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Changes in fundus blood vessels reflect the occurrence of eye diseases, and from this, we
can explore other physical diseases that cause fundus lesions, such as diabetes and
hypertension complication. However, the existing computational methods lack high
efficiency and precision segmentation for the vascular ends and thin retina vessels. It is
important to construct a reliable and quantitative automatic diagnostic method for
improving the diagnosis efficiency. In this study, we propose a multichannel deep
neural network for retina vessel segmentation. First, we apply U-net on original and
thin (or thick) vessels for multi-objective optimization for purposively training thick and thin
vessels. Then, we design a specific fusion mechanism for combining three kinds of
prediction probability maps into a final binary segmentation map. Experiments show that
our method can effectively improve the segmentation performances of thin blood vessels
and vascular ends. It outperformsmany current excellent vessel segmentationmethods on
three public datasets. In particular, it is pretty impressive that we achieve the best F1-score
of 0.8247 on the DRIVE dataset and 0.8239 on the STARE dataset. The findings of this
study have the potential for the application in an automated retinal image analysis, and it
may provide a new, general, and high-performance computing framework for image
segmentation.

Keywords: retina vessel segmentation, multi-objective optimization, multiple probability map fusion mechanism,
skeleton extraction, multi-channel DCNN

1 INTRODUCTION

The fundus photography can quickly and noninvasively obtain retinal images, which is
usually used as an effective way for diagnosing fundus diseases. Furthermore, by observing
retina blood vessels, medical scientists can assess symptoms of diseases, such as hypertension,
diabetes, and neurodegenerative diseases. However, many studies based on retinal vascular
changes still rely on a manual qualitative assessment, which prevents experts from
grasping retinal diseases more accurately and efficiently. For example, narrowed retinal
blood vessels is a typical early symptom of hypertension, but disease symptoms can only be
assessed subjectively by ophthalmologists through fundus photography or angiography.
These early symptoms are not only time-consuming but also hard to be spotted.
Therefore, a reliable and quantitative automatic diagnostic method is urgently required to
improve diagnosis efficiency, and some related research works have gradually risen in the
recent years.
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Retina vessel segmentation methods are generally divided
into filter-based methods, machine learning algorithms, and
deep learning methods. The filter-based technology
(Annunziata et al., 2016) is almost consistent with image
processing methods, using the filter window to process
fundus images. Peter et al. (2012) used a wavelet transform
to quickly detect blood vessels and calculated vascular profiles to
determine blood vessel boundaries. Fraz et al. (2012) employed
the Gabor filter and top-hat transformations of morphological
operations for feature extraction and vessel segmentation.
Nguyen et al. (2013) performed vessel segmentations by
linear operators of different scales. Salazar-Gonzalez et al.
(2014) used graph cut technology for vessel segmentation. In
addition, machine learning (Roychowdhury et al., 2014) models
usually extract feature vectors and then construct a classifier to
label pixels. Orlando and Blaschko (2014) used a conditional
random field (CRF) with a fully connected model to segment the
fundus retina vessels. Gu and Cheng (2014) proposed an
iterative two-step learning-based method to boost the
segmentation performance by existing basic segmenters.
Lupascu et al. (2010) constructed a 41-D vector for each
pixel in the image to encode the alignment information, and
then classified pixels using the AdaBoost classifier.

With the rapid development of deep learning in recent years,
convolutional neural network (CNN) performs well on
classification and regression tasks because it can hierarchically
abstract representations using local operations. It is very suitable
for computer vision–related applications. Especially, since the
advent of U-net (Ronneberger et al., 2015) in 2015, it brought
great progress to medical image segmentation tasks. It is an
encoder–decoder structure, and skip connections inspired
many subsequent studies. For example, M2UNet by Laibacher
et al. (2018) and LadderNet by Zhuang (2018) obtained excellent
results in the fundus retina vessel segmentation. They both are
inspired by U-net. In addition, Melinscak et al. (2015) developed
a 10-layer CNN for a binary classification based on the patch-wise
method. Fu et al. (2016) constructed a deeply integrated network
consisting of a convolutional neural network (CNN) and a
conditional random field (CRF). In detail, multi-scale and
multilevel CNNs were used to extract features, and a CRF was
used to model the pixel interaction. In the recent years, many
researchers made great progress. CS-Net (Mou et al., 2019) adds
two attention mechanisms: spatial attention and channel
attention, to the encoder and decoder to better capture the
local and global features of images, thereby improving the
segmentation results. DUnet (Jin et al., 2019) integrated the
deformable convolution into U-net so that it can adaptively
adjust the receptive field of the filter during the feature
extraction process to extract features of different scales.
Vessel-Net (Wu et al., 2019) embedded the inception-residual
convolution block into U-net to improve the feature extraction
ability of the encoder, and then usedmultiple supervision paths to
train the network to obtain more refined segmentation. Wang
et al. (2020) separately trained the “easy” and “hard” parts in the
encoder stage to perform targeted vascular segmentation, and
added an attention mechanism to the “hard” part for more
effective segmentation. NFN+ (Wu et al., 2020) used two

