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The prevalence of hepatocellular carcinoma (HCC) is still high worldwide because liver diseases could develop into HCC. Recent
reports indicate nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NAFLD&NASH) and primary biliary cirrhosis
and primary sclerosing cholangitis (PBC&PSC) are significant of HCC. Therefore, understanding the cellular mechanisms of the
pathogenesis and hepatocarcinogenesis from normal liver cells to HCC through NAFLD&NASH or PBC&PSC is a priority to
prevent the progression of liver damage and reduce the risk of further complications. By the genetic and epigenetic data mining
and the system identification through next-generation sequencing data and its corresponding DNA methylation profiles of liver
cells in normal, NAFLD&NASH, PBC&PSC, and HCC patients, we identified the genome-wide real genetic and epigenetic
networks (GENs) of normal, NAFLD&NASH, PBC&PSC, and HCC patients. In order to get valuable insight into these
identified genome-wide GENs, we then applied a principal network projection method to extract the corresponding core GENs
for normal liver cells, NAFLD&NASH, PBC&PSC, and HCC. By comparing the signal transduction pathways involved in the
identified core GENs, we found that the hepatocarcinogenesis through NAFLD&NASH was induced through DNA methylation
of HIST2H2BE, HSPB1, RPL30, and ALDOB and the regulation of miR-21 and miR-122, and the hepatocarcinogenesis through
PBC&PSC was induced through DNA methylation of RPL23A, HIST2H2BE, TIMP1, IGF2, RPL30, and ALDOB and the
regulation of miR-29a, miR-21, and miR-122. The genetic and epigenetic changes in the pathogenesis and hepatocarcinogenesis
potentially serve as potential diagnostic biomarkers and/or therapeutic targets.

1. Introduction

The liver is the largest internal organ of the human body and
is involved in many important functions that require high
harmonization to control biochemical processes [1]. How-
ever, alterations of molecular mechanisms in the liver have
been linked to liver diseases such as hepatitis, steatosis,
cirrhosis, and hepatocellular carcinoma (HCC). HCC is the
end stage of general liver diseases that were classified as
nonalcoholic fatty liver disease (NAFLD), autoimmune liver
disease, viral hepatitis, alcoholic liver disease, and others.
The prevalence of NAFLD, including the more aggressive

nonalcoholic steatohepatitis (NASH), is increasing with the
growing epidemics of diabetes and obesity. The most fre-
quent symptoms in autoimmune liver diseases (i.e., primary
biliary cirrhosis (PBC) and primary sclerosing cholangitis
(PSC)), which lead to cholestasis, are fatigue, jaundice,
hyperpigmentation, or pruritus. Half a million patients are
diagnosed with HCC worldwide each year. It has no signifi-
cant symptoms in the early stage of HCC through NAFLD&-
NASH or PBC&PSC and tends to be observed in the
advanced stage [2, 3]. Apart from regular surveillance for
HCC, understanding the cellular mechanisms of the patho-
genesis and hepatocarcinogenesis from normal liver cells to
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HCC through NAFLD&NASH or PBC&PSC is a priority to
slow the progression of liver damage and reduce the risk of
further complications.

Recent reports indicate that NAFLD, NASH, PBC, and
PSC are responsible for 13%, 4–27%, 3.8%, and 2% HCC
cases, respectively. HCC is one of the most deadly malignant
tumors, with five-year survival rates ranging from 3% to 28%.
Although the reduction of triglycerides in the liver of
NAFLD&NASH patients by regular exercise and liver trans-
plantation in PBC&PSC patients can slow the progression of
liver damage [4–6], these treatments have some limitations
for the complete remedy of liver damage from the perspective
of molecular mechanism.

The short noncoding RNA sequences (approximately
21-nucleotide long), microRNAs (miRNAs), were assumed
to act by partial repression or degradation of targeted
mRNAs. It has been observed that diet-induced obesity in
mice results in the differential expression of 6% miRNAs
[7]. These changes were similarly observed in human hepato-
cytes and immortalized liver cell lines exposed to various
fatty acids [8]. miRNAs, mostly secreted from cells through
active energy-dependent processes via storage in microvesi-
cles, can also circulate freely in the blood [9]. miRNAs were
also released by the increased cell death, as it occurs in
NAFLD via ballooning degeneration, into the circulation to
regulate diverse biological processes including the immune
system, cell proliferation, differentiation, and development
leading to major advances in the pathomechanism and the
hepatogenesis mechanism [10]. Therefore, miRNAs have
been proposed as attractive diagnostic biomarkers for inves-
tigating, noninvasively, the pathogenesis of NAFLD&NASH
(or PBC&PSC) and the carcinogenesis of HCC [11].

Epigenetic regulation, including DNA methylation, his-
tone modification, and chromatin remodelling, results in
potentially reversible alterations in gene expression that do
not involve permanent changes to the DNA sequence. It
has been reported that maternal western diet increases the
susceptibility of male offspring to NAFLD [12]. Additionally,
by comparing liver biopsies before and after bariatric surgery,
it has been observed that weight loss after bariatric surgery
leads to NAFLD-associated methylation changes, partially
reversible [13]. Therefore, abnormal DNA methylation
is the hallmark of the pathogenesis of NAFLD&NASH
(or PBC&PSC) and the carcinogenesis of HCC.

DNA methylation, including DNA methylation in the
coding region (coding-region methylation) or in the pro-
moter region (promoter-region methylation), regulates the
process of mRNA transcription. Promoter region methyla-
tion directly affects the binding affinities of miRNAs and
transcription factors (TFs) to vary transcriptional profiles
[14, 15] while coding region methylation directly attenu-
ates the basal gene expression. The characterization of
aberrant DNA methylation is involved in the pathogenesis
of NAFLD&NASH (or PBC/PSC) and the carcinogenesis
of HCC.

In order to investigate the cellular mechanisms of
NAFLD&NASH (or PBC&PSC) pathogenesis and
NAFLD&NASH-associated (or PBC&PSC-associated) hepa-
tocarcinogenesis in the liver cells of patients, we constructed

the stochastic models of the genome-wide genetic and epige-
netic network (GEN) in human cells based on molecular
mechanisms, including TF regulations, miRNA repressions,
DNA methylation of genes, and protein-protein interactions
(PPIs). By applying a system identification method and a sys-
tem order detection scheme to prune the false positives from
the candidate genome-wide GEN constructed by the genetic
and epigenetic data mining, we identified the real genome-
wide GENs of liver cells in patients with normal liver,
NAFLD&NASH, PBC&PSC, and HCC using their corre-
sponding genome-wide mRNA and miRNA expression data
and its corresponding DNA methylation profiles. Although
the nonsignificant network connections of a liver cell condi-
tion have been pruned out from a genome-wide candidate
GEN based on a system order detection scheme using the
genome-wide expression data, the real genome-wide GEN
of a liver cell condition is still complex and complicated
owing to the network involving multiple molecular mecha-
nisms. We then applied the principal network projection
(PNP) method to the real genome-wide GEN to extract the
core network nodes (core proteins/genes/miRNAs), which
could constitute signal transduction pathways; i.e., the path-
ways mediate the intracellular signaling cascade, from the
significant network linking energy perspective. By comparing
the core pathways with the major differences between normal
liver and NAFLD&NASH and between NAFLD&NASH and
HCC, we could unravel respectively the cellular mechanisms
of NAFLD&NASH pathogenesis and NAFLD&NASH-
associated hepatocarcinogenesis. Similarly, by comparing
the core pathways with the major differences between normal
liver and PBC&PSC and between PBC&PSC and HCC, we
could unravel the cellular mechanisms of PBC&PSC patho-
genesis and PBC&PSC-associated hepatocarcinogenesis,
respectively. We finally proposed network biomarkers, i.e.,
a set of proteins and miRNAs, as potential diagnostic
biomarkers and novel therapeutic drug targets in each liver
condition for preventing NAFLD&NASH or PBC&PSC
pathogenesis or NAFLD&NASH-associated or PBC&PSC-
associated hepatocarcinogenesis. The proposed system biol-
ogy method also has a potential for use in other liver disease
screenings and treatments.

