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Abstract

Background

Induced pluripotent stem cells (iPSC) can be differentiated into cardiomyocytes and repre-

sent a possible autologous cell source for myocardial repair. We analyzed the engraftment

and functional effects of murine iPSC-derived cardiomyocytes (iPSC-CMs) in a murine

model of myocardial infarction.

Methods and results

To maximize cardiomyocyte yield and purity a genetic purification protocol was applied.

Murine iPSCs were genetically modified to express a Zeocin™ resistance gene under con-

trol of the cardiac-specific α-myosin heavy chain (α-MHC, MYH6) promoter. Thus, CM

selection was performed during in vitro differentiation. iPSC-CM aggregates (“cardiac bod-

ies”, CBs) were transplanted on day 14 after LAD ligation into the hearts of previously LAD-

ligated mice (800 CBs/animal; 2-3x106 CMs). Animals were treated with placebo (PBS, n =

14) or iPSC-CMs (n = 35). Myocardial remodeling and function were evaluated by magnetic

resonance imaging (MRI), conductance catheter (CC) analysis and histological morphome-

try. In vitro and in vivo differentiation was investigated. Follow up was 28 days (including his-

tological assessment and functional analysis). iPSC-CM purity was >99%. Transplanted

iPSC-CMs formed mature grafts within the myocardium, expressed cardiac markers and

exhibited sarcomeric structures. Intramyocardial transplantation of iPSC-CMs significantly

improved myocardial remodeling and left ventricular function 28 days after LAD-ligation.

Conclusions

We conclude that iPSCs can effectively be differentiated into cardiomyocytes and geneti-

cally enriched to high purity. iPSC derived cardiomyocytes engraft within the myocardium of

LAD-ligated mice and contribute to improve left ventricular function.
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Introduction

Cardiovascular diseases represent the most important burden of the present century with

increasing numbers of afflicted patients worldwide [1]. Once damaged by myocardial infarc-

tion, the hearts limited ability of self-regeneration often culminates in irreversible congestive

heart failure (CHF) [2]. Advances in medical therapy have improved the outcome in these

patients, however once reached it’s end stage, CHF can only be treated by cardiac transplan-

tation or ventricular assist devices (VAD) [3–8]. With the purpose of finding an alternative

treatment, capable to regenerate infarcted myocardium, a manifold of studies has evaluated

stem cells in preclinical and clinical trials [9–20]. Next to important factor like biodistrution,

retention and graft viability [19–21], one of the main challenges in this field is to find the

right cell source as there is a wide assortment of different stem cell types: adult cardiac pro-

genitor-, bone marrow- (BMSCs), embryonic- (ESCs) and lately, induced pluripotent stem

cells (iPSCs) [22]. Moderate success of other stem cell types and the unique capability of

iPSCs to differentiate into de novo cardiomyocytes (CMs) have raised expectations about

this regenerative source [23–26]. In other words, the formation of mature de novo myocar-

dium in vivo may be best achieved by using iPSC-derived cardiomyocytes (CMs). However,

the process of harvesting CMs from iPSCs faces several hurdles: Standard protocols are

based on spontaneous differentiation or directed differentiation of pluripotent stem cells

(PSCs) being hampered by high cell heterogenicity and limited cardiomyocyte maturation

with poor purity [27]. Furthermore, selection protocols should be able to eliminate undiffer-

entiated iPSCs or highly proliferative progenitors that might form teratomas in vivo [28,29].

To obtain reasonable amounts of cells for transplantation purposes the upscaling of culture

conditions is also needed [30,31]. Finally, the viability of dissociated CMs should be

improved [32–34].

Addressing these challenges, our group has recently reported a novel method for efficient

cardiac differentiation followed by a genetic purification method to produce high numbers of

ultrapure (>99%) CMs from murine and human iPSCs [35]. The purpose of the present study

was to investigate the ability of highly purified iPSC derived CMs to form mature cardiac grafts

in vivo and to engraft after transplantion intramyocardial transplantation in an acute myocar-

dial infarction model in mice.