networks to achieve more refined segmentation. It exploited
the front network to obtain a basic prediction probability map,
and then used the followed network for post-processing. In
addition, the author applied inter-network skip connections to
unite the two networks to make better use of multi-scale features.
SCS-Net (Wu et al., 2021) first used a scale-aware feature
aggregation (SFA) module to extract multi-scale features, then
employed the adaptive feature fusion (AFF) module to fuse
different levels of features to obtain richer semantic
information, and finally used the multilevel semantic
supervision (MSS) module to obtain more refined
segmentation results. RV-GAN (Kamran et al., 2021) used a
generative network to perform blood vessel segmentation. It
employed two generators and two multi-scale discriminators
for microvessel segmentation. In addition, it replaced the
original adversarial loss with a new weighted loss.

However, the abovementioned methods are more focused on
obtaining accurate prediction probability maps rather than
binary segmentation features. But only increasing the accuracy
of probability maps is very limited for the ability to improve the
accuracy of segmentation. In addition, existing methods do not
predict thick and thin vessels separately although they have
different characteristics, which also leads to the relative neglect
of improving accuracy on thin blood vessel segmentation.
Therefore, we propose a specific method to skillfully fuse
prediction results from original, thick, and thin vessels.

In the task of retina vessel segmentation, there are many
difficulties such as a low contrast between blood vessels and
background, and central bright band in vessels and the lesion area
around blood vessels, as shown in Figure 1. But segmenting
vascular ends and thin blood vessels is the most difficult part. As
we all know, the proportion of thin blood vessels in a retina image
is small. So in the deep learning method, the misclassification or
omission of some thin vessel pixels does not greatly affect the
segmentation accuracy, but it leads to unsatisfactory
segmentation maps, which causes the network to pay more
attention to segment thick vessels than thin vessels. Inspired
by this limitation, according to the original label and the other
two extra training objectives made by ourselves, we train original,
thick, and thin vessels separately. Thus, we can obtain three
different prediction probability maps. Then we use a special
fusion method instead of directly choosing a fixed threshold to
get the final binary segmentation map. Three kinds of prediction
probability maps can exert their own strength so that they can
complement each other. Experimental results show that our
training strategy and fusion mechanism can get excellent
performance. Furthermore, our method can transfer our novel
training strategy and fusion mechanism to other deep learning
models, and they can perform better than before. Therefore, our
proposed method can be commonly applied on any kind of deep
learning models for retina image segmentation.

2 RELATED WORKS

With the development of computational technologies, various
deep learning models have emerged for solving image calculation
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problems. AlexNet (Krizhevsky et al., 2012), which won the 2012
ImageNet competition, should be regarded as the first deep
learning convolution neural network. It can extract higher
dimensional features of images than LeNet (Lecun et al.,
1998). The network structure was composed of eight layers,
including five convolution layers and three fully connected
layers. It also introduced the popular activation function ReLU
(Rectified Linear Unit) and the Dropout layer used to prevent
over-fitting. Also, VGGNet (Simonyan and Zisserman, 2014) is a
very famous deep convolution neural network, which won the
runner-up of the 2014 ILSVRC competition. It explored the
relationship between the network depth and performance of
the convolution neural network. What is more, ResNet (He
et al., 2016) that won several championships in ILSVRC 2015
and COCO 2015 was dedicated to solve the model degradation
problem caused by the deepening of the network during the layer
stacking process. It used a shortcut connection to add the output
of previous layers to the current output of this layer, and then the
sum can be put into the activation function as the final output of
this layer. It was proven that ResNet can effectively alleviate the
problem of vanishing gradients.

In the field of image segmentation, there are still some
methods that perform very well. The first to mention is fully
convolutional networks (FCNs) (Shelhamer et al., 2017), which is
a landmark invention in the field of image segmentation. It
creatively replaced fully connected layers of the CNN with
convolution layers. The FCN classified images at the pixel
level, accepted images of any size, and obtained the output
with the same size; thereby, it can solve the problem of image
segmentation at the semantic level. There was also another
characteristic, the skip-level structure, which can take into

account local and global information simultaneously. Next one
is SegNet (Badrinarayanan et al., 2017), a deep network to solve
the problem of image semantic segmentation for autonomous
driving or intelligent robots. Based on the semantic segmentation
model of the FCN, the framework of VGG16 was used, and it
removed the fully connected layer to build an encoder–decoder
symmetrical structure to achieve end-to-end pixel-level image
segmentation. One of its highlights was the use of max-pooling
indexes, which can reduce the amount of parameters for end-to-
end training and can be incorporated into any
encoding–decoding architecture with only a few modifications.
Finally, there is Mask R-CNN (He et al., 2017) that won the
championship of COCO 2016 competition; it can perform
instance segmentation while performing target detection. Mask
R-CNN was based on Faster R-CNN (Ren et al., 2017). In Mask
R-CNN, the FCN was used in semantic segmentation for each
proposal box of Faster R-CNN. In addition, another important
change was the replacement of the ROI pooling module of Faster
R-CNN with a more accurate ROI align module.