2. Results

This study focused on the construction of genome-wide
GENs and their core GENs for different liver diseases, to fur-
ther investigate the hepatocarcinogenic mechanisms, which
were then used to design potential drugs for preventing
hepatocarcinogenesis in NAFLD&NASH (or PBC&PSC)
patients. The hepatocarcinogenic mechanisms for the pro-
gression from normal liver cells to HCC were divided into
two progression paths with four progression stages, as
shown in Figure 1(a). The upper progression path in
Figure 1(a) comprises the pathogenesis and hepatocarcino-
genesis from normal liver cells to HCC through NAFLD&-
NASH, represented as NAFLD&NASH pathogenesis and
NAFLD&NASH-associated hepatocarcinogenesis, respec-
tively. The lower progression path in Figure 1(a) comprises
the pathogenesis and hepatocarcinogenesis from normal

2 Disease Markers



liver cells to HCC through PBC&PSC, represented as
PBC&PSC pathogenesis and PBC&PSC-associated hepato-
carcinogenesis, respectively. Because previous studies have
mostly investigated significant proteins or genes instead of
using big database mining and genome-wide high-
throughput data identification, they may have ignored the
effects of the neglected proteins or genes in signaling path-
ways. In this study, a flowchart for constructing genome-

wide GENs, core GENs, and core pathways with network
biomarkers for the pathogenesis and hepatocarcinogenesis
of HCC is shown in Figure 1(b). First, we constructed the
genome-wide candidate GEN in human cells by big genetic
and epigenetic database mining. We applied a system identi-
fication method and a system order detection scheme to the
system models of a genome-wide candidate GEN in human
cells to prune the false positives in the candidate GEN and to
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Figure 1: (a) Progression path in pathogenesis and hepatocarcinogenesis. (b) Flowchart for identifying core GENs and pathways.
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finally identify the real genome-wide GENs in normal cells,
NAFLD&NASH, PBC&PSC, and HCC using genome-wide
microarray data and NGS data and their corresponding
DNA methylation profiles. Moreover, we applied PNP to
the real genome-wide GENs of the four cells to obtain their
core GENs in normal cells, NAFLD&NASH, PBC&PSC, or
HCC by comparing their core GENs. Furthermore, the sig-
naling pathways of these core GENs were then compared
to unravel the hepatocarcinogenic mechanisms from normal
liver cells to HCC through NAFLD&NASH or PBC&PSC
(see Materials and Methods). The pathogenic and hepato-
carcinogenic mechanisms provide valuable insight into
the potential drugs for treating patients with liver diseases
or HCC.

We have identified genome-wide GENs for normal liver,
NAFLD&NASH, PBC&PSC, and HCC using database
mining, microarray data, NGS data, system modeling, and
systematic analysis, as shown in Figures S1–S4, respectively
(see Materials and Methods). Because the genome-wide real
GENs are extremely complicated, we further unraveled the
cellular mechanisms of pathogenesis and hepatocarcinogen-
esis in liver cells from the signal transduction pathway per-
spective. Therefore, we applied PNP to the genome-wide
real GEN to obtain the projection value of each node based
on the identified network parameters through the Akaike
information criterion (AIC). The top nodes with the highest
projection values constitute the core GENs for normal liver,
NAFLD&NASH, PBC&PSC, and HCC (Figures S5–S8,
respectively), which have complete connections in signal
transduction, i.e., whole signaling cascade from receptors to
TFs (in Figures 2–4, respectively). Finally, we further clarified
the cellular mechanisms of pathogenesis and hepatocarcino-
genesis based on the core signaling pathways of each progres-
sion stage by making use of the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database and the Gene Ontology
(GO) database. Based on the core signaling pathways, we
also proposed the network biomarkers for a potential drug
design to prevent further liver damage of the patients with
NAFLD&NASH or PBC&PSC.

2.1. Ten-Fold Cross-Validation to Test the Robustness of the
Models and AIC. In order to test the robustness of the pro-
posed models in (1) and (2) and AIC in (10), we applied a
ten-fold cross-validation test to the mRNA expressions in
each cell. We randomly split each data set in normal liver,
NAFLD&NASH, PBC&PSC, and HCC into ten sets (e.g.,
normal liver from 62 patients into 6, 6, 6, 6, 6, 6, 6, 6, 7,
and 7 patients). We then repeated the system identification
method ten times in normal liver, NAFLD&NASH,
PBC&PSC, and HCC. In the protein-protein interaction net-
work (PPIN) of the identified GEN, 88.48% (122,545/
138,498) pairs in normal liver, 86.48% pairs (108,357/
125,304) in NAFLD&NASH, 86.48% pairs (108,300/
125,221) in PBC&PSC, and 14.51% pairs (15,506/106830)
in HCC were selected independent of the ten split sets. Addi-
tionally, in the gene regulatory network (GRN) of the identi-
fied GEN, 19.62% (1212/6178) pairs in normal liver, 18.84%
pairs (2298/12,197) in NAFLD&NASH, 19% pairs (2275/
11,972) in PBC&PSC, and 33.74% pairs (10,752/31,869) in

HCC were selected independent of the ten split sets. Because
the low independency of HCC in PPIN results from its
largest sample size (369 patients) and a target gene has less
candidate TFs (7.3± 9.2) in candidate GRN on average as
compared to the candidate connecting partners of a protein
(15.9± 81.9) in candidate PPIN on average, the proposed
system identification method can identify a robust real
GEN, especially for large sample sizes.

2.2. Analysis of Core Pathways to Investigate Underlying
Cellular Mechanisms for NAFLD&NASH Pathogenesis and
NAFLD&NASH-Associated Hepatocarcinogenesis. In the
upper progression path of Figure 1(a), the identified core
pathways comprise 37 core protein-coding genes, i.e., net-
work biomarkers, involved in at least one core GEN of nor-
mal liver cells, NAFLD&NASH, and HCC. The projection
values of 37 network biomarkers D k in (17) are also shown
in Table S1. We projected these core genes to the KEGG
and the GO database mining to get the relevant biological
functions and then obtained the core pathways for NAFLD&-
NASH pathogenesis (Figure 5) and NAFLD&NASH-
associated hepatocarcinogenesis (Figure 2).

In the pathogenesis of NAFLD&NASH in Figure 5, we
identified eight genes having expression difference between
normal liver cells and NAFLD&NASH, i.e., HIST2H2BE
(p value ≤ 1.06× 10−1), RFC5 (p value ≤ 1.5× 10−2),
HSPB1 (p value ≤ 6.6× 10−2), ZNF480 (p value ≤ 1.0×10−2),
TUBA1C (p value ≤ 3.48×10−1), RPL30 (p value ≤ 1×10−3),
FRAT2 (p value ≤ 1.08×10−1), and TRMT1 (p value ≤
5.33× 10−1). Furthermore, three of those genes had basal
level differences that might have been caused by DNA meth-
ylation on the corresponding genes. According to DNA
methylation profiles in the normal liver cells and NAFLD&-
NASH, we found one gene that had undergone hypermethy-
lation, i.e., HIST2H2BE (p value ≤ 2.05× 10−1), and two
genes that had undergone hypomethylation, i.e., RPL30
(p value ≤ 4.90× 10−1) and TRMT1 (p value ≤ 4.40× 10−1)
in a comparison of normal liver cells with NAFLD&-
NASH cells.

