much higher in ccRCC tumor tissues than in adjacent
normal tissues(Fig. 8a). Moreover, Twist1 expression was higher in
advanced pathological grades (Supplementary Fig. 10a) and clinical
stages (Supplementary Fig. 10b). The Kaplan�Meier analysis also
revealed that patients with higher Twist1 expression in ccRCC had
significantly short OS (Fig. 8b) and DFS (Fig. 8c). Thus, these results
suggested that Twist1 is a key factor of EMT in ccRCC and Twist1
might the target gene of the co-transcriptional activators YAP/TEAD1.

To test this hypothesis, we firstly analyzed the Twist1 promoter
using JASPAR database [39] to search for potential TEAD1 response



Fig. 6. SH3BGRL2 regulated ccRCC cell proliferation and EMT via Hippo signaling pathway. a. GSEA plot showed SH3BGRL2 level was positively correlated with Hippo signaling
pathway in TCGA dataset. b. GeneMANIA analysis of SH3BGRL2 regulated hippo pathway genes. c-d. TCGA database indicated SH3BGRL2 was positively associated with LATS1(c) and
LATS2(d). e-f. The protein expression of LATS1, LATS2, YAP and TEAD1 in 786-O cells (e) and A498 cells (f). g, i. Immunoblotting analysis of YAP in cytoplasm and nucleus in 786-O cells
(g) and A498 cells (i) separately. h, j. Co-immunoprecipitation with precipitating YAP or IgG antibodies and immunoblotting with YAP and TEAD1 in 786-O cell (h) and A498 cell (j). k,
n. Compared the expression of LATS1(k) and LATS2(n) in adjacent normal tissue, primary-tumor and metastasis tumor tissues in TCGA database. i-m. The expression of LATS1 in differ-
ent grades(i) and stages(m) in TCGA database. o-p. The expression of LATS2 in different grades(o) and stages(p) in TCGA database. (Student's t-test, one-way ANOVA).

10 L. Yin et al. / EBioMedicine 51 (2020) 102596



Fig. 7. SH3BGRL2 suppressed ccRCC proliferation, migration and invasion via modulating Hippo signaling. a-f. Colony formation assay(a, b), wound healing assay(c, d) and
transwell assay(e, f) usingYAP-TEAD1 specific inhibitor Peptide17 or overexpressing TEAD1 to demonstrate the functional connection of SH3BGRL2 and Hippo signaling pathway in
ccRCC cell lines. g-h. Western blot demonstrated that inhibit TEAD1 could rescue the EMT progression after knockdown of SH3BGRL2 in 786-O cells(g), while promotion of TEAD1
could partially hinder the decreasing of EMT protein levels after overexpressing SH3BGRL2 in A498 cells(h). Data are given as mean § SD.*P < 0.05, **P < 0.01(Student's t-test).
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Fig. 8. TEAD1 promoted EMT by transcriptional up-regulation TWIST1. a. TCGA cohort analysis of the Twist1 expression in ccRCC tumor samples and pair-matched normal tis-
sues. b-c. Kaplan�Meier analysis indicated that higher level of Twist1 expression was associated with worse overall survival(b) and disease-free survival(c). d. TEAD1 response ele-
ment motif sequences. e. Bioinformatics analysis of potential TEAD1-binding sites in 1 kb of Twist1 promoter region using Jaspar database. f. ChIP assays showing that TEAD1 can
bind to potential binding sites in the Twist1 promoter. g. Diagram of TEAD1E I-mut and TEAD1E V- mut in the Twist1 promoter. h-i. Co-transfection of TEAD1E wildtype or mutant
in Twist1 promoter pGL3-Luciferase constructs, then into A498 cells with/without TEAD1(h), and into 786-O cells with/without Peptide 17(i). The luciferase assay was applied to
detect the promoter activity. **P<0.01, NS-not significant compared to the controls. The n values indicate the number of patients. Data are given as mean § SD, N.S, not significant,
*P < 0.05, **P < 0.01(Student's t-test).
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elements (TEAD1Es) within proximal 1Kb promoter region (Fig. 8d),
and found six putative TEAD1Es (Fig. 8e). ChIP assay revealed that
TEAD1 could bind to TEAD1E I and TEAD1E V, but not TEAD1E II, III,
IV or VI (Fig. 8f). Then, we cloned this 1 kb SH3BGRL2 promoter into
pGL3-basic luciferase reporter vector (Fig. 8g). The results revealed
that OE-TEAD1 significantly increased the wild-type and Mut1 group
promoter luciferase reporter activity, but no change was observed in
Mut2 group or Mut1&2 group (Fig. 8h). In contrast, adding Peptide 17
could decrease the luciferase reporter activity (Fig. 8i), suggesting
TEAD1 modulated the Twist1 expression via binding to its promoter.