Materials and methods

iPSC culture and genetic purification of murine iPSC-derived

cardiomyocytes

Genetic cardiomyocyte purification was established by Kensah et al. [35] and is detailed in S1

File. In short, iPSCs derived from Oct4-eGFP expressing OG2 mice [36] were genetically mod-

ified to express a Zeocin™ resistance gene under control of the cardiac-specific α-MHC

(MYH6) promoter. Cardiac differentiation was initiated by hanging drop technique. On dif-

ferentiation day (dd) 3, embryoid bodies were transferred into dynamic suspension culture.

Differentiation medium was supplemented with 400 μg/mL Zeocin™ from dd7 to dd14 to initi-

ate cardiomyocyte (CM) selection. Resulting CM enriched aggregates (“cardiac bodies”, CBs)

were characterized by immunostaining. Undifferentiated, non-selected iPSCs served as con-

trols. Before transplantation, CBs were marked for histological detection with a vitality sensi-

tive fluorescence marker (Vybrant1 CFDA SE [carboxy-fluorescein diacetate succinimidyl

ester] Cell Tracer Kit, LifeTechnologies™, Darmstadt, Germany) as described in the Supporting

Information.
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Animal care

Surgery and animal care were provided following the Guide for the Care and Use of Laboratory
Animals (National Institutes of Health, volume 25, no 28, revised 1996) and in accordance

with federal regulations. The study protocol was approved by state authorities (Niedersäch-

sisches Amt für Verbraucherschutz und Lebensmittelsicherheit). Inhalative anesthesia with

2.5% vaporized isoflurane (Abbott, Germany) was used in all experiments. Animals received

prophylactic oral antibiotic and analgesic drugs and kept under special care in the central ani-

mal laboratory of our institution. Monitoring of the animals included daily visits.

Myocardial infarction model

A total of 70 immunodeficient SCID beige mice (15–21 g, Charles River, Germany) were used.

Myocardial infarction (MI) was induced as described in the Supporting Information and per-

formed as previously described [37]. Aliquots of 15 μL cell suspension containing 800 CBs

(~2-3x106 viable iPSC-CMs) in phosphate buffered saline (PBS) or PBS alone were injected

into the anterior left ventricle of LAD ligated mice shortly after MI induction. Animals were

divided into a sham-operated group (Sham; n = 10), a placebo treated infarct group (PBS,

n = 15) and three infarct groups treated with iPSC-derived CMs (iPSC-CM7, n = 14, follow up

7 days, graft and infarct morphology assessment; iPSC-CM17, n = 3, follow up 17 days, graft

assessment; iPSC-CM28, n = 28, follow up 28 days, complete functional and histological

analysis).

Magnetic resonance imaging

A 7 Tesla scanning system (PharmaScan, Bruker, Etlingen, Germany) was used for magnetic

resonance imaging (MRI) as detailed in the Supporting Information. On postoperative day 2

(POD 2) infarct size was determined by contrast enhanced MRI. Cardiac function was evalu-

ated on POD 27.

Conductance catheter analysis

On POD 28 conductance catheter (CC) analysis was performed to record LV pressure-volume

loops as described recently [38] and detailed in the Supporting Information. Following the

operation animals were sacrificed for histological evaluation.

Histology and immunostaining

Hearts were processed in standard fashion and histological morphometry as well as immunos-

taining was performed as described in the Supporting Information. iPSC-CM grafts were

detected by their cell tracer staining. Graft size was measured using a pixel-based approach.

Data were obtained by computer-assisted morphometry (Image J 1.40g, NIH, USA). An over-

view of all used antibodies for immunostaining is described in Table A in S1 File.

Statistics

GraphPad Prism 6.01 was used for statistical analysis. If not stated otherwise, data are given as

mean±SEM. Differences in mortality were analysed by Fisher’s exact test. Comparison of con-

tinuous variables was performed with Student’s T-test or one-way ANOVA followed by

Tukey’s multiple comparison test. Linear regression analysis was performed to correlate con-

tinuous data. Differences were considered significant at P<0.05. All reported P values are two-

sided.
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Results

Genetic selection results in aggregates with high purity of iPSC-derived

functional cardiomyocytes (“cardiac bodies”)