In the hepatocarcinogenesis of NAFLD&NASH in
Figure 2, we also identified eight genes with differences in
expression between NAFLD&NASH and HCC, i.e.,
HIST2H2BE (p value ≤ 1.00× 10−3), RFC5 (p value ≤
1.00× 10−3), HSPB1 (p value ≤ 1.00× 10−3), ZNF480 (p value
≤ 1.00× 10−3), TUBA1C (p value ≤ 1.00× 10−3), RPL30
(p value ≤ 1.00× 10−3), FRAT2 (p value ≤ 1.00× 10−3), and
ALDOB (p value ≤ 1.5× 10−2). Furthermore, five of those
genes had basal level differences that might have been caused
by DNAmethylation on the corresponding genes. According
to DNA methylation profiles of NAFLD&NASH and HCC,
we found three genes that had undergone hypermethylation,
i.e., ALDOB (p value ≤ 8.50× 10−1), HSPB1 (p value ≤
1.00× 10−3), and RPL30 (p value ≤ 1.00× 10−3), and two
genes that had undergone hypomethylation, i.e., TUBA1C
(p value ≤ 1.00× 10−3) and FRAT2 (p value ≤ 1.00× 10−3)
in a comparison of NAFLD&NASH with HCC cells.

After extracting two signaling pathways between normal
cells and NAFLD&NASH and between NAFLD&NASH and
HCC from the core GENs (Figures S5, S6, and S8) as shown
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in Figures 5 and 2, respectively, we further investigated the
cellular mechanisms underlying progression of NAFLD&-
NASH pathogenesis in Figure 5 and NAFLD&NASH-
associated hepatocarcinogenesis in Figure 2. In Figure 5, we
observed that in normal liver cells, the insulin receptor
(ALK) and the prosaposin receptor (GPR37) were activated
to allow ubiquitin C (UBC) to modulate two TFs (ETS1
and TBP) in the WNT and the MAPK signaling pathways
to induce DNA repair through the mediation ofHIST2H2BE,
apoptosis through the mediation of HSPB1, and metabolism
through the mediation of FRAT2. To maintain proper DNA

repair function, apoptosis and metabolism should be silenced
by miR-21, miR-122, and miR-214. For example, miR-21 and
miR-214 can silence HIST2H2BE and HSPB1 in normal liver
cells without significant liver damage, and miR-122 can
silence FRAT2 to avoid metabolism dysfunction. However,
both excessive accumulation of hepatic triglycerides and
abnormal DNA repair through the dysregulation of
HIST2H2BE caused by hypermethylation caused normal
liver cells to progress to NAFLD&NASH. In NAFLD&-
NASH, we observed that oxidative stress could activate epi-
dermal growth factor receptor (EGFR) to facilitate (i) UBC
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and light-blue bands, respectively. Dysfunctions of both metabolism and apoptosis via DNA hypermethylation and dysregulation of
miR-21 contribute to tumorigenesis from NAFLD&NASH to HCC. Dysregulation of miR-21 and miR-122 contributes to tumor invasion
and metastasis in HCC.
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to repress HSF1 in the WNT and MAPK signaling pathways;
(ii) APP to activate ETS1 in the MAPK signaling pathway to
induce DNA repair function through the mediation of RFC5,
to activate metabolism through the mediation of TRMT1,
and to inhibit apoptosis through the mediation of ZNF480;
and (iii) SHC1 to repress STAT5A in the MAPK signaling
pathway. Furthermore, androgen receptor (AR) directly
inhibited apoptosis through the mediation of TUBA1C.
Intriguingly, HSPB1 caused antiapoptosis without miR-214
silencing and RFC5 caused DNA repair function. Thus,

antiapoptosis and DNA repair could overcome liver damage
through the MAPK signaling pathway.

With a series of dysregulations and mutations,
NAFLD&NASH developed into HCC through the cellular
mechanisms of hepatocarcinogenesis progression, as shown
in Figure 2. For example, ZNF480 silenced by abnormal
miR-21 can inhibit apoptosis to facilitate tumorigenesis. In
HCC, liver damage and dysregulation due to mutations are
still accumulated to facilitate EGFR to repress UBC. Then,
UBC modulated STAT5A and HSF1 in the WNT and the
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MAPK signaling pathways to inhibit DNA repair through the
mediation of HIST2H2BE and to induce antiapoptosis
through the mediation of HSPB1, which might finally facili-
tate tumor growth. Moreover, EGFR also represses TP53 to
modulate ETS1 in the MAPK signaling pathway to promote
dysfunction of metabolism and apoptosis through the medi-
ation of FRAT2 and RPL30. In addition, the dysregulation of
TUBA1C caused by abnormal miR-122 silencing and the dys-
regulation of ALDOB caused by both hypermethylation and
abnormal miR-21 silencing might facilitate tumor metastasis.

Based on two signaling pathways (Figures 5 and 2)
involved in core GENs, we found five network biomarkers,
UBC, amyloid precursor protein (APP), SHC-transforming
protein 1 (SHC1), EGFR, and V-Ets Avian Erythroblastosis
Virus E26 Oncogene Homolog 1 (ETS1), that play a central
role in pathogenesis and hepatocarcinogenesis in the upper
progression path of Figure 1(a). UBC facilitates a posttransla-
tional modification where ubiquitin is attached to a substrate
protein to control intracellular signaling and is involved in
protein degradation, DNA repair, cell cycle regulation, kinase
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Figure 4: Signaling pathways for investigating cellular mechanisms of progression for pathogenesis from PBC&PSC to HCC. The blue
dash-dotted lines and the yellow dotted lines represent the specific edges of the real GENs, including PPINs and GRNs, in PBC&PSC and
HCC, respectively; the green solid lines denote the common edges between PBC&PSC and HCC; the red and black symbols indicate
specific core members of the real GENs in PBC&PSC and HCC, respectively; and the green symbols are the common core members
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light-blue bands, respectively. Dysfunction of metabolism process, apoptosis, and autoimmune via DNA hypermethylation, and
dysregulations of miR-21, miR-122, and miR-29a contribute to tumorigenesis from PBC&PSC to HCC. Dysregulation of miR-21, miR-122,
and miR-29a contributes to tumor invasion and metastasis in HCC.
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modification, endocytosis, and regulation of other cell signal-
ing pathways. Therefore, UBC plays an important role in the
appropriate regulation of the human system [16]. APP facil-
itates posttranslational modifications including glycosylation
and phosphorylation. Its primary function is not yet known,
although it has been implicated as a regulator of Alzheimer’s
disease, and may be associated with apoptosis, cell differenti-
ation, and stress responses, and may play a critical role in
intracellular signaling [17]. SHC1 has been reported to play
an important role in the EGFR signaling pathway [18] and

is associated with carcinogenesis and metastasis [19]. It acts
as a cell surface protein that binds to epidermal growth factor
and a ligand to induce receptor dimerization and tyrosine
autophosphorylation, which contributes to cell proliferation
and differentiation [20]. Mutations in EGFR are associated
with a number of cancers [21], but the precise role of EGFR
in HCC is still unknown. ETS1 acts as a transcriptional acti-
vator or repressor of numerous genes and is involved in stem
cell development, cell death, and tumorigenesis [22]. In addi-
tion, we also found nine genes that play a central role in the
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upper progression path of Figure 1(a), i.e., two DNA repair-
related genes (histone cluster 2 (H2be; HIST2H2BE) and
replication factor C5 (RFC5)), four apoptosis-related genes
(heat shock 27-kDa protein 1 (HSPB1), zinc finger protein
480 (ZNF480), tubulin alpha 1c (TUBA1C), and ribosomal
protein L30 (RPL30)), and three metabolism-related genes
(aldolase B (ALDOB), frequently rearranged in advanced
T-cell lymphomas 2 (FRAT2), and tRNA methyltransferase
1 (TRMT1)).