To investigate the clinical correlation between SH3BGRL2, hippo
pathway and Twist1, immunohistochemical staining (IHC) were
tested in ccRCC and adjacent normal tissues (Fig. 9a). We found that
SH3BGRL2, LATS1/2 and P-YAP tended to have higher expression in
normal tissues, while the expression of the TEAD1 and Twist1 were
higher in ccRCC samples (Fig. 9b). Pairwise correlation showed



Fig. 9. Associations of SH3BGRL2 expression with Hippo signaling and Twist1 in ccRCC. a. Representative images of IHC staining for SH3BGRL2, LATS1/2, P-YAP, TEAD1 and
Twist1 in ccRCC tissues and paired normal tissues. b. The IHC score of SH3BGRL2, LATS1/2, P-YAP, TEAD1 and Twist1 in ccRCC tissues and paired normal tissues(n = 16), Data are
given as mean§ SD, (Student's t-test). c. Pairwise Spearman rank correlation among SH3BGRL2, LATS1/2, P-YAP, TEAD1 and Twist1 expression. Blue indicates positive and red nega-
tive correlation as reflected by the color legend below. d. Schematic representation for the mechanism of SH3BGRL2/Hippo-TEAD1 axis as a switch that regulates EMT in human
ccRCC progression and metastasis by targeting Twist1 network.
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SH3BGRL2 was positively correlated with LATS1/2, P-YAP, and was
negatively correlated with TEAD1 and Twist1(Fig. 9c).

4. Discussion

Tumor metastasis leads to a poor prognosis for patients with
ccRCC, but the mechanisms are largely unknown. Accumulating evi-
dence indicates that SH3BGRL2 might play critical roles in the initia-
tion and progression of human cancers [15, 40, 41]. However, the
biological function and molecular mechanisms of SH3BGRL2 in ccRCC
still elusive. In this study, we firstly reported that SH3BGRL2 was
downregulated in ccRCC tumor, especially in metastatic tissue, and
was associated with poor clinical prognosis. Moreover, overexpres-
sion or knockdown SH3BGRL2 could suppress or promote ccRCC cells
proliferation and metastasis both in vitro and in vivo. Mechanically,
SH3BGRL2 activated Hippo-TEAD1signaling and suppressed the tran-
scription of Twist1 to intermediate ccRCC cells metastasis.

SH3BGRL2, located on chromosome 6q13-15 [5], contains four
exons and three introns spread over 72 Kb of genomic DNA. This
genomic region is associated with several solid tumors, such as pros-
tate cancer [42], hepatocellular carcinoma [43] and breast cancer
[44]. Previous studies showed that SH3BGRL2 was downregulated in
esophageal squamous cell carcinoma [14], anaplastic thyroid carci-
noma [45], ovarian chemotherapy resistance cells [15] and endome-
trial stromal cells [46]. Our study also found SH3BGRL2 was down-
expression in ccRCC tumor than adjacent normal tissues. Clinically,
the level of SH3BGRL2 in tumor tissues of ccRCC patients with metas-
tasis or recurrence were lower than those of patients without, and
downregulation of SH3BGRL2 significantly correlated with adverse
pathological and clinical features. In addition, Kaplan-Meier survival
curves showed that ccRCC patients with lower SH3BGRL2 expression
had poorer overall survival and disease-free survival. Furthermore,
the effects of SH3BGRL2 on tumor growth and metastasis were
directly shown in our in vitro and in vivo studies. These clinical and
experimental evidences suggested that SH3BGRL2 could be involved
in ccRCC progression and metastasis and could be used as an inde-
pendent prognostic marker for patients with ccRCC.

