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Abstract: The precipitation of struvite (MgNH4PO4·6H2O) is considered to be a promising method for
the recovery of phosphate from wastewater. In this review, the kinetic models, which are commonly
used to explain the process of struvite crystallization, are described. The mixed-suspension mixed-
product removal (MSMPR) model is based on the population balance equation (the size-dependent
growth model and the size-independent growth model). Thereafter, the first-order kinetic fitting
model that aligned with concentration changes in the substrate is summarized. Finally, the several
physical and chemical factors that affected the efficiency of struvite crystallization are determined. The
supersaturation ratio, which is seen as the driving force of struvite crystallization, is the main factor
that influences crystallization; however, it cannot be used in practical applications of engineering
because it is indirectly associated with the following factors: pH, the molar ratio of Mg:N:P, and
the interference of foreign impurities. In this study, we present conclusions that should be used to
guide further research studies, and encourage the engineering practice of wastewater treatment with
struvite precipitation.

Keywords: phosphate recovery; struvite; chemical precipitation; crystallization kinetics

1. Introduction

Phosphorus is a limiting nutrient in organisms of an ecosystem. Whenever there
is an excessive discharge of phosphorus in the ecosystem, it leads to eutrophication of
water and causes environmental damage [1]. Although the reserves of phosphorus are
limited and nonrenewable, the consumption of phosphorus has increased steadily in
recent decades [2,3]. Therefore, it is essential to recycle the resources of phosphorus
and to gain social and economic benefits [4]. The recovery of phosphate is achieved
by crystallizing struvite (MgNH4PO4·6H2O), which is an important phosphate mineral
found in wastewater [5]. The recovery of phosphate is possible from this mineral because
the phosphate removal rate is excellent in the crystallization process. Furthermore, the
isolated phosphate can be fixed as a fertilizer, thereby enhancing its economic value [6,7].
Traditional phosphorus fertilizers are mostly water soluble. Phosphorus in farmland enters
rivers with precipitation and drainage, resulting in eutrophication of a water body and
lack of phosphorus in the later stage of crop growth. Different from traditional fertilizers,
struvite has low solubility in water and is not prone to leaching loss [8]. It is a slow-release
phosphate fertilizer. Struvite was first found in a sludge digestion system [9,10]. It is a
crystal formed by chelating equimolar concentrations of magnesium, ammonium, and
phosphate with six water molecules [11]. The crystallization process can be completed in
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less than one minute. The crystallization of struvite is favored as its solubility is low in
water. The solubility product constant of struvite (Ksp) is 13.26 in water [12].

The crystallization of struvite is a complex process, which is affected by the following
physicochemical parameters: pH, the molar ratio of Mg:N:P, temperature, and foreign
impurities [13,14]. Therefore, the various physicochemical parameters that influence the
process of struvite crystallization need to be understood. In many current studies, phos-
phorus removal rate has been used to characterize the effects of various physicochemical
parameters on struvite crystallization. However, the key to phosphorus recovery not
only needs high phosphorus removal rate, but also needs to form high-quality struvite.
Therefore, the model of struvite crystallization needs to be established to investigate the
effect of physicochemical parameters on the nucleation and growth of struvite from the
perspective of kinetics. With this knowledge, highly pure struvite was synthesized, which
can be further used for highly efficient phosphate recovery [15]. In addition, struvite
crystallization is favored by establishing the proper equilibrium and growth rate of crystals.
Thus, the uncertainty can be reduced in the process, design, and operation of crystallization
units [16].

Currently, the dynamic kinetics of struvite crystallization are described by the follow-
ing models: the population density model [17], the surface growth model [18], and the
first-order dynamic model of substrate concentration [19]. Furthermore, the population
density model describes how the total rate of change in the crystal number occurs due to
variations in following parameters: diameter, surface area, volume, shape, etc.