Following cardiac differentiation and antibiotic selection with Zeocin1 under dynamic sus-

pension culture conditions, murine iPSCs formed spontaneously beating aggregates of almost

pure cardiomyocytes (Fig 1 and S1 Video). These aggregates were termed “cardiac bodies”

(CBs) as proposed by Kensah at al. [35] and contained approximately 1500–2500 CMs with a

CB size of 100–200 μm on dd14. From 9.6 x 106 undifferentiated iPSCs initially inoculated we

were able to retrieve an average of 3.2 x 106 total CMs after differentiation and selection result-

ing in a ratio of 1:3 CM:undifferentiated iPSC after 14 days. In comparison to undifferentiated

non-selected EBs (S1 Fig), CBs lost the Oct3/4-mediated GFP signal (S2 Fig). 4.3±3.0% of dis-

sociated and reseeded CMs (N = 7) showed Ki-67 positive nuclei (S3 Fig). They consisted of

99.3±0.5% cardiac Troponin T (cTnT) positive cells. They were also positive for cardiac mark-

ers Titin, α-sarcomeric actinin, myosin light chain 2V (MLC2V) and MLC2A and exhibited a

distinctive cross striation pattern in CBs as well as after reseeding (Fig 1B, 1E and 1F). MLC2V

and MLC2A expressing CBs and reseeded CMs were almost equally distributed (Fig 1C, 1D

and 1G). CBs on dd14 were positive for Connexin 45 and 40 (S4 and S5 Figs).

CFDA SE tracer staining shows vital CMs after antibiotic selection and

enables easy identification of iPSC-derived CMs in vivo

Using the CFDA SE tracer staining, CMs were effectively marked in vitro ensuring fluorophore

accumulation in vital cells only (Fig 1A, S2 Video). CBs continued to contract after staining

Fig 1. Cardiac bodies and cardiomyocytes derived from murine iPSCs. A: CBs after antibiotic selection (dd14, brightfield view); inset:

CBs after CFDA SE tracer staining (dd14). Scale bars: 100μm. B: CBs are positive for cTNT and show CMs with sarcomeric striations (inset,

arrow). Scale bar: 50μm. C+D: CBs at dd14 are positive either for MLC2A or MLC2V indicating spontaneous differentiation into both an atrial

and ventricular phenotype; negative CBs are marked with *, respectively. Scale bars: 50μm. E+F: Reseeded CMs exhibit a mature

sarcomeric intracellular organisation. Staining for cTnT and α-sarcomeric actinin shows Z-lines (arrows). Scale bars: 50μm. G: Relative

amount of reseeded CMs expressing cardiac markers α-sarcomeric actinin (99.1±1.5%), cTnT (99.3±0.4%), Titin (99.4±0.3%), MLC2A

(47.3±1.9%) and MLC2V (52.1±1.8%); N = 8.

https://doi.org/10.1371/journal.pone.0173222.g001
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(S2 Video). For transplantation, 800 labeled CBs (2-3x106 vital CMs) per animal were used.

iPSC-CM grafts were readily visible within the host myocardium (Fig 2).

Mortality

Overall mortality was 0% in the Sham group, 33% in the PBS group, 25% in the iPSC-CM7

group and 25% in the iPSC-CM28 group, respectively (S6 Fig).

Purified iPSC-derived CMs form large intramyocardial grafts exhibiting

mature cardiac features

Seven days after intramyocardial transplantation iPSC-derived CMs formed large graft bands

within the infarct region as well as the adjacent non-infarcted myocardium. Grafted cells

exhibited a longitudinal alignment parallel with the LV wall (Fig 2A and 2B). They were typi-

cally separated from viable host myocardium within the infarcted area by infiltrating cells (Fig

2B). Transplanted iPSC-derived CMs developed a typical CM-like morphology in vivo (Fig

2B). They expressed cardiac markers and showed mature sarcomeric structures as identified

by a distinctive cross striation pattern (Fig 2B) up to 17 days after transplantation. Cryoconser-

vation and–sectioning resulted in a localized tissue disruption within CM grafts (Fig 2B).

Graft size significantly decreased between 7 and 28 days after transplantation (Fig 3).