2.3. Analysis of the Signaling Pathways Involved in the
Core GENs to Investigate Underlying Cellular Mechanisms
for PBC&PSC Pathogenesis and PBC&PSC-Associated
Hepatocarcinogenesis. In the lower progression path of
Figure 1(a), the identified core pathways comprise 40 core
protein-coding genes, i.e., network biomarkers, involved in
at least one core GEN of normal liver cells, PBC&PSC,
and HCC. The projection values of the 40 network bio-
markers D k in (17) are also shown in Table S2. We
projected these network biomarkers to KEGG and GO
database mining to get the relevant biological functions
and then obtained the core pathways for PBC&PSC path-
ogenesis (Figure 3) and PBC&PSC-associated hepatocarci-
nogenesis (Figure 4).

In the pathogenesis of PBC&PSC in Figure 3, we identified
ten genes with expression differences between normal cells
and PBC&PSC, i.e., HIST2H2BE (p value ≤ 5.62× 10−1),
RFC5 (p value ≤ 1.19× 10−1), TIMP1 (p value ≤ 7.5× 10−2),
ZNF480 (p value ≤ 1.00× 10−3), H3F3A (p value ≤
6.31× 10−1), ALDOB (p value ≤ 1.55× 10−1), RPL30 (p value
≤ 2.62× 10−1), FRAT2 (p value≤ 7.16× 10−1),TRMT1 (p value
≤ 1.00× 10−3), IGF2 (p value ≤ 5.44× 10−1), and MDC1
(p value ≤ 1.9× 10−2). Furthermore, four of those genes had
basal level differences that might have been caused by DNA
methylation of the corresponding genes. With DNA methyl-
ation profiles of normal and PBC&PSC for validation, we
found one gene that had undergone hypermethylation
change, i.e., HIST2H2BE (p value ≤ 1.2× 10−2), and three
genes that had undergone hypomethylation, i.e., RPL30
(p value ≤ 1.00× 10−3), RPL23A (p value ≤ 1.00× 10−3),
and RFC5 (p value ≤ 1.00× 10−3) in a comparison of normal
cells with PBC&PSC cells.

In the hepatocarcinogenesis of PBC&PSC in Figure 4, we
also identified ten genes having differences in expression
between PBC&PSC and HCC, i.e., HIST2H2BE (p value ≤
1.00× 10−3), RFC5 (p value ≤ 1.00× 10−3), TIMP1 (p value
≤ 1.00× 10−3), ZNF480 (p value ≤ 1.00× 10−3), H3F3A
(p value ≤ 1.00× 10−3), RPL30 (p value ≤ 1.00× 10−3),
FRAT2 (p value ≤ 1.00× 10−3), ALDOB (p value ≤
7.2× 10−2), IGF2 (p value ≤ 1.07× 10−1), and RPL23A (p value
≤ 1.00× 10−3). Furthermore, six of those genes had basal level
differences that might have been caused by DNAmethylation
on the corresponding genes. According to the DNA
methylation profiles of PBC&PSC and HCC for valida-
tion, we found four genes with hypermethylation, i.e.,
ALDOB (p value ≤ 8.30× 10−1), TIMP1 (p value ≤
1.00× 10−3), RPL30 (p value ≤ 1.00× 10−3), and IGF2 (p value
≤ 1.00× 10−3), and two genes with hypomethylation, i.e.,

H3F3A (p value ≤ 1.00× 10−3) and FRAT2 (p value ≤
1.00× 10−3) in a comparison between PBC&PSC and HCC.

After extracting two signaling pathways between normal
cells and PBC&PSC and between PBC&PSC and HCC from
the core GENs (Figures S5, S7, and S8) as shown in
Figures 3 and 4, respectively, we further investigated the cel-
lular mechanisms underlying the progression of PBC&PSC
pathogenesis in Figure 3 and PBC&PSC-associated hepato-
carcinogenesis in Figure 4. In Figure 3, we observed that in
normal liver cells, ryanodine receptor 2 (RYR2) is activated
to facilitate UBC to modulate two TFs (ETS1 and BPTF) in
the WNT and MAPK signaling pathways to induce DNA
repair through the mediation of RFC5, metabolism through
the mediation of FRAT2, and autoimmune function through
the mediation of MDC1 and H3F3A. Proper DNA repair,
autoimmune function, and metabolism are maintained by
silencing by miR-21, miR-122, and miR-29a. For example,
miR-21 and miR-29a can silence HIST2H2BE and H3F3A
in normal liver cells without significant liver damage, and
miR-122 can silence FRAT2 to avoid dysfunctions in metab-
olism. However, DNA hypomethylation of RPL23A contrib-
utes to defective autoimmune function causing liver damage,
and DNA hypermethylation of HIST2H2BE contributes to
dysfunction in DNA repair, which might cause normal liver
cells to progress to PBC&PSC. In PBC&PSC, we observed
that aberrant Ca2+ levels could activate RYR2 to facilitate
SMAD5 to induce TP53 activated by UBC in the WNT and
the MAPK signaling pathways, causing dysregulation of
H3F3A. EGFR then facilitated APP to repress ETS1 in the
MAPK signaling pathway to inhibit both DNA repair
through the mediation of RFC5 and immune function
through the mediation of MDC1. In addition, ETS1 also
induces both metabolism through the mediation of TRMT1
and apoptosis through the mediation of ZNF480 (see
Figure 3). Furthermore, autoimmune defects through the
mediation of RPL23A might still be accumulated by both
abnormal miR-122 silencing and the dysregulation of
H3F3A, and the dysfunction of DNA repair through the dys-
regulation of HIST2H2BE might also still be accumulated
without miR-21 silencing, which might facilitate liver dam-
age more seriously through the dysregulations of the MAPK
and the WNT signaling pathways.

With a series of dysregulations and mutations, the cellu-
lar mechanism for hepatocarcinogenesis progression from
PBC&PSC into HCC is shown in Figure 4. For example,
ZNF480 silenced by abnormal miR-21, RPL23A silenced by
abnormal miR-122, and the dysregulation of H3F3A caused
by both abnormal miR-29a silencing and hypomethylation
might induce the accumulation of autoimmune defects and
inhibit apoptosis to facilitate tumorigenesis. In HCC, liver
damage and dysregulation due to mutations are still accumu-
lated to facilitate ESR1 that could activate transferrin to
repress UBC. Then, UBC could modulate STAT5A and
CEBPA in the WNT and the MAPK signaling pathways
to inhibit DNA repair through the dysregulation of
HIST2H2BE and to induce the accumulation of autoimmune
defects through the dysregulation of IGF2, which might
ultimately facilitate tumor growth. In addition, UBC also
repressed H3F3A and further suppressed BPTF in the
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WNT and the MAPK signaling pathways to inhibit H3F3A
by hypomethylation. Furthermore, EGFR repressed TP53
through the mediations of RFC5 and HUWE1 in the MAPK
signaling pathway. Intriguingly, dysregulation of TIMP1
caused by both abnormal miR-122 silencing and hyperme-
thylation is involved in tumor proliferation. Additionally,
the dysregulation of ALDOB and IGF2 caused by hyperme-
thylation and abnormal miRNA regulation through the
mediation of miR-21 and miR-29a, respectively, might facil-
itate tumor metastasis.