The objective of this study is to summarize the common kinetic models used in struvite
crystallization. Thereafter, the effects of various physical and chemical parameters on the
crystallization efficiency of struvite are discussed. Subsequently, the results were used
to understand the perspective of crystallization kinetics, which can be further used as a
reference work in the development of an efficient technology for phosphate recovery.

2. Model of Struvite Crystallization

In wastewater, supersaturated magnesium ions (Mg2+), ammonium (NH+
4 ), and

orthophosphate (PO3−
4 , HPO2−

4 and H2PO−4 ) combine to form struvite (MgNH4PO4·6H2O).
Struvite is formed through the following equation [20]:

Mg2++NH+
4 +PO3−

4 +6H2O→ MgNH4PO4·6H2O (1)

The driving force (F) of struvite crystallization is defined as follows [21]:

F =−
RgT
α

ln Ω (2)

where Rg is the gas constant (8.31 J·K−1·mol−1); α is 3; T is the absolute temperature; and Ω
is the supersaturation ratio of the solution, which is defined as the ratio of the ion activity
product (IAP) in the solution to the solubility product (Ksp) of the struvite crystal.

Ω =
(Mg2+)(NH+

4 )(PO3−
4 )

Ksp
(3)

where
(

Mg2+
) (

NH+
4
)
(PO 3−

4

)
denotes the activity of Mg2+, NH+

4 , and PO3−
4 ions in the

solution, and it is calculated by using the Davies model; and Ksp is the solubility product
of struvite crystal.

The crystallization process of struvite is classified into two primary stages: the nu-
cleation and the growth of crystals. In the nucleation phase, the ions combine with each
other to form a crystalline embryo. The growth of crystals ends when an equilibrium is
reached in the reaction mixture [14]. In general, nucleation is classified into two types:
homogenous nucleation is a spontaneous process; heterogeneous nucleation is brought
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about by including suspended solid impurities in the solution [22]. According to classical
nucleation theory, the homogenous nucleation rate J can be calculated as follows [23]:

J = δ exp

(
− βγ3v2

(kT)3(ln Ω)2

)
(4)

where β is a shape factor; v is the molecular volume; γ is the surface energy of the crystal;
k is the Boltzmann’s constant (1.381 × 10−23 J/K); and δ is the pre-exponential factor [24].

δ =

(
D

d5N

)(
4∆G
3πkT

)1/2
(5)

where D is the diffusion coefficient; d is the interplanar distance of the crystalline lattice;
N is the number of molecules that form a critical sized nucleus; and ∆G is the change in
Gibb’s free energy, which occurs due to the formation of a critical nucleus.

The induction time of a crystal is defined as the time expended from the supersatura-
tion of the solution to the solid formation; it can be determined from the changes caused
by crystallization in solution properties such as pH and conductivity [18]. By assuming
that the induction time is much lesser than the nucleation time, the induction time (τ) was
determined as follows:

τ =
A

(log Ω)2 − B (6)

where A = βγ3v2/(2.303 kT)3 and B = log ξ.
The growth rate of struvite crystals is calculated by using the following equation:

R = kr(Ω
1
3 − 1)

n
(7)

where kr is the reaction coefficient; and n is the apparent reaction order.
In previous studies, researchers have determined the kinetics of struvite crystallization

by using the mixed-suspension mixed-product removal (MSMPR) model. This model is
based on the population balance equation. It is a method used to estimate the kinetic
parameters of the crystallization of struvite, which depend on the crystal size distribution
(CSD) of the product [17,25,26]. The crystal growth rate and nucleation rate affect CSD
in solution, which is the key to control the quality of struvite [27]. The MSMPR model
includes the size-dependent growth (SDG) model and the simplified size-independent
growth model (SID).

In the MSMPR model, the population density of the mean size of struvite crystal
ni(Li) is based on CSD data. The model is described by the following equation [17]:

ni(Li) =
mi(Li)

kvρL3
i ∆LiVw

=
Vi(Li)

kvL3
i ∆LiVw

(8)

where Li denotes the mean size of the ith crystal; mi is the mass of the crystal; Vi is the
volume of the crystal; kv is the shape factor; ρ is the density of the crystal; ∆Li denotes the
crystal size range; and Vw is the total volume of the system.