Although iPSC-CM grafts could be well identified within the myocardium after 28 days, they

developed an amorphic appearance and showed vacuoles after tissue preparation (Fig 2C and

2D) indicating cell death. Sarcomeric structures could not be observed 28 days after transplan-

tation (Fig 2C).

Intramyocardial transplantation of purified iPSC-derived CMs improves

ventricular remodeling and function

LAD ligation resulted in large myocardial infarcts of 36±14% of LV mass as determined by

contrast enhanced MRI on day 2 post infarction. The ischemic area at risk did not differ in size

between the groups. Progressive myocardial remodeling was observed in infarcted animals

over a course of 28 days as determined by MRI, CC analysis and morphometry.

MRI and CC analysis. LAD-ligation resulted in a marked reduction of LV function and

in a volume overload compared to sham operated animals after 28 days (Fig 4A and 4B).

Whereas end diastolic volume (EDV) was comparable between infarcted and non-infarcted

animals 2 days post MI, myocardial remodeling led to LV enlargement in infarcted hearts after

28 days with an average 2.0-fold increase in EDV (Fig 4B). Myocardial remodeling was signifi-

cantly improved in iPSC-CM treated animals compared to infarcted controls as demonstrated

by a lesser degree of volume overload and dilatation (Fig 4B). This correlated with a signifi-

cantly higher LV ejection fraction (LV-EF) in the iPSC-CM28 group (Fig 4A). MRI findings

correlated well with CC measurements (S7 Fig), volume values were typically underestimated

by CC evaluation. Based on the MRI data, the relative improvement of LV-EF compared to

PBS treated controls 172% for iPSC-CM treated animals. Additional evaluation of myocardial

contractility by CC analysis revealed a significantly improved maximum pressure increase

(dP/dt max) as well as a significantly higher preload adjusted maximum power in the

iPSC-CM group compared to infarcted controls (Fig 4E and 4F).

Morphometry. In comparison with infarct sizes determined on day 2 by contrast

enhanced MRI, Masson’s Trichrome staining after 28 days showed a significant enlargement

of the infarct size in PBS-treated animals. Conversely, infarct size significantly decreased in

iPSC-CM-treated animals (Fig 5A). Although animals transplanted with iPSC-CMs did show

iPSC derived cardiomyocytes in myocardial infarction

PLOS ONE | https://doi.org/10.1371/journal.pone.0173222 May 11, 2017 5 / 14

https://doi.org/10.1371/journal.pone.0173222


a remodeling effect including wall thinning, it was significantly less pronounced than in PBS-

treated controls (Fig 5B). This was also reflected by the expansion index (EI) that relates LV

diameter to LV wall thickness. EI was significantly higher in iPSC-CM28 animals than

iPSC-CM7 animals as a sign for typical post infarct remodeling, but was also significantly

larger in PBS28 than iPSC-CM28 animals (Fig 5C), indicating an improved remodeling in cell

treated animals. EI correlated well with infarct size (S8 Fig). These data is in line with the MRI

findings and corresponds to a significantly higher amount of viable myocardium (VM) after

28 days in iPSC-CM-treated animals (Fig 5D).

Fig 2. Genetically purified iPSC-derived CMs form mature grafts in vivo. A+B: CFDA SE cell tracer positive iPSC-CM grafts 7 days

after intramyocardial transplantation: Adjacent to the host myocardium iPSC-CMs align in a parallel, longitudinal fashion and exhibit

sarcomeric structures (arrows). Within central portions of broader grafts (approximately > 200 μm) they maintain a small, round shape (* in

A). In the infarct penumbra iPSC-CMs lie in close proximity to host CMs (arrowheads in B1), occasionally with direct cell contact

(arrowheads in the bottom right corner of B1). Inside the infarct area iPSC-CMs are typically surrounded by infiltrating host cells (arrowheads

in B2). Tissue disruption during histological preparation (* in B1+2) indicates loose cell adhesion within iPSC-CM grafts. C+D: CFDA SE cell

tracer positive iPSC-CM graft 28 days after intramyocardial transplantation: The cell tracer remains visible 28 days after engraftment, but

iPSC-CMs develop an amorphic appearance. Sarcomeric structures are not observed. Vacuoles form during histological preparation (* in