3 METHODOLOGY

In this article, we propose a novel deep learning framework for
fundus diseases diagnosis. First, the fundus images were
preprocessed and divided into patches. Second, we perform
multi-objective optimization on the network. Explaining in
detail, given an image, there is the original label, and then the
extra thick and thin vascular training objectives can be obtained
by our own algorithms. Based on three different annotation sets,
we can obtain the prediction probability maps of original, thick,

FIGURE 1 | Difficulties in fundus image segmentation task. From the left to right: low contrast between blood vessels and background, central bright band in blood
vessels, and lesion area around vessels. From the top to bottom: part of original images and corresponding labels.
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and thin vessels. Finally, our new fusion mechanism fuses three
different prediction probability maps to obtain the final binary
segmentation map. The framework of our method is shown in
Figure 2.

3.1 Preprocessing
The fundus retina blood vessel images have uneven brightness,
image noises, and low contrast between vessels and background.
Thus, similar to other methods, we first extract the green channel
of original RGB images because the green channel has the highest
image contrast. Second, different images are normalized. Third,
we apply contrast limited adaptive histogram equalization
(CLAHE) (Zuiderveld, 1994) on these images so that the
background brightness of images can be equalized without
magnifying the image noise. Finally, the gamma correction is
used to compress highlight portion and expand dark portion of
images. The process of preprocessing is shown in Figure 3.

3.2 Network Architecture
U-net Ronneberger et al. (2015) has outstanding performances in
medical image segmentation tasks. It was proposed at a medical
image conference (MICCAI) in 2015. As shown in Figure 4,
U-net had a symmetrical encoder–decoder structure. It

performed feature extraction in the encoding stage. It uses
convolution to gradually extract features of different depths.
The convolution operation can be formulated as follows:

ConVk � ReLU
⎧⎨⎩∑N

n�0
∑N
n�1

W(k)n,npX
⎫⎬⎭. (1)

Here, N is the size of weight matrix W, X is the tensor from last
layer, and ReLU is the rectified linear function; its expression is as
follows:

ReLU � { x x≥ 0
0 x< 0 , (2)

Then the pixel-level classification can be obtained in the
decoding stage via up-sampling operation. U-net also used
skip-connection to concatenate features of the corresponding
layers of the encoder and decoder on the channel dimension
(see the gray arrows in Figure 4) so that deep semantic
information and shallow representation information can
be combined to make the segmentation results more
refined. U-net performs very well in segmentation tasks of
various organs, especially for fundus blood vessels; it can
segment almost all thick blood vessels and most of thin blood

FIGURE 2 | Framework of our method. (A) Process of preprocessing. (B) Original label, thick, and thin training objectives. (C) Multi-objective optimization. Three
types of annotations lead to three different prediction probability maps. (D) Fusion mechanism.

FIGURE 3 | Process of image preprocessing. From the left to right: fundus retina image, image of green channel, CLAHE-processed image, and gamma correction
processed image.
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vessels, achieving high accuracy. So we choose a U-net–based
network as our segmentation model.

3.3 Multi-Objective Optimization
We construct a train model for original vessel images using
preprocessed raw images, original vessel labels, and masks.
Then, prediction probability maps of original vessels can be
identified. Similarly, in order to achieve the specialized
training on thin vessels and thick vessels separately, we use
thin (or thick) vessel training objectives made by ourselves,
which can emphasize thin (or thick) vessels relatively during
the training process. Thus, thin (or thick) vessel training
objectives, preprocessed images, and masks can be used as an
input, and we can obtain prediction probability maps of thin (or
thick) vessels.

Here, the thin (or thick) vessel training objectives are composed
of two parts: thin (or thick) blood vessels and vessel skeleton, as
shown in Figure 5. For the thick vessel training objective, we retain
the thick vessels of the original label image, remove the thin blood
vessels, and replace it with the vessel skeleton. In the same way, the
thin vessel training objectives are composed of the thin vessels and
vessel skeleton. The reason why we use skeleton to replace the
removed vessels is to preserve the complete vessel topology and
keep vessels consistent during the training process.