Using the assumption of the SID model, we calculated the linear growth rate G of the
crystal by the following equation:

lnn(L) = − L
tG

+lnn0 (9)

where t is the mean retention time of the crystal; lnn(L) has a linear relationship with L,
and its slope is 1 /tG. After determining the value of t, G is obtained by fitting the slope of
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the straight line. The intercept of the fitting line is denoted as lnn0. The nucleation rate (B)
can be written according to the following equation [25]:

B = n0G (10)

Since the crystals are of different sizes, their growth rates are also different [28].
Therefore, the SDG model is introduced, and its parameters are defined in Table 1:

Table 1. The SDG models.

Linear Growth Rate G Mean Size Population Density n (L) References

G = G0 (1+ L
tG0

)b

b < 1 n(L) = n0

(
1+ L

tG0

)−b
exp

[
1

1−b −
(

1+ L
tG0

)−b

1−b

]
[29]

G = Gm

(
1− e−a(L+c)

)
a > 0, c 6= 0 n(L) = n0eaL

(
ea(L+c)−1

eac−1

)(−1−atGm)/atGm [30]

G = Gm
eaL−b
eaL−c n(L) = n0

(
eaL−c
1−c

)(
eaL−b
1−b

) c−a−abtGm
abtGm

e−
cL

btGm [31]

G = Gm − (G m −G0)e
aL

n(L) = n0e
L

tGm

(
G0

Gm−(G m−G0)e
aL

) 1
atGm

+1
[32]

where G0 represents the linear growth rate of nuclei, which further grow into zero-size crystals; Gm represents the
limiting linear growth rate of most giant crystals; a, b, and c represent the empirical constants.

The SIG model is a simplification of the SDG model, which is only used to process the
growth data of smaller crystals, but it should be noted that the simulation of G(SIG) and
Gm (SDG) by the two models is similar [33].

The first-order kinetic model is used to assess the growth rate of struvite crystallization,
which can be further described as follows [19,34]:

ln
(
C−Ceq

)
= −kt + ln(C −C0

)
(11)

where C is the concentration of the substrate at time t; Ceq is the equilibrium concentration
of the substrate; C0 is initial concentration of substrate; and k is the rate constant of first-
order reaction. The parameter values in some studies are summarized in Table 2.

Table 2. An overview of previous kinetics studies of struvite crystallization.

Research Object pH
(−)

Temperature
°C

Molar Ratio
(Mg:p)

k
(min−1)

R2

(−) References

Phosphate concentration 7.5 22–25 1.5 0.039 >0.92 [35]
Phosphate concentration 8.51 20 1.6 0.045 0.97 [36]
Phosphate concentration 8.4 22–24 1.2 0.061 0.96 [37]

Magnesium
concentration 9.0 30 1.0 0.109 0.99 [19]
Magnesium

concentration 9.0 20 0.5 0.156 >0.92 [38]

It should be noted that most kinetic studies regard the crystallization of struvite
as a first-order irreversible reaction. In fact, the crystallization behavior of struvite is
reversible [39].

In addition, the reaction order method [40] and the chemical potential gradient
model [41] were used to simulate the rate of struvite crystallization, providing new insights
into the crystallization behavior of struvite.

3. The Parameters That Influence Struvite Crystallization

Supersaturation is a crucial factor that affects the rate of struvite crystallization. How-
ever, it should be emphasized that supersaturation is indirectly affected by the following
factors: pH, concentration of the solute, temperature, and the presence of foreign impurities
in the solution. Due to these factors, supersaturated crystals of struvite cannot be used in
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practical applications of engineering. In this section, how the aforementioned factors affect
the formation of struvite crystals is summarized.