C). A+D: brightfield overlay. Scale bars: 400μm.

https://doi.org/10.1371/journal.pone.0173222.g002
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Discussion

In previous studies we evaluated adult cardiac stem cells [39] und iPSC derived cardiovascular

progenitor cells [38] in a murine infarction model. Although these cells were able to form car-

diovascular cells in vitro and in vivo [23,39] an in vivo differentiation towards adult CMs was

not induced by the host myocardium. Other groups produced similar results [28,29,40]. Since

currently there are no methods to sufficiently direct in vivo differentiation of immature stem

cells, in our opinion a very promising cells source able to form de novo contractile myocar-

dium are bona fide CMs.

Despite recent progress in hCM differentiation [41], further efficient enrichment of plurip-

otent stem cell (PSC)-derived CMs appears still necessary in view of the risk of teratoma for-

mation. To purify authentic CMs from PSCs, various methods have been proposed including

genetic approaches [32,33]. Although genetic enrichment has so far been considered as barely

clinically applicable this view has now changed due to recent groundbreaking developments in

targeted genome engineering. Besides ZFN (zinc finger nuclease) and CRISPR (clustered regu-

larly interspaced short palindromic repeats)/Cas9 technologies, especially TALEN (transcrip-

tion activator-like effector nuclease)-based gene targeting represents a highly efficient method

for introduction of transgenes into safe harbor sites such as adeno-associated virus integration

site 1 (AAVS1) [42]. Notably, this approach can be regarded as much safer than the common

random integration of transgenes and provides well controllable expression levels in undiffer-

entiated iPSCs as well as their differentiated derivatives. Different groups were able to enrich

CMs from differentiating transgene PSC clones, mostly from ESCs [43]. Van Laake et al.

reported the purification of CMs from transgenic iPSCs based on a NKX2.5-GFP reporter sys-

tem and a directed differentiation approach. FACS sorted, dissociated cardiovascular iPSC

Fig 3. Graftsize after intramyocardial transplantation of iPSC derived CMs. Intramyocardial grafts were detected by their CFDA SE

fluorescence on POD7 and POD28. Graft size (μl): after 7 days: 7.6±2.5; after 28 days: 0.78±0.21. *** P<0.001.

https://doi.org/10.1371/journal.pone.0173222.g003
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derived progenitor cells were transplanted into the infarcted myocardium of NOD scid mice.

Small grafts were detected after two weeks but did not show a clear mature CM phenotype

[28]. Ma et al. reported an antiobiotic selection based method to purify CMs from human

iPSCs. These CMs had similar electrophysiological properties compared to human cardiac

myocytes [44].

We used a genetically engineered iPSC clone especially developed for maocardial regenera-

tion [35]. Similar to the pioneering work in ESCs from Klug et al. [45] the iPSC clone carries

an antibiotic resistance gene that is expressed under control of a cardiac-specific promoter.

We were able to obtain contracting cardiac bodies of almost pure CMs. CMs showed a clear

mature phenotype and developed into an atrial and ventricular phenotype. The ratio of nearly

1:1 is well in line with the electrophysiology data obtained by others [44]. Regarding a potential

contamination with residual undifferentiated iPSCs we could show, that the Oct3/4 dependent

GFP expression of the transgenic iPSC clone disappeared during differentiation. In this con-

text, pureness of yielded CMs is very important since residuals of undifferentiated iPSCs

implies potential teratoma formation once transplanted [46]. Moreover, iPSC derived CMs

showed a low proliferation potential as determined by Ki67 staining. Expectedly, in vivo grafts

did not show mitotic activity after 7 days. We refrained from additional genetic manipulation

of the transgenic iPSC clone to enable a reporter gene based identification as described by our

Fig 4. Intramyocardial transplantation of iPSC derived CMs improves ventricular remodeling and function after myocardial

infarction. Hemodynamic evaluation by magnetic resonance imaging (MRI; POD 27; A+B) and conductance catheter analysis (CC; POD

28; C-F). A: Left ventricular ejection fraction (LV-EF [%]) as measured by MRI: On POD 2: Sham28 = 56±5; PBS28 = 39±5; iPSC-CM28 = 47