3.3.1 Vessel Skeleton
There are many existing methods to obtain the skeleton of an
object in an image (Zhang and Suen, 1984; Saeed et al., 2010). Due
to the uneven thickness and tortuosity of retina blood vessels,
some previous methods are not very suitable for obtaining the
skeleton of retina vessels. However, the vessel skeleton is needed
as a vascular topology consisting of the centerline of blood vessels.

Here, we get the retina vessel skeleton as follows. First, finding
the outline of blood vessels. Through searching points with a pixel
value of zero around each pixel of blood vessels, the boundary
pixels of vessels can be identified. From this, we can define the
outline of vascular. In other words, the outline is made up of all the
boundary pixels, as shown in Figure 6. Next, except for the end
pixels of blood vessels, rest of outline pixels are removed, having a
new outline according to the above method. Our skeleton method
keeps iterating this process until the vessel skeleton is obtained, that
is, the horizontal width of the remaining blood vessels is less than
two pixels. The vessel skeleton is shown in Figure 7.

3.3.2 Separation of Thick and Thin Vessels
Because blood vessels gradually taper from the root to ends, the
width of the vessel is gradually reduced. For each pixel in blood
vessels, we match a vascular width to it, and then thick and thin
vessels can be divided on the pixel level by the vascular width of

FIGURE 4 | The structure of U-net.

FIGURE 5 | Composition of thin and thick vascular training objectives. From the left to right: thin (or thick) vessel of original label image, the same vessel skeleton,
and thin (or thick) training objectives.
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every pixel. If the vascular width of any pixel is greater than or
equal to the threshold, we define it as a thick vessel pixel, and
naturally the opposite as thin vessel pixels. In detail, the vascular
width at a certain point is defined as follows. First, we identify the
vascular width of skeleton pixels. We define the twice distance
from each skeleton pixel to the nearest outline pixel as the
vascular width of this skeleton pixel. Second, we define the
vascular width for other vascular pixels. The vascular width of
the nearest skeleton pixel from them is used to replace their
width. In this way, we canmatch the vascular width for each pixel.
Thereby, thick and thin blood vessels are separated based on the
vascular width of each pixel. In our experiments, the separation
threshold is 2.2 pixels. This means that those with a width greater
than or equal to 2.2 pixels are thick vessel pixels, and those with
width less than 2.2 pixels are thin vessel pixels. Due to the slight
uneven thickness of the blood vessels, this may lead to the
intersection of separated thick and thin vascular pixels and
unsmooth appearance of separation profile.

3.4 Fusion Mechanism
We design three fusionmethods for prediction probability maps of
original, thick, and thin vessels, and then adopt one of them that
performs the best. For this method, we apply the pixel-wise
classification on prediction probability maps. At a certain pixel
point, if the pixel probability of one of three probability maps is
greater than or equal to the threshold 0.5, it is defined as a vascular
pixel. Furthermore, since the original vascular label is more
complete, it has more complete segmentation map, accordingly.
So during the fusion process, there is a greater weight on prediction
probability maps of original vessels, and the best weight we get on
the data set is 1.25; that is, k is 1.25. Therefore, we are relatively
more strict with the application of prediction probability maps of
thick and thin vessels, as shown in Algorithm 1.

4 EXPERIMENTS

In order to verify the validity of our method, we perform
experiments on three datasets: DRIVE, STARE, and
IOSTAR. Our experiments are implemented on Keras
based on TensorFlow with GeForce RTX2080 Ti GPU.
The network models for three tasks use the same
parameter settings.

4.1 DRIVE Dataset
The DRIVE dataset contains 40 fundus images, corresponding
labels, and binary field of view (FOV) masks. The images have the
resolution of 584 × 565 pixels and 45+ FOV. We use the standard
split: first 20 images belong to the test set and rest 20 images
belong to the training set. Each image of the training set has one
manual annotation, and each image of the test set has twomanual
annotations. In our experiments, the first manual annotation is
used to be the gold standard.

FIGURE 7 | Vessel skeleton. From the left to right: fundus retina image, ground truth, and vessel skeleton obtained by our method.

FIGURE 6 | Outline of vessel. An exemplar of non-deletable points is
shown in the red box: the vessel in this segment is only about two pixels wide.
If removing the outline of this segment, the corresponding vessel in this
segment will disappear.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2021 | Volume 9 | Article 6979156

Ding et al. Retina Vessel Segmentation via Fusion Mechanism

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


4.2 STARE Dataset
The STARE dataset contains 20 fundus images and corresponding
labels (Hoover et al., 2000). The images have the resolution of 605 ×
700 pixels, 8 bits per color channel. This dataset does not contain
FOVmasks, so we use the masks provided byMarin et al. (2011) for
comparison. Due to the small size of the dataset, we use leave-one-
out method: select 19 images for training at a time, leave one image
for testing, and then calculate the average of various metrics on 20
images as the final results. Similarly to other methods, we use the
manual annotation by the first observer as our ground truth.