3.1. pH

The dissolution and crystallization of struvite occur simultaneously in an aqueous
solution [42]. Initially, the solubility of struvite decreases, but it increases when the pH
value increases subsequently [43]. The solubility of struvite is minimum when the pH
value is maintained between 8.5 and 9.0 [44]. In acidic conditions, struvite decomposes to
form an amorphous crystal. At this stage, the concentration of H2PO−4 ions decreases [45].
Furthermore, when the pH is increased above the value of 9, the solubility of struvite
starts increasing. This happens when ionized ammonium ion (NH+

4 ) is converted into an
unionized state of ammonia (NH3), causing a decrease in supersaturation [46].

In solutions with different pH, the ion concentration profiles of orthophosphate and
ammonia are different. This implies that the supersaturation ratio of the solution is affected
by pH, causing changes in the growth rates of struvite crystals. When the pH value of
the solution is 8.0, 8.5, and 9.0, the kinetics of struvite crystals growth follows a first-order
equation. Its first-order rate constants are 3.7, 5.1, and 6.9 h−1 at pH values of 8.0, 8.5, and
9.0, respectively [47]. Moreover, the first-order rate constant of struvite crystals growth
increases when the pH value is increased from 8.4 to 9.0 [37].

The zeta potential is affected by the interaction between particles in an aqueous
solution. A change in pH of the solution can change the value of the zeta potential, thereby
affecting the growth kinetics of the struvite crystal. When the pH value is increased steadily,
the zeta potential becomes more negative. Consequently, the growth rate of crystals is
accelerated in the solution [23,48]. However, if the initial value of pH is high, the positive
zeta potential is high, and the nucleation time is increased substantially [24].

The pH value is varied to modify the shape and the linear growth rate of struvite
crystals. By increasing the pH value, the size and the thickness of struvite crystal are
decreased. Matynia, et al. [49] reported that when the pH value of the solution increased
from 8 to 10, the average crystal size of struvite decreased by 5.5 times. Similarly, in the
study of Anna, et al. [50], the average crystal size of struvite decreased by 3 times when the
pH value of the solution increased from 9 to 11. Mazienczuk, et al. [25] reported that when
the range of pH values was controlled within 9–11, the relationship between crystal size,
linear growth rate, and pH value was as follows:

Lm= 2.86×105pH−5.44t0.328 R2= 0.808 (12)

G = 5.39×10−4pH−2.99t0.683 R2= 0.905 (13)

In addition, Mg2+ ions form crystals of Mg (OH)2 salt at higher pH values. This
supplementary crystallization process interferes with the formation of struvite crystals.
Primarily, if the pH value is greater than 10.5, a Mg3(PO4)2 compound is formed, and it
is insoluble in a strongly alkaline environment [51]. The crystallization of Mg3(PO4)2 and
Mg(OH)2 is described by the following equations [52]:

3Mg2++2PO3−
4 → Mg3(PO4)2 (14)

Mg2++2H2O↔ Mg(OH)2 ↓ +2H+ (15)

In summary, the effect of pH on struvite crystallization is summarized as follows:
Firstly, the pH value affects the formation of new ion species in the solution, which encour-
ages the formation of other crystals. Secondly, it affects the solubility and zeta potential
of struvite crystals. When the pH value of the solution is less than 7, there is formation of
mainly orthophosphate H2PO−4 . At this acidic pH value, the crystallization and the growth
of struvite are significantly inhibited. However, at a high pH value (≥11), other precipitates
are formed and ammonia becomes volatized. These events lead to the dissolution of stru-
vite, and the nucleation and crystallization of struvite are inhibited. In addition, as the pH
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value of solution increases, the nucleation rate increases in struvite crystals and the growth
rate of struvite crystals decreases, which produces a large number of small-sized struvite.