Based on two signaling pathways (Figures 3 and 4)
involved in core GENs, we found that five network bio-
markers, including UBC, APP, EGFR, ETS1, and RYR2, play
a central role in pathogenesis and hepatocarcinogenesis in
the lower progression path of Figure 1(a). Intriguingly,
UBC, EGFR, ETS1, and APP also played an important role
in the upper progression path of Figure 1(a). RYR2 is a major
mediator of the sarcoplasmic release of stored calcium ions
and is involved in metabolism and cell survival [23]. Further-
more, we found seven genes in NAFLD&NASH pathogenesis
and NAFLD&NASH-associated hepatocarcinogenesis that
also played a central role in PBC&PSC pathogenesis
and PBC&PSC-associated hepatocarcinogenesis, i.e., two
DNA repair-related genes (HIST2H2BE and RFC5), two
apoptosis-related genes (ZNF480 and RPL30), and three
metabolism-related genes (ALDOB, FRAT2, and TRMT1).
Moreover, we also identified five genes that play a central
role in the lower progression path of Figure 1(a), i.e.,
one apoptosis-related gene (TIMP metallopeptidase inhib-
itor 1 (TIMP1)), three immune-related genes (ribosomal
protein L23a (RPL23A), H3 histone family 3A (H3F3A),
and insulin-like growth factor 2 (IGF2)), and one DNA
repair-related gene (mediator of DNA-damage checkpoint
1 (MDC1)).

2.4. Cellular Mechanisms of the Pathogenesis and
Hepatocarcinogenesis from Normal Liver Cells to HCC
through NAFLD&NASH or PBC&PSC Based on Core
Signaling Pathways. Based on the system biology approach
shown in Materials and Methods, we constructed the core
GENs for the various liver diseases and HCC. We then fur-
ther investigated the cellular mechanisms of progression
from normal liver cells to HCC through the liver diseases
by comparing core GENs of the upper or the lower progres-
sion paths to extract the core signaling pathways involved in
the core GENs for each progression stage in Figure 1(a).

After the investigations of Figures 5 and 2 for NAFLD&-
NASH pathogenesis and NAFLD&NASH-associated hepato-
carcinogenesis as shown in Figure 1(a), it can be seen that the
general progression mechanism for the upper progression
path is through theWNT and the MAPK signaling pathways,
inducing DNA repair, apoptosis, and metabolism. Further,
the liver homeostatic balance is maintained by miR-21,
which silences the HIST2H2BE gene thereby promoting
proper cellular functions such as the development, senes-
cence, and proliferation of cells and the development and
function of erythroblasts in normal liver cells; miR-214
silences the HSPB1 gene to avoid unnecessary antiapoptosis,

and miR-122 silences the FRAT2 gene to avoid dysfunction
of metabolism causing liver damage. The accumulation of
liver damage is caused by steatosis, and HIST2H2BE is regu-
lated by hypermethylation through the MAPK signaling
pathway, which facilitates abnormal DNA repair and the
progression of normal liver cells to NAFLD&NASH, as
shown in Figure 5. Furthermore, ZNF480 can be inhibited
andHSPB1 can be activated to cause antiapoptosis, overcom-
ing liver damage. However, the dysfunction of antiapoptosis
caused oncogene proliferation and survival through the dys-
regulation of ZNF480 by abnormal miR-21 silencing and
through the dysregulation of HSPB1 by hypermethylation,
facilitating the dysregulation of the MAPK signaling path-
way. Additionally, the dysfunction of metabolism caused by
hypermethylation of ALDOB allows NAFLD&NASH to
develop into HCC. Interestingly, abnormal miR-21 can still
be accumulated to induce the dysregulation of ALDOB, and
abnormal miR-122 can also be accumulated to induce the
dysregulation of TUBA1C, which might facilitate tumor
metastasis and invasion in HCC, as shown in Figure 2. To
integrate the description given in Figures 5 and 2 of
the NAFLD&NASH pathogenesis and NAFLD&NASH-
associated hepatocarcinogenesis as shown in Figure 1(a)
and to consider the impact of both miRNA regulation and
DNA methylation on the mechanisms of progression in the
upper progression path, we further investigated the role of
miRNA regulation and DNAmethylation in the mechanisms
of progression in the upper progression path. Our objective
was to discover the potential diagnostic biomarkers or drug
targets that are summarized in Figure 6, with a more detailed
description in Discussion.

We then observed that the general mechanism for the
lower progression path is also through the WNT and the
MAPK signaling pathways via different epigenetic regula-
tions compared with the upper progression path that induces
DNA repair, metabolism, and autoimmune function based
on the investigations of Figures 3 and 4 for the PBC&PSC
pathogenesis and PBC&PSC-associated hepatocarcinogen-
esis, as shown in Figure 1(a). To further maintain liver
homeostatic balance by miR-29a silencing of H3F3A to pro-
mote proper gene regulation such as the regulation of RPL23
to cause autoimmune function in normal liver cells, miR-21
can silence HIST2H2BE to avoid unnecessary DNA repair,
and miR-122 can silence FRAT2 to avoid dysfunction of
metabolism causing liver damage. In contrast to normal liver
cells that progress to NAFLD&NASH, RPL23A regulated by
hypomethylation caused defects in the autoimmune response
to promote more severe liver damage through the WNT and
the MAPK signaling pathways, and HIST2H2BE was also
regulated by hypermethylation to facilitate abnormal DNA
repair through the MAPK signaling pathway in the progres-
sion of normal liver cells to PBC&PSC, as shown in Figure 3.
Therefore, we realized that NAFLD&NASH, as a reversible
liver disease, might allow repairing liver damage by an
autoimmune response, but the dysfunction of the autoim-
mune response might cause more severe liver damage in
PBC&PSC. Most cellular mechanisms share some similarity
to NAFLD&NASH progressing to HCC other than the
dysfunction of the autoimmune response caused by the
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dysregulation of bothH3F3A and RPL23A through abnormal
miR-29a and miR-122 silencing, respectively, to facilitate the
progression of PBC&PSC into HCC. Furthermore, abnormal
miR-122 can still be accumulated to cause the dysfunction of
apoptosis through the dysregulation of TIMP1, and abnormal
miR-29a can still be accumulated to cause the dysfunction of
autoimmune through the dysregulation of IGF2, and abnor-
mal miR-21 can still be accumulated to cause the dysfunction
of metabolism through the dysregulation of ALDOB, which

might facilitate tumor metastasis and invasion in HCC, as
shown in Figure 4. To integrate the descriptions of Figures 3
and 4 of PBC&PSC pathogenesis and PBC&PSC-associated
hepatocarcinogenesis as shown in Figure 1(a) and to consider
the impact of both miRNA regulation and DNA methylation
on the mechanisms of progression in the lower progression
path, we further investigated the role of miRNA regulation
and DNA methylation in the lower progression path. This
provided insight into the development of the potential
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diagnostic biomarkers or drug targets summarized in
Figure 7, with a more detailed description in Discussion.

3. Discussion

Recently, there has been an intensive investigation into
epigenetic regulation and the role it plays in the progres-
sion of liver disease to HCC [24]. Epigenetic dysregulation
promotes the pathogenesis of hepatocytes and facilitates
the development of HCC [25]. In principle, epigenetic reg-
ulations include DNA methylation, histone modification,
and miRNA transcription [26]. Histone modifications
consist of acetylation, methylation, phosphorylation, and
ubiquitination, and although they cannot be represented
by an interactive model, they still caused significant varia-
tions in the genetic regulatory parameters in our method.