4.3 IOSTAR Dataset
The IOSTARdataset contains 30 fundus images, corresponding labels,
binary field of view (FOV)masks, and the optic disc (OD)masks. The
images have the resolution of 1024 × 1024 pixels and 45+ FOV. Since
the annotations of vessels within the OD are not available as stated on
the dataset website, we take the official recommendation and use the
OD mask for the evaluation of the retinal vessel segmentation. To
make it easy for comparison, we also use five-fold cross-validation to
train and test our model; that is, we select 24 images as the training set
each time, then use the remaining six images to test, and finally use the
average of the five tests as the final result.

5 RESULTS AND DISCUSSION

In order to evaluate the segmentation method proposed in this
article, we test on three datasets: DRIVE, STARE, and IOSTAR.
First, so as to prove the model independence of our method,
U-net is replaced with the FCN and the relevant experiments
performed. Second, we compare the performances of four loss
functions and list the relevant comparison results. Third, the
other two fusion methods are introduced, and we compare them
to our adopted fusion method. Then to verify the robustness of
our method, we perform cross-training on two datasets: DRIVE
and STARE. Finally, we compare our segmentation results with
some existing methods.

5.1 Evaluation Metrics
Through the comparison between segmentation map and ground
truth, the pixels which are in the segmentation map can be
divided into the following four categories: correctly classified
as positive (TP), correctly classified as negative (TN), incorrectly
classified as positive (FP), and incorrectly classified as negative
(FN). We use some general evaluation metrics such as Acc
(accuracy), Se (sensitivity), Sp (specificity), and F1 score, as
follows:

Acc � TP + TN
TN + TP + FN + FP

, (3)

Se � TP
TP + FN

, (4)

Sp � TN
TN + FP

, (5)

F1 � 2 × TP
TP + FP + FN

. (6)

To further evaluate the effectiveness of our method, we also
calculate the area under the receiver operating characteristics
curve (AUC).

5.2 Performance on Fully Convolutional
Networks
To verify the model independence of our method, we replace
U-net with the FCNmodel; that is to say, we transfer our training
strategy and fusion mechanism to the FCN: first, training the

FIGURE 8 | Comparison of a normal FCN-based model and our proposed method on the FCN-based model. From the left to right: fundus retina image, ground
truth, binary segmentation map of the normal FCN-based model and our proposed method on the FCN-based model. Obviously, our method can segment more thin
blood vessels.

FIGURE 9 | AUCs obtained by binary focal loss on DRIVE according to
different α and γ. We can obtain the best performance when α is 0.3 and γ

is 3.0.
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FIGURE 10 | Performance obtained by categorical focal loss on DRIVE according to different γ. When γ is 2.0, the best values of AUC, Acc, and Sp can be obtained.

TABLE 1 | Performance on four loss functions.

Vessel Type Loss Se Sp F1 Acc AUC

Original Binary cross entropy 0.7586 0.9820 0.8061 0.9535 0.9750
Categorical cross entropy 0.7074 0.9867 0.7866 0.9511 0.9735
Binary focal 0.7637 0.9815 0.8079 0.9538 0.9750
Categorical focal 0.7677 0.9816 0.8107 0.9544 0.9782

Thick Binary cross entropy 0.6917 0.9791 0.7387 0.9493 0.9665
Categorical cross entropy 0.6317 0.9825 0.7087 0.9462 0.9603
Binary focal 0.6721 0.9814 0.7333 0.9494 0.9653
Categorical focal 0.6846 0.9877 0.7404 0.9559 0.9684

Thin Binary cross entropy 0.6324 0.9793 0.6801 0.9504 0.9606
Categorical cross entropy 0.6091 0.9768 0.6536 0.9462 0.9506
Binary focal 0.6233 0.9805 0.6785 0.9508 0.9589
Categorical focal 0.6120 0.9817 0.6751 0.9509 0.9582

FIGURE 11 | Comparison of different loss functions. From the left to right: fundus retina image, annotations of thin, original and thick vessels, prediction probability
maps of thin, original, and thick vessels through categorical focal loss, categorical cross entropy, binary focal loss, and binary cross entropy, respectively. We can notice
that categorical cross entropy is the best one for our proposed method because it can help us segment blood vessels more clearly, especially thin blood vessels.
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original vessel images on the FCN-based model, then just as
common methods, taking 0.5 as the threshold of the prediction
probability map to turn it into a binary segmentation map. For
comparison, we train original, thick, and thin vessels separately
on the FCN-based model, and then apply our proposed fusion
method to get a final segmentation map. We perform this
comparison experiment on the DRIVE dataset, and related
experimental results are shown in Figure 8. It can be found
that our novel method can segment more vessel ends than the
original normal FCN model. We achieve 0.8082, 0.9830, 0.8141,
and 0.9677 on Se, Sp, F1-score, and Acc, respectively, while the
normal FCN achieves 0.7718, 0.9795, 0.8072, and 0.96535 on Se,
Sp, F1-score, and Acc, respectively.