3.2. Molar Ratio of Mg:N:P

As shown in Equation (1), the theoretical molar ratio of Mg:P:N is 1:1:1. However, to
ensure that phosphorus is removed with high efficiency, an excessive amount of ammonium
or magnesium or both elements is often added. In a study conducted by Gong, et al. [53],
the molar ratio of Mg:P was increased from 0.8 to 1.2. Consequently, the rate of phosphorus
removal increased from 80.8 to 95.5%. This is because other insoluble compounds of
magnesium and phosphorus were formed along with struvite crystals [54]. Similarly,
Hutnik et al. [55] reported that the addition of excess magnesium ion is not only conducive
to the formation of larger struvite crystals, but also can remove a variety of impurities in
wastewater. Furthermore, at a given value of pH, an excessive concentration of phosphorus
was maintained. In these conditions, the degree of supersaturation depended only on the
concentration of magnesium and ammonium ions [56]. The yield of struvite increased
when the concentration of Mg2+ and NH4

+ was increased. This indicates that the saturation
of struvite is directly proportional to the logarithm of the ionic concentrations in the
crystal [57].

The molar ratio of Mg:N:P elements affect the supersaturation, which further impacts
the crystalline morphology of struvite. When the relative supersaturation ratio σ (Ω1/3− 1)
is within the range of 1.0–1.5, the struvite crystal develops into the shape of a coffin.
When the relative supersaturation ratio is within the range of 1.5–3.0, the struvite crystal
possesses a twin/polycrystalline state and develops into an X-shaped and needle-like
shaped crystal [58]. In addition, the kinetic parameters of struvite crystallization are
affected by supersaturation. Galbraith et al. [59] reported that struvite crystals more likely
aggregate with supersaturation increases. Similarly, Koralewska et al. [60] reported that
when Mg2+ increased from 0.1 to 1 mass-%; Gm and G0 of struvite crystal increased from
8.38 × 10−9, 1.48 × 10−10 to 1.18 × 10−8, 6.62 × 10−10 m/s; and B from 6.22 × 1012 to
4.67 × 1014/m3·s. Higher supersaturation is beneficial to the nucleation and growth of
struvite, and leads to a faster precipitation process and greater particle density.

3.3. The Effects of Foreign Impurities on Struvite Crystallization

It is established that Ca2+ or CO3
2− ions extend the induction time of crystallization

and inhibit the growth rate of crystals. When calcium ions are absorbed on the surface
of a crystal, the binding site of ammonia is occupied. Consequently, the crystallization
of struvite is inhibited [61]. Furthermore, calcium ions can consume phosphate and then
influence an oversaturated form of struvite. Calcium ions interact with phosphate or
carbonate ions to form calcium phosphate (usually hydroxyapatite) or calcium carbonate
(usually calcite), respectively. Please refer to Equations (16) and (17) [62]:

5Ca2++3PO3−
4 +H2O→ Ca5(PO4)3OH + H+ (16)

Mg2++2H2O↔ Mg(OH)2 ↓ +2H+ (17)

Yaakoubi et al. [63] reported that the reaction processes of struvite crystallization
were dramatically improved when Ca2+ or Mg2+ ions were added into an aqueous so-
lution containing phosphate and ammonia species. As shown in Figure 1, precipitates
of CaHPO4·2H2O and MgHPO4·3H2O were obtained initially due to high solubility and
weak thermodynamics. Subsequently, a more stable form of the species was generated as
CaHPO4 and Mg3(PO4)2·8H2O. In the same manner, Ca3(PO4)2 and Mg (NH4) PO4·6H2O
were eventually achieved.