The reason for the decrease of SH3BGRL2 expression in ccRCC
remains unclear. As we all known, most of ccRCC are associated with
loss of von Hippel-Lindau tumor suppressor (VHL) function and dereg-
ulation of hypoxia (HIF) pathways [47, 48]. Considering SH3BGRL2
contains two protein binding domains, a Src homology 3 (SH3) and an
ENA/VASP Homology 1 (EVH1) domain [5]. We hypothesis that HIF
and/or VHL might interacted with these two domains. Interestingly,
previous study reported HIF could regulated VHL-PTP1B-Src signaling
axis in metastatic RCC [49].Tang et al. also found HIF-1a acted at
downstream of TNF-a to inhibit VASP expression and to modulate the
acute pulmonary inflammation process [50]. But the detailed relation-
ship of HIF-VHL and SH3BGRL2, needs to be further studied.

Accumulating studies suggests that Epithelial-Mesenchymal Tran-
sition (EMT) plays an important role in tumor invasion and metasta-
sis [29, 51]. However, the driving force of the EMT of ccRCC remains
poorly understood. Through functional studies and bioinformatics
analyses, our study found SH3BGRL2 target multiple EMT related
genes including ZO-1, E-cadherin, N-cadherin and Twist1, and inhib-
ited the ccRCC EMT process. Twist1, a basic-helix-loop-helix tran-
scription factor, is a key player in tumor metastasis by inducing EMT
and promoting invadopodia-mediated extracellular matrix degrada-
tion [38, 52]. Previous studies found Twist1 could be as biomarker for
prediction of poor prognosis in nasopharyngeal carcinoma [53], oral
cancer [54] and esophageal squamous cell carcinoma [55]. Consis-
tently, our study also found the levels of Twist1 in tumor tissues of
ccRCC patients with metastasis were higher than those of patients
without, and higher expression of Twist1 showed a significant corre-
lation with advanced pathological and clinical stage. Kaplan-Meier
survival curves showed that the higher expression of Twist1
correlated with poor patients’ prognosis, suggesting a pivotal role of
Twist1 in ccRCC progression and metastasis.

The Hippo signaling pathway is a highly conserved tumor sup-
pressor pathway [56], including LATS 1/2, YAP and TEAD [57], in
which YAP-TEAD induced transcriptional responses are essential in
proliferation and metastasis of cancer cells [58, 59] . It has been
reported that LATS1/2 has decreased expression in many solid
tumors, such as hepatocellular carcinoma [60], breast cancer [61] and
gastric cancer [62]. Our finding also demonstrated LATS1/2 was sig-
nificantly suppressed in ccRCC metastasis tissues compared with pri-
mary tumor tissues. In addition, lower expression of LATS 1/2
indicated worse overall survival and disease free survival rate, but
the mechanism by which the hippo pathway was still largely
unknown. Our key finding was identified SH3BGRL2 as a novel regu-
lator of the hippo pathway in ccRCC. The functional studies showed
SH3BGRL2 could suppress ccRCC cell growth and metastasis through
interacting with LATS1/2-YAP-TEAD1 axis. Through CHIP assay and
luciferase report assay, we found that YAP1 contributed to EMT pro-
cession by transcriptionally activating the Twist1 expression via
binding to TEAD1

In summary, our findings revealed that SH3BGRL2 expression was
significantly decreased in ccRCC and correlated with poor prognosis
of ccRCC patients. Mechanistically (Fig. 9d), SH3BGRL2 inhibited
ccRCC growth and metastasis via activating Hippo-YAP/TEAD1 signal-
ing pathway, then though transcriptionally downregulating Twist1
and shifting EMT progression. Collectively, our finding suggested that
SH3BGRL2 might have considerable potential as a prognosis predictor
and therapeutic target for ccRCC.
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