5.3 Comparison of Loss Functions
We compare four loss functions on the basis of our framework,
namely, binary cross entropy, categorical cross entropy, binary
focal loss, and categorical focal loss. In deep learning methods for
retinal vessel segmentation, the cross-entropy loss function is
generally used. For the binary classification problem such as
blood vessel segmentation, the first choice we think of is binary
cross entropy. This loss can be defined as follows:

Lbce � {−log y′, y � 1
−log(1 − y′), y � 0 . (7)

Here, y is the ground truth and y′ is the prediction.

At the same time, for such problems, we can also use
categorical cross entropy loss; the expression is shown as follows:

Lce � −yplogy′, (8)

where y is the ground truth and y′ is the prediction.
The performances of above two cross-entropy loss functions

do not have absolute strengths or weaknesses. According to the
expression, it can be found that for all pixels in an image, whether
they belong to foreground or background, the cross-entropy loss
treats them all the same. Therefore, in the retina vessel
segmentation tasks, even if thin vascular pixels with the small
portion are not well segmented, cross-entropy loss will not be
very high. So, it would place the emphasis on thick vessels and
ignore thin vessels relatively.

In order to solve above problems, the focal loss (Lin et al.,
2017) is a more appropriate choice. It can improve the accuracy of
difficult segmented pixels. Focal loss can adjust a loss through two
parameters, α and γ. α is the weighting factor; it can control the
contribution of positive and negative samples to the total loss.
And γ is the focusing parameter; its purpose is to reduce the
weight of samples that are easy to classify so that the model can
focus more on samples that are difficult to be classified during the
training process. Inspired by the cross-entropy loss, we also try
two different focal losses: binary focal loss and categorical focal
loss. The expressions are as follows:

Lbinary focal �
⎧⎨⎩ −αp(1 − y′)c*logy′, y � 1

−(1 − α)*y′c*log(1 − y′), y � 0
, (9)

Lcategorical focal � −αplogy′*(1 − y′)c. (10)

Here, y is the ground truth and y′ is the prediction.
Here, α can play the role of balancing class. In categorical focal

loss, α is a 2-dimensional vector because our task is a binary
classification. In the binary focal loss, α is a fixed value.

In order to further explore the role of α and γ in two focal loss
functions, we take different values of α and γ to determine the best
set of parameters. The experiments are performed on the DRIVE
dataset. For binary focal loss, we compare α and γ, respectively. In
the original article, the best α and γ are 0.25 and 2.5, respectively.
Based on this, the range of α is 0.15 − 0.35, and the range of γ is
1.5 − 3.5, as shown in Figure 9. Since other metrics are related to
the threshold of binary images, we chose to compare AUC that is
just related to the predicted probability value. When α is 0.3 and γ
is 3.0, the maximum AUC is 0.9750. Otherwise, there is no big
difference between AUCs obtained by different parameters. For
the categorical focal loss, we set α to 0.25 for positive samples
directly and compare the performances of different γ. As shown
in Figure 10, we can see that when γ is 2.0, the best values of
AUC, Acc, and Sp can be obtained. So we can basically conclude
that in our experiments, categorical cross entropy performs best
when γ is 2.0.

We also compare the performances of four types of loss
functions on original, thick, and thin blood vessels. For
controlling variables, 0.5 is simply used as the threshold for
segmentation instead of our proposed fusion method. For two
types of focal loss, we use best parameters discussed above; that is,

TABLE 2 | Performance on the three fusion mechanisms.

Fusion Se Sp F1 Acc

1st 0.8191 0.9831 0.8201 0.9685
2nd 0.8158 0.9820 0.8138 0.9673
3rd 0.8201 0.9821 0.8158 0.9677

TABLE 3 | Cross-training results on DRIVE and STARE datasets.

Dataset Method Se Sp Acc AUC

DRIVE (trained on STARE) Marin et al. — — 0.9448 —

Fraz et al. 0.7242 0.9792 0.9456 0.9697
Li et al. 0.7273 0.9810 0.9486 0.9677
Yan et al. 0.7292 0.9815 0.9494 0.9599
Ours 0.7644 0.9843 0.9651 0.9689

STARE (trained on DRIVE) Marin et al. — — 0.9528 —

Fraz et al. 0.7010 0.9770 0.9495 0.9660
Li et al. 0.7027 0.9828 0.9545 0.9671
Yan et al. 0.7211 0.9840 0.9569 0.9708
Ours 0.7713 0.9850 0.9684 0.9694

TABLE 4 | Comparison of thin vessels segmentation.