±3. On POD 27: Sham28 = 60±4; PBS28 = 19±2; iPSC-CM28 = 34±4 B: End-diastolic volume (EDV [μl]) as measured by MRI: On POD 2:

Sham28 = 34±3; PBS28 = 38±5; iPSC-CM28 = 37±2. On POD 27: Sham28 = 40±3; PBS28 = 99±9; iPSC-CM28 = 73±6 C: LV-EF (%) as

measured by CC on POD 28: Sham28 = 59±1; PBS28 = 18±1; iPSC-CM28 = 33±3 D: End-diastolic volume (EDV [μl]) as measured by CC on

POD 28: Sham28 = 13±1; PBS28 = 30±1; iPSC-CM28 = 21±2 E: maximum Pressure increase (ΔP/dt max. [mmHg/sec]) as measured by CC

on POD 28: Sham28 = 5863±351; PBS28 = 2893±207; iPSC-CM28 = 4135±232 F: Preload adjusted maximal power (mWatts/μl2) as

measured by CC on POD 28: Sham28 = 205±23; PBS28 = 20±3; iPSC-CM28 = 62±8. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001 (for

group comparison); ##P<0.01; ###P<0.001; ####P<0.0001 (for paired longitudinal comparison).

https://doi.org/10.1371/journal.pone.0173222.g004
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group before [38]. Using a vitality sensitive intracellular fluorescence tracer (CFDA SE) we

were able to effectively label iPSC derived CBs for in vivo identification. Our data show that

iPSC derived CMs were viable after antibiotic selection process within the three-dimensional

CB environment of almost pure CMs. The fluorophore remained visible even in apoptotic CM

grafts in vivo over a period of 28 days. Moreover, resulting CM preparations were capable to

form contractile myocardial tissue in vitro, based on non-dissociated CM aggregates called car-

diac bodies (CBs). After intramyocardial injection into ischemic myocardium, iPSC derived

CMs exhibited an authentic adult CM appearance despite their original spherical organisation

within CBs. We believe that their alignment and longitudinal organisation is induced by the

directed strain within in the host’s myocardium. This finding has also been described for BCTs

and indicates a viable CM response after transplantation [35]. This self-organisation as a

mature CM syncytium in our opinion also results from the use of non-dissociated CBs rather

than dissociated single CMs. Although we were able to establish a Connexin 40 and 45 expres-

sion within CBs, coupling with the host myocardium was not observed in vivo. In our model,

CMs were indirectly connected to the host myocardium after injection into the infarct area

because of a surrounding cellular infiltration after 7 days and scar formation after 28 days. CM

graft appearance changed over a period of 28 days towards an unorganized morphology and

reduced size indicating late cell death. Impaired CM viability in models of myocardial

Fig 5. Intramyocardial transplantation of iPSC derived CMs alleviates adverse myocardial remodeling and increases the amount

of viable myocardium. A: Infarct size (%): after 2 days (MRI): PBS28 = 34±3; iPSC-CM28 = 36±4; after 28 days (Masson’s): PBS28 = 46±3;

iPSC-CM28 = 25±4 B: LV wall thickness after 28 days (Masson’s; μm): iPSC-CM7 = 990±57; iPSC-CM28 = 669±64; PBS28 = 328±12 C:

Expansion index after 28 days (Masson’s): iPSC-CM7 = 1.1±0.1; iPSC-CM28 = 2.9±0.5; PBS28 = 4.5±0.4 D: Viable myocardium (Masson’s;

% of infarct area): iPSC-CM7 = 32±2; iPSC-CM28 = 46±1; PBS28 = 15±1. iPSC-CM28 vs. PBS28: * P<0.05, ** P<0.01, **** P<0.0001.

iPSC-CM7 vs. iPSC-CM28: # P<0.05, ##P<0.01; ###P<0.001; ####P<0.0001.

https://doi.org/10.1371/journal.pone.0173222.g005
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infarction has been frequently described and attributed to the cytotoxic environment after

myocardial infarction or dissociation of CMs [34,35,47]. Our histological data suggests that

even after transplantation of non-dissociated CBs disruption of graft tissue due to a weak cell-

cell connection could be another reason for delayed CM apoptosis and impaired connection to

the host myocardium. This may result from the almost pure CM composition of CBs. Accord-

ingly, Kensah at al. described that the lack of fibroblasts within BCTs obtained from iPSC

derived CBs led to an incomplete extracellular matrix remodelling and CB fusion. The addi-

tion of fibroblasts resulted in an improved structure and function of BCTs [35]. Future experi-

ments will have to establish, whether the addition of fibroblasts can ensure graft survival and

may improve the myocardial connection in our model.