Hence, we considered the impact of both DNA methylation
and miRNA regulation in GENs on pathogenesis and hepa-
tocarcinogenesis from normal liver cells to HCC through
different liver diseases. Because aberrant DNA methylation
causes abnormal gene expression, DNA methylation is also
regarded as a key process in the pathogenesis and hepatocar-
cinogenesis from normal liver cells to HCC through liver
diseases. Recent studies have indicated that hypermethyla-
tion induced gene silencing, inhibit gene expression, and
affect genomic stability [27]. miRNAs are small noncoding
RNAs that modulate the transcription and translation of
target genes and regulate different biological functions in
the human liver. In addition, miRNAs are involved in
posttranscriptional regulations that are associated with the
proliferation, differentiation, and death of cells and with
carcinogenesis [28]. Using the proposed system biology
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approach, we identified core miRNAs and further extracted
the core GENs and the involved signaling pathways that
could realize cellular mechanisms for the progression of nor-
mal liver cells to HCC through liver diseases and could also
provide drug targets for novel therapeutic schemes through
alteration of methylation levels and miRNA expression.

Based on the proposed method, we identified not only the
core miRNAs but also the core proteins and core target genes
in signaling pathways by comparing different core GENs of
the upper or lower progression paths in Figure 1(a). Normal
liver cells provide a standard system for the toleration of
intrinsic perturbations such as methylation accumulation
and miRNA dysregulation to maintain liver homeostasis,
but genetic mutations and epigenetic dysregulations are still
accumulated and exceed the tolerable allowance of normal
liver cells, causing liver diseases and eventually HCC. There-
fore, the network biomarkers found to interact with other
partners in the core signaling pathways could contribute to
the genetic and epigenetic dysfunctions of the corresponding
biological functions through genetic mutation, DNAmethyl-
ation accumulation, and miRNA dysregulation.

According to our results, we shall further discuss the
impact of miRNA regulation andDNAmethylation on epige-
netic mechanisms of pathogenesis and hepatocarcinogenesis
from normal liver cells to HCC through NAFLD&NASH or

PBC&PSC, as shown in Figures 6 and 7, respectively, as
summarized in Figure 8.

3.1. Dysregulation of DNA Methylation and miRNA
Regulation Contributes to Pathogenesis and
Hepatocarcinogenesis from Normal Liver Cells to
HCC through NAFLD&NASH or PBC&PSC

3.1.1. Dysregulation of DNA Methylation and miR-21
Contributes to NAFLD&NASH Pathogenesis and NAFLD&
NASH-Associated Hepatocarcinogenesis. Recently, several
studies have indicated that NAFLD&NASH pathogenesis
is associated with obesity and insulin resistance, facilitating
liver damage through steatosis caused by excessive accu-
mulation of hepatic triglycerides and more severe liver
damage through subsequently induced oxidative stress
[24]. Our results support the theory that oxidative stress
can activate the MAPK signaling pathway to facilitate a
series of functions such as DNA repair, apoptosis, and
metabolism. In addition, we also determined that aberrant
methylation can affect HIST2H2BE, facilitating the dys-
function of metabolism to progress from normal liver cells
to NAFLD&NASH, as shown in Figure 6. Dysfunction of
metabolism contributes to the accumulation of genetic
mutations, which might cause more severe liver damage.

Hepatic triglyceride excessive 
accumulation liver damage

HIST2H2BE dysfunction of
DNA repair 

NAFLD&NASH pathogenesis

ZNF480 dysfunction of
 anti-apoptosis

HSPB1 dysfunction of
anti-apoptosis

NAFLD&NASH-associated
hepatocarcinogenesis 

NAFLD&
NASH RPL30  dysfunction of

anti-apoptosis

ALDOB  dysfunction of
metabolism

miR-21 Tumor invasion
and metastasis 

NAFLD&NASH-
associated HCC

TUBA1C ALDOB

miR-122 miR-21

Aggressive tumor
progression

Normal
liver cell

PBC&PSC pathogenesis

ZNF480 
dysfunction of
anti-apoptosis

dysfunction
of immune

PBC&PSC-associated
hepatocarcinogenesis

PBC&
PSC

RPL23A dysfunction
of immune 

RPL30
dysfunction of
anti-apoptosis

miR-21

Tumor invasion
and metastasis 

PBC&PSC-
associated HCC

ALDOB

miR-
122

miR-
21

miR-
29a

TIMP1IGF2

miR-29a

miR-122

RPL23A
defect of
immune liver damage

HIST2H2BE  dysfunction of
DNA repair 

TIMP1
dysfunction of
anti-apoptosis

IGF2 dysfunction of
immune 

ALDOB
dysfunction of

metabolism

H3F3A

DNA
methylation 
miRNA
silencing

Liver
condition

Potential
drug target

Upregulated

Downregulated

Figure 8: Schematic structure of the pathogenic and hepatocarcinogenic mechanisms of NAFLD&NASH and PBC&PSC.

13Disease Markers



It has been suggested that HIST2H2BE plays a central role
in the progression of normal liver cell to NAFLD&NASH,
so we suggested HIST2H2BE as a potential drug target
that might overcome liver damage caused by excessive
hepatic triglyceride accumulation.

After a brief discussion on NAFLD&NASH pathogenesis,
we further discussed NAFLD&NASH hepatocarcinogenesis
by abnormal miRNA regulation and aberrant methylation.
In this study, we established that the change in the miRNA
expression profile of miR-21 (p value ≤ 1.00× 10−3) results
in a significant change in the gene expression profile of
ZNF480 (p value ≤ 1.00× 10−3) to progress from NAFLD&-
NASH to HCC, as shown in Figure 6. Recently, it has been
reported that miR-21 is the first central oncomir to be associ-
ated with malignant cell proliferation, invasion, and metasta-
sis in the carcinogenesis of a variety of cancers [29]. For
instance,miR-21 can silence phosphatase and tensin homolog
(PTEN), which is a tumor suppressor observed in HCC [29].
It not only reflects liver damage but also regulates other bio-
logical processes such as triglyceride and cholesterol metabo-
lism by silencing target genes [30, 31] and the upregulation of
ZNF480 resulting in tumor cell death [32]. Furthermore, our
finding also demonstrated that epigenetic regulations, includ-
ing DNA methylation of HSPB1, ALDOB, and RPL30, led to
changes in the DNA methylation profiles of HSPB1 (p value
≤ 1.00× 10−3), ALDOB (p value ≤ 0.85), and RPL30 (p value
≤ 1.00× 10−3), which resulted in significant changes in the
gene expression profiles of HSPB1 (p value ≤ 1.00× 10−3),
ALDOB (p value ≤ 1.5× 10−2), and RPL30 (p value ≤
1.00× 10−3) in the progression from NAFLD&NASH to
HCC, as shown in Figure 6. In addition, it has been proposed
that the dysregulations of HSPB1, ALDOB, and RPL30 are
sufficient to trigger tumor progression [33, 34]. Therefore,
we suggested that the epigenetic dysregulation of miR-21
and DNA methylation causes pathogenesis and hepatocarci-
nogenesis from the upper progression path to HCC, as shown
in Figure 8 with more detailed discussion in the sequel.

3.1.2. Dysregulation of DNA Methylation, miR-21, miR-122,
and miR-29a Contributes to PBC&PSC Pathogenesis and
PBC&PSC-Associated Hepatocarcinogenesis. Based on our
results from PBC&PSC pathogenesis, we identified that the
DNA methylation profile changes for RPL23A and
HIST2H2BE result in dysfunctions in the autoimmune and
DNA repair response to progression from normal liver cells
to PBC&PSC and give rise to the dysregulation of RYR2
through the WNT and the MAPK signaling pathways, to
facilitate defects in autoimmunity as shown in Figure 7.
Intriguingly, our results showed that PBC&PSC are associ-
ated with autoimmune dysfunction [35, 36]. It has been sug-
gested that RPL23A and HIST2H2BE play a central role in
the progression from normal liver cells to PBC&PSC, so we
propose that RPL23A and HIST2H2BE are potential drug
targets that might overcome the defects in autoimmunity
and the subsequent dysfunction in metabolism.