Method Se Sp Acc

Yan et al. (2019) 0.8170 0.8115 0.8127
Our proposed 0.7677 0.9779 0.9602
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γ is 2.0 in categorical focal loss, and γ is 3.0 and α is 0.3 in the
binary focal loss. As described in Table 1, for original blood
vessels, except for categorical cross entropy with the best
performance on Sp, the categorical focal loss realizes the best
performances in the remaining metrics. For thick blood vessels,
similarly, except for binary cross entropy with the best
performance on Se, categorical focal loss achieves the best
performances on Sp, F1-score, Acc, and AUC. However, for
thin blood vessels, binary cross entropy performs the best on
Se, F1-score, and AUC, while categorical focal loss achieves good
results on Sp and Acc. In general, categorical cross entropy is the
best one for our proposed method. Therefore, we choose
categorical focal loss as our loss function. The performances of
four loss functions are shown in Figure 11. At the same time, it
can be noticed that when we train thick and thin vascular images,
all results we get are lower than those of original vascular images.
This is mainly because training objectives of thick and thin vessels
do not exactly coincide with their original retina images.

5.4 Comparison of Fusion Methods
We design two other fusion methods to compare with the first
methodmentioned earlier. In the other twomethods, for a certain
pixel in the image, its prediction values are first checked in the

original, thick, and thin vascular prediction probability maps.
Then for the second fusion method, if two of three prediction
values are greater than or equal to the threshold 0.5, the pixel is
determined as positive, that is, a blood vessel pixel, and its pixel
value is set to 255 to obtain a binary segmentation map. And for
the third method, we calculate the average of three prediction
pixel values; if the average value is greater than or equal to the
threshold 0.5, the pixel is defined as a vascular pixel. Comparison
of three fusion methods is shown in Table 2. We can find that
although the first fusion method is slightly lower than the third
fusion method on Se, it performs best on Sp, F1-score, Acc, and
AUC. So we finally chose the first fusion method as our fusion
mechanism.

5.5 Cross-Training on Different Datasets
To test the robustness of our method, we perform cross-training
on two datasets: DRIVE and STARE. Similar to other methods
(Yan et al., 2018), we first use the STARE dataset for training,
and then test on the DRIVE dataset. In the same way, in turn, we
use the DRIVE dataset for training and the STARE dataset for
testing. The performances of cross-training are shown in
Table 3. It can be found that for DRIVE (trained on
STARE), our method obtained best results on Se, Sp, and

TABLE 5 | Comparison of different retina vessel segmentation methods on DRIVE, STARE and IOSTAR datasets.

Dataset Method Se Sp F1 Acc AUC

DRIVE 2nd observer 0.7760 0.9724 — 0.9472 —

Zhang et al. (2010) 0.7120 0.9724 — 0.9382 —

Marin et al. (2011) 0.7067 0.9801 0.7690 0.9452 0.9588
Fraz et al. (2012) 0.7406 0.9807 — 0.9480 0.9747
Roychowdhury et al. (2015) 0.7395 0.9782 — 0.9494 0.9672
Li et al. (2016) 0.7569 0.9816 — 0.9527 0.9738
Yan et al. (2018) 0.7653 0.9818 — 0.9542 0.9752
Yan et al. (2019) 0.7631 0.9820 — 0.9538 0.9750
Liu et al. (2019) 0.8072 0.9780 0.8225 0.9559 0.9779
Wang et al. (2019) 0.7940 0.9816 0.8270 0.9567 0.9772
Li et al. (2020) 0.7791 0.9831 0.8218 0.9574 0.9813
Wu et al. (2020) 0.7996 0.9813 — 0.9582 0.9830
Ours 0.8140 0.9847 0.8247 0.9697 0.9782

STARE 2nd observer 0.8952 0.9384 — 0.9349 —

Zhang et al. (2010) 0.7177 0.9753 — 0.9484 —

Marin et al. (2011) 0.6944 0.9819 0.7531 0.9526 0.9769
Fraz et al. (2012) 0.7548 0.9763 — 0.9534 0.9768
Roychowdhury et al. (2015) 0.7317 0.9842 — 0.9560 0.9673
Yin et al. (2015) 0.8541 0.9419 — 0.9325 -
Li et al. (2016) 0.7726 0.9844 — 0.9628 0.9879
Yan et al. (2018) 0.7581 0.9846 — 0.9612 0.9801
Yan et al. (2019) 0.7735 0.9857 — 0.9638 0.9833
Liu et al. (2019) 0.7771 0.9843 0.8036 0.9623 0.9793
Li et al. (2020) 0.7715 0.9886 0.8146 0.9701 0.9881
Wu et al. (2020) 0.7963 0.9863 — 0.9672 0.9875
Ours 0.8251 0.9859 0.8239 0.9737 0.9821