In a study conducted by Hutnik et al. [26], the SDG model was used to determine
how calcium ions affect the crystallization of struvite. When the concentration of calcium
ions was increased from 100 mg/L to 2000 mg/L, the nuclear growth rate decreased
significantly from 2.30 × 10−11 to 2.09 × 10−12 m/s. Moreover, the linear growth rate of
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crystals also decreased significantly from 1.71× 10−8 to 9.10× 10−9 m/s. Nevertheless, the
nucleation rate of struvite increased 160 times. In contrast, the purity of struvite decreased
by 8.1 mass%. Moreover, the process of struvite crystallization slowed down when the
molar ratio of Ca2+/Mg2+ ions became greater than 0.2. The formation of struvite crystals
was significantly inhibited, and the purity decreased when the molar ratio was increased
from 0.5 to 1.0. Moreover, the formation and the purity of struvite crystals declined when
the molar ratio of Ca2+/PO4

3− was increased from 0.5 to 1.0 [20].
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Figure 1. Reaction map of calcium and magnesium with soluble phosphate (−: primary solid
crystallization; − · −: transform to a secondary solid; − − −: precipitate of the secondary solid).

The nucleation and growth of struvite crystals improve with the presence of copper
ions in the solution. This is because copper ions increase the linear growth rate of struvite
crystals. In contrast, they also cause a decline in the nucleation rate, thereby facilitating
the formation of large-sized crystals [64]. A similar phenomenon was observed when the
solution was treated with aluminum ions. When the concentration of aluminum ions was
increased from 10 to 100 mg/L, the nucleation rate of struvite decreased by 5%. In contrast,
the linear growth rate of struvite crystals increased by 8%, and the average size of crystals
increased by 22% [17]. In addition, Hutnik et al. [65] reported that the existence of K+

increases the growth rate of struvite crystal, and the average size of struvite was about
46 um.

Magnesium chloride is often used as a source of magnesium and an additive.
Ariyanto, et al. [14] determined how chloride ions affect the crystallization efficiency
of struvite. The results indicate that excessive chloride ions increase the activation en-
ergy of struvite nucleation. Moreover, they also increase the induction time of struvite.
Ping, et al. [66] reported that the efficiency of phosphorus removal increased when the
total suspended solids were present at higher concentrations in actual wastewater, and the
diameter and purity of struvite crystals decreased significantly.

The presence of humic acid in wastewater clearly restricted the removal of phosphate,
and the removal efficiency dropped from 97.47% to 80.80% [67]. This is because humic
acid contains several carboxylic groups (-COOH). Therefore, humic acid shows a higher
affinity towards Mg2+ and NH4

+ ions, facilitating the formation of the following complexes:
[C3H5O(COO)3]2Mg3 and C3H5O(COO)3(NH4)3 [68]. In addition, Qi Zhang, et al. [69] indi-
cated that the crystallization of struvite was inhibited by the presence of impurities, which
were formed when the dissolved humic acid combined with the seed crystal. Moreover,
humic acid also endorsed a simple coverage of the available sites on the crystal nucleus,
which slowed down the crystallization rate of struvite. The morphology of the collected
struvite crystals changed from a prismatic to pyramidal shape because co-crystallization
occurred due to the presence of humic acid on the surface of crystals [70]. This point of
view is also supported by Wei, et al. [21], who reported that the change in the morphology
of crystals was most likely triggered by the following functional groups: amides, humic
acid-Mg2+ complex, and phosphate ester. These chemical moieties were formed due to
the interaction between humic acid and struvite crystals. As shown in Figure 2, foreign
impurities have a significant influence on the formation of struvite crystals.
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In summary, the effect of foreign impurities on struvite crystallization is complex, and
its mechanism needs to be further studied. However, it can be noted that metal cations lead
to the decrease in the nucleation rate and the increase in the growth rate of struvite.
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In this study, the kinetic model of struvite crystallization was explained. The MSMPR
model, which is based on a statistical method, can be used to accurately predict the
nucleation and crystallization of struvite; however, it cannot describe the mechanism of
crystallization. The kinetic model of struvite crystallization needs to be further elucidated.

The lower the nucleation rate, the higher the linear growth rate of crystals; these con-
ditions are considered to be ideal for struvite crystallization. Moreover, the supersaturation
rate also needs to be controlled in this process. The supersaturation ratio of the solution
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