After a brief discussion on PBC&PSC pathogenesis, we
further discussed PBC&PSC hepatocarcinogenesis by abnor-
mal miRNA regulation and aberrant methylation. We identi-
fied that the expression changes in miR-21 (p value ≤

1.00× 10−3), miR-122 (p value ≤ 1.4× 10−2), and miR-29a
(p value ≤ 1.00× 10−3) contribute to the significant gene
expression changes in ALDOB (p value ≤ 0.72× 10−1),
RPL23A (p value ≤ 1.00× 10−3), and H3F3A (p value ≤
1.00× 10−3) between PBC&PSC and HCC, as shown in
Figure 7. Recently, it has been reported that miR-122 is the
most common miRNA; it is estimated to make up 70% of
the total miRNA complement. It serves as an essential regu-
lator and is involved in development, differentiation, and
homeostasis, as well as the metabolism of glucose and lipids
in the liver [1, 24]. Moreover, the loss of miR-122 has been
associated with migration, invasion, and tumorigenesis,
which could cause liver diseases and eventually HCC [1].
Consequently, the restoration of miR-122 represents antitu-
morigenesis functions that slow down the progression of
both liver disease and HCC, which has been investigated
and demonstrated in animal models [37]. Furthermore, a
recent study has indicated that miR-29a might repress
tumors formed by promoted apoptosis [38] and miR-29a
is considered a potential target of therapy in autoimmune
connective tissue disease [39]. Our findings demonstrated
that epigenetic regulations, including DNA methylation of
RPL30, ALDOB, IGF2, and TIMP1, led to changes in the
DNA methylation profiles of RPL30 (p value ≤
1.00× 10−3), ALDOB (p value ≤ 0.83), IGF2 (p value ≤
1.00× 10−3), and TIMP1 (p value ≤ 1.00× 10−3), which con-
tributed to the significant changes in the gene expression
profiles of RPL30 (p value ≤ 1.00× 10−3), ALDOB (p value ≤
7.2× 10−2), IGF2 (p value ≤ 1.1× 10−2), and TIMP1 (p value
≤ 1.00× 10−3) to progress from PBC&PSC to HCC, as shown
in Figure 7. In addition, it has been proposed that the
dysregulation of DNA methylation of RPL30, ALDOB,
IGF2, and TIMP1 is sufficient to trigger tumor progression
[33, 34, 40]. Abnormal miR-29a and hypomethylation
contribute to the dysregulation of H3F3A, which could
lead to tumorigenesis [41]. In summary, we suggested
that the epigenetic dysregulation of miR-21, miR-122,
miR-29a, and DNA methylation could cause pathogenesis
and hepatocarcinogenesis in the lower progression path to
HCC, as shown in Figure 8 with more detailed discussion
in the sequel.

3.1.3. Dysregulation of miR-21, miR-122, and miR-29a
Contributes to Further Liver Damage in Patients with
NAFLD&NASH or PBC&PSC. In this study, we confirmed
that abnormal miR-21 silences ALDOB and abnormal miR-
122 silences TUBA1C in the mechanisms of HCC progres-
sion, as shown in Figure 6. It has been proposed that
TUBA1C is associated with tumor cell death and cell prolif-
eration [42], and aberrant expression of ALDOB contributes
to tumor metastasis, which is involved in the initiation and
development of HCC [33, 43]. We also confirmed that
abnormal miR-29a silences IGF2 and abnormal miR-122
silences TIMP1 in the mechanism of HCC progression, as
shown in Figure 7. The dysregulation of IGF2 and TIMP1
was significantly realized in HCC. It has been reported that
the dysregulation of IGF2 and TIMP1 results in tumor inva-
sion and metastasis [40]. Therefore, we suggested that the
dysregulation of miR-21, miR-29a, and miR-122 contributes
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to the dysregulation of TUBA1C, ALDOB, IGF2, and TIMP1,
which might lead to tumor invasion and metastasis in the
development of HCC, facilitating further aggressive tumor
progression, as shown in Figure 8 with more detailed discus-
sion in the sequel.

In brief, an increasing number of studies focus on epige-
netic regulations that provide novel therapies from the per-
spective of epigenetic alterations. It has been proposed that
the impact of miRNA regulation and methylation on differ-
ent liver diseases and the mechanisms of progression from
liver diseases to HCC are caused by epigenetic multiregula-
tion. For instance, our results demonstrated that miR-122
and miR-21 might serve as epigenetic biomarkers in the
upper progression path in Figure 8 and further provide
potential drug targets for novel therapies through these two
miRNAs and methylation of the target genes. Although the
progression mechanism of the lower progression path is sim-
ilar to that of the upper progression path in Figure 8, detailed
progression mechanisms are differential. Hence, we identi-
fied miR-122, miR-21, and miR-29a as potential prognostic
biomarkers for potential drug targets in the lower progres-
sion path in Figure 8. Interestingly, miR-122 and miR-21
may provide novel potential therapeutic targets for slowing
down further liver damage in patients with NAFLD&NASH
in Figure 8 and for predicting and treating HCC. PBC&PSC
pathogenesis relates to autoimmune dysfunction and is
different from NAFLD&NASH pathogenesis, which relates
to metabolism dysfunction. Therefore, we suggested that
miR-29a provides a novel potential therapeutic target for
the restoration of aberrant immune response to treat
PBC&PSC-developed HCC, as well as miR-122 and miR-21
in Figure 8. The results are supported by recent studies asso-
ciated with miRNA regulation in the immune system [44].

Finally, the identified network biomarkers for prevent-
ing the hepatocarcinogenesis of NAFLD&NASH and
PBC&PSC are shown in Table 1 (all potential drugs ranked
in Table S3A).

4. Materials and Methods

The proposed methodology to identify the core signaling
pathways and the network biomarkers of NAFLD&NASH
pathogenesis, NAFLD&NASH-associated hepatocarcino-
genesis, PBC&PSC pathogenesis, and PBC&PSC-associated

hepatocarcinogenesis for preventing the progression of
NAFLD&NASH or PBC&PSC is summarized in the flow-
chart in Figure 1(b).

4.1. Big Data Mining and Preprocessing of mRNA Expression
Data and Its Corresponding DNA Methylation Profiles for
Liver Diseases and HCC. In order to identify the real GENs
of liver cells from the four kinds of patients including normal,
NAFLD&NASH, PBC&PSC, and HCC patients, the simulta-
neously measured genome-wide mRNA expression data and
DNAmethylation profiles in each sample of the patients with
one of the liver conditions were needed. Also, the candidate
GENs obtained from biological or computational experi-
ments in human cells were required. In this study, we
used the microarray data with its corresponding DNA
methylation profiles of 134 samples in patients with normal
(62 samples), NAFLD&NASH (47 samples), and PBC&PSC
(25 samples) conditions from the National Center for Bio-
technology Information (NCBI) Gene Expression Omnibus
(GEO) database (GSE61260) provided by Horvath et al.
[45] and used the NGS data and its corresponding DNA
methylation profiles of 369 samples in patients with
HCC, obtained from the Cancer Genome Atlas (TCGA)
(https://genome-cancer.ucsc.edu/). NGS data, microarray
data, and DNA methylation profiles were measured using
the Illumina HiSeq platform, the HuGen1.1ST platform,
and the Illum450K platform, respectively.