IOSTAR Ronneberger et al. (2015) 0.8044 0.9793 — 0.9675 0.9464
Azzopardi et al. (2015) 0.7610 0.9670 — 0.9410 0.9550
Zhao et al. (2018) 0.7720 0.9670 — 0.9480 0.9600
Alom et al. (2018) 0.8042 0.9779 — 0.9652 0.9530
Gu et al. (2019) 0.8110 0.9749 — 0.9572 0.9658
Fu et al. (2019) 0.8298 0.9832 — 0.9720 0.9504
Mou et al. (2021) 0.8341 0.9831 — 0.9722 0.9758
Ours 0.7998 0.9847 0.8059 0.9702 0.9788
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Acc. And for STARE (trained on DRIVE), our method still
obtained best results on Se, Sp, and Acc. However, we can also
notice that results obtained by DRIVE (trained on STARE) are
generally lower than those obtained by STARE (trained on

DRIVE). Due to differences in manual annotations of two
datasets, the model trained on STARE is relatively weak in
segmenting images of DRIVE datasets because it is not able to
detect thin vessels well.

FIGURE 12 | Performance on retina vessel segmentation. From the top to bottom: images from DRIVE and STARE. From the left to right: fundus retina images,
ground truths of thin, original, and thick vessels, and prediction probability maps of thin, original, and thick vessels, and binary segmentation map.
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5.6 Segmentation Results
We analyze the segmentation results of our method on the thin
vessels and compare the results with those obtained by Yan et al.
(2019). In order to make it easy for comparison, as with their
method, we separate the thick vessels and thin vessels with a
boundary of three pixels, and then we calculate Se, Sp, and Acc of
the thin vessel segmentation results. From Table 4, we can see
that our Se is lower than the result of the study by Yan et al.
(2019), but our Sp and Acc are significantly higher than them,
which shows that we have improved the segmentation of thin
vessels.

We also compare different retina vessel segmentation methods
on three datasets, as shown in Table 5. The performances of our
proposed method for segmentation retina images are shown in
Figure 12. For DRIVE, we achieve 0.9697, 0.8140, 0.9847,
0.8247, and 0.9782 on Acc, Se, Sp, F1-score, and AUC,
respectively. Compared to the current excellent experimental
results, we surpass them on Acc, Se, and Sp. But for AUC, we
differ from the best result, 0.9830 of Wu et al. (2020), by 0.0048.
And for the F1-score, our result is lower than that obtained
using DEU-net (Wang et al., 2019) by 0.0023, which achieves
0.8270. For STARE, as mentioned above, we use FOV masks
generated byMarin et al. (2011). Our framework obtains 0.9737,
0.8251, 0.9859, 0.8239, and 0.9821 on Acc, Se, Sp, F1-score, and
AUC, respectively. Compared with many existing methods, our
method surpasses current state-of-the-art methods on F1-score
and Acc. But for Se, Sp and AUC, we are slightly lower. Among
them, AUC is 0.0058 lower than the current best result (Li et al.,
2016). For the IOSTAR dataset, we get 0.7998, 0.9847, 0.8059,
0.9702, and 0.9788 on Se, Sp, F1-score, Acc, and AUC,
respectively. Compared to the current outstanding
experimental results, we surpass them on Sp and AUC.
Especially for AUC, we are higher than CS2-net (Mou et al.,
2021) by 0.003, which achieves 0.9758.

In addition, we also calculate the standard deviation of the F1-
score obtained by using our method based on U-net and using
only U-net on the DRIVE test set. According to Table 6, our
standard deviation is 0.01744, while U-net’s standard deviation is

0.02345. This indicates that the F1-score predicted by our method
fluctuates less than using U-net alone. For different fundus
images, our model is less affected by differences in image
quality; thus, we can obtain more stable segmentation maps,
which also shows that our method has high reliability.

6 CONCLUSION

This study proposes a novel deep learningmethod to train original,
thick, and thin vessels. At the same time, we design algorithms for
extracting vessel skeleton and separating thick or thin blood vessels.
Importantly, we make a novel fusion mechanism that can fuse
prediction probability maps from three different types of vessels to
obtain final binary segmentation map. Experimental results
indicate that our proposed method has outperformed many
current outstanding retina vessel segmentation methods on
DRIVE, STARE, and IOSTAR datasets. The effectiveness and
robustness with different image conditions can make this blood
vessel segmentation proposal suitable for retinal image computer
analyses such as automated screening for early diabetic retinopathy
detection.
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