Conclusions

We could show that direct intramyocardial transplantation of iPSC derived CMs as three-

dimensional CBs results in a significant functional improvement and attenuated adverse

remodelling 28 days after acute myocardial infarction as determined by a combination of

MRI, pressure-volume loop analysis and histological morphology assessment. LV thickness in

the infarct zone was preserved despite decreasing iPSC-CM graft size thereby preventing pro-

gressive LV dilatation. In contrast to former studies by our group using adult cardiac stem

cells [39] and Flk-1pos iPSC derived progenitor cells [38] in the same model, we were also able

to show significant improvement of LV contractility parameters based on PV loop assessment.

Further studies providing mechanical insights regarding the interaction between host myocar-

dium and transplanted cells would undoubtedly contribute to improve myocardial stem cell

therapy.

Supporting information

S1 Fig. eGFP expression. Undifferentiated IPSCs showed a marked Oct3/4-mediated eGFP

expression and a high proportion of mitotically active Ki-67 positive cells. Most cells were pos-

itive for both markers. Few cells were Oct3/4-eGFP negative and Ki-67 positive (arrowheads).

Rarely cells were Oct3/4-eGFP positive and Ki-67 negative (�). Scale bar: 50μm.

(TIF)

S2 Fig. Ki-67 expression I. Differentiated CBs at dd14 lost the intrinsic Oct3/4-mediated

eGFP signal compared to undifferentiated IPSCs (S1 Fig) and were predominantly negative

for nuclear Ki67. Scale bar: 100μm.

(TIF)

S3 Fig. Ki-67 expression II. Reseeded IPSC-CMs showed a low proportion of Ki-67 positive

cells (4.3±3.0%, N = 7). Scale bar: 100μm.

(TIF)

S4 Fig. Connexin 45 expression. Differentiated CBs on dd14 were positive for Connexin 45.

Scale bar: 100μm.

(TIF)

S5 Fig. Connexin 40 expression. Differentiated CBs on dd14 were positive for Connexin 40.

Scale bar: 100μm.

(TIF)

S6 Fig. Overall mortality. Differences between non-infarcted animals (Sham28) and infarcted

animals (PBS28; IPSC-CM7, IPSC-CM28) were statistically not significant. (Sham28 vs. PBS28:

P = 0.061; Sham28 vs. IPSC-CM7: P = 0.26; Sham28 vs. IPSC-CM28: P = 0.16; PBS28 vs.
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IPSC-CM7: P = 0.70; PBS28 vs. IPSC-CM28: P = 0.72; IPSC-CM7 vs. IPSC-CM28: P = 1.00)

Most deceased animals died perioperatively. Hence, mortality within the 7 day group

(IPSC-CM7) was similar to 28 day myocardial infarction groups (PBS28, IPSC-CM28).

(TIF)

S7 Fig. MRI (POD 27) findings correlated well with CC measurements (POD 28). A: MRI

LV-EF (%) vs. CC LV-EF (%). B: MRI EDV (μl) vs. CC EDV (μl). Volume values were typically

underestimated by CC evaluation.

(TIF)

S8 Fig. Morphometry (Masson’s Trichrome Staining, POD28). Expansion Index (EI) corre-

lated well with Infarct Size.

(TIF)

S1 File. Supporting file.

(DOCX)

S1 Video. IPSC-derived “Cardiac bodies” (CBs) after antibiotic cardiomyocyte (CM) selec-

tion on differentiation day 14.

(MPG)

S2 Video. IPSC-derived “Cardiac bodies” (CBs) after intracellular Vybrant 1 CFDA SE

(carboxy-fluorescein diacetate succinimidyl ester) tracer staining. CBs remain vital and

contracting.

(MPG)
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