Additionally, we considered that the candidate GEN in
human cells includes the candidate PPIs and gene andmiRNA
regulations. According to the candidate PPIs from the Biolog-
ical General Repository for Interaction Datasets (BioGRID)
database [46], the gene regulations from the Integrated
Transcription Factor Platform (ITFP) database, the Human
Transcriptional Regulation Interactions (HTRI) database,
and the TRANScription FACtor database (TRANSFAC)
[47], and the miRNA regulations from TargetScanHuman
database [48], we obtained 168,970 PPI pairs, 152,828 gene
regulations, and 247,743 miRNA repressions in the candidate
GEN of human cells. Because the candidate GEN of human
cells contains all possible associations obtained from experi-
mental and computational results, which contain many false
positives, we need to construct the stochastic interactive/
regulatory models of the candidate GEN in human cells
to characterize the cellular mechanisms in the network. The

Table 1: Network biomarkers for preventing the hepatocarcinogenesis of NAFLD&NASH and PBC&PSC.

NAFLD&NASH to HCC PBC&PSC to HCC

The highly activated network
biomarkers for potential
inhibition strategy of drug
design

ACTA2, AIFM1, APP, EGFR, GRB2, NEDD8,
SHC1, TUBA1C, TUBB6, IL4R, GPR37, FRAT2,
HIST2H2BE, HSPB1, ZNF480, TIMP1, ALDOB,
ZYX, YBX1, TP53, STAT5A, AR, TELO2, PXN,

TBP, REPIN1, HSF1, ETS1, STUB1, RFC5, RPL30,
TRMT1, GSK3B, UBC, ALB, and MIR21

ACTB, ADRB2, APP, CSNK2A1, EGFR, HUWE1,
LMNB1, PCK1, PPP2CA, SMAD5, TSC22D1,

ESR1, PGR, RYR2, FRAT2, HIST2H2BE, ZNF480,
H3F3A, TIMP1, ALDOB, IGF2, AR, TP53, SRF,

NRF1, STAT5A, RPL23A, SP1, SP3, CEBPA, BPTF,
ETS1, MDC1, RFC5, RPL30, TRMT1, UBC,

GSK3B, TF, and MIR21

The repressed network
biomarkers for potential
activation strategy of drug
design

ALK and GATA1 CEBPE and GATA1
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real GEN of each liver condition can then be obtained by
pruning away false positives in the candidate GEN
through a system identification method and a system
order detection scheme in the stochastic models using the
genome-wide mRNA expression data and its corresponding
DNA methylation profiles.

To integrate the big data, including genome-wide mRNA
expression data, its corresponding DNA methylation pro-
files, and the candidate interactions/regulations, from several
databases, we used Matlab’s text-file and string manipulation
tools in text mining to unify the gene name based on the gene
symbols in the NCBI Entrez Gene database.

4.2. Constructing the Stochastic Models of the GEN in Human
Cells. We constructed the stochastic models of the candidate
GEN in human cells to characterize the molecular mecha-
nisms, including PPIs, transcriptional regulations, miRNA
repressions, DNA methylation, and stochastic noises due to
the modeling residue and the fluctuation of genes. The
molecular mechanisms of the ith protein in the PPIN of the
GEN in the cells of the nth patient sample can be described
by the stochastic protein interactive model as follows:

yi n = 〠
Ni

j=1,j≠i
aijyi n yj n + hi + vi n ,

 for i = 1,… ,N , n = 1,… , L, hi ≥ 0,

1

where yi n , yj n , and vi n represent the mRNA expression
levels of the ith protein and its jth interactive protein and
the stochastic noise of the ith protein due to model uncer-
tainty or the fluctuation of expressions in patient n, respec-
tively; L, N , and Ni indicate the number of patients,
proteins, and proteins interacting with the ith protein in the
candidate PPIN, respectively; and aij and hi denote the inter-
action ability between the ith protein and its jth interactive
protein and the basal level of the ith mRNA expression,
respectively. The term yi n yj n , the product of the concen-
trations of two interactive proteins, can represent the proba-
bility of molecular interaction between two proteins of the
complex protein interaction. The probability of molecular
interaction between two proteins has been also modeled as
the probability of molecule collision by a nonlinear multipli-
cation scheme [49, 50]. The molecular mechanisms in (1) of
the ith protein in the PPIN of human cells in the nth patient
sample include PPIs (∑Ni

j=1,j≠iaijyi n yj n ), the stochastic
noise (vi n ), and the basal levels of proteins (hi).

The molecular mechanisms of the ith gene in the GRN of
the GEN in the cells of the nth patient sample can be
described by the stochastic gene regulatory model as follows:

xi n = 〠
Ki

j=1,j≠i
bijyj n Mi n − 〠

Vi

v=1
civxi n xmiR

v n Mi n

+Mi n κi + ωi n ,

 for i = 1,… ,N , n = 1,… , L, κi, civ ≥ 0,

2

where xi n , yj n , xmiR
v n , and ωi n indicate the expression

levels of the ith target gene, its jth regulatory TF, its vth reg-
ulatory miRNA, and its stochastic noise, which results from
model uncertainty or the fluctuation of expressions in
GRN, in patient n, respectively; Ki and Vi represent the
number of TFs and miRNAs binding to the ith gene based
on candidate GEN in human cells, respectively; κi denotes
the basal level of the ith gene; bij and civ indicate the tran-
scriptional regulatory ability from the jth TF to the ith gene
and the posttranscriptional regulatory ability of the vth
miRNA to inhibit the ith gene (−civ ≤ 0), respectively; and
Mi n represents methylation regulation of the ith gene,
affecting the binding affinities of miRNAs, RNA polymerase,
and TFs to the ith gene [51]. The effect of methylation on
binding affinities of miRNAs, RNA polymerase, and TFs to
the ith gene is expressed by the terms civxi n xmiR

v n Mi n ,
Mi n κi, and bijyj n Mi n , respectively. The methylation
regulation of the ith target gene Mi n is defined as follows:

Mi n ≕
1

1 + mi n /0 5 2 , 3

where mi n denotes the DNA methylation profile of the i
th gene in the nth patient sample. Because the numerical
range of DNA methylation profiles mi n is between 0
and 1, the effect of DNA methylation on gene and miRNA
regulations and basal levels is from 1 to 0.2. It means that
if the DNA methylation profile of the ith gene increases,
the binding affinities of miRNAs, RNA polymerase, and
TFs to the ith gene decrease. The definition of methylation
regulation in (3) avoids shutting down the bindings of
miRNAs, RNA polymerase, and TFs to the ith gene by
mi n = 1. The basal level (κi) change between two liver
conditions is also used to infer the effect of DNA methyl-
ation on the transcriptional regulation of the ith gene. The
molecular mechanisms in (2) of the ith gene in the GRN
of human cells in the nth patient sample include transcrip-
tional regulations (∑Ki

j=1,j≠ibijyj n Mi n ), miRNA repressions

(−∑Vi
v=1civxi n ⋅ xmiR

v n Mi n ), the stochastic noise (ωi n ),
and the effects of RNA polymerase and DNA methylation
(Mi n κi) on genes.

4.3. Identification of the Real GEN by Applying System
Identification Method and System Order Detection Scheme
to Prune False Positives in Candidate GEN Using
Genome-Wide Expression Data and Its Corresponding
DNA Methylation Profiles. After constructing the stochas-
tic protein interactive model in (1) of PPIN and the sto-
chastic gene regulatory model in (2) of GRN based on
molecular mechanisms of human cells, we then applied
the system identification method and system order detec-
tion scheme to the models using mRNA expression data
and its corresponding DNA methylation profiles in normal
liver, NAFLD&NASH, PBC&PSC, and HCC to identify
their corresponding real GENs. In order to identify the
parameters in (1) and (2) using mRNA expression data
and its corresponding DNA methylation profiles, we
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rewrite (1) and (2) as the following regression forms (4) and
(5), respectively:

yi n = yi n y1 n  ⋯  yi n yi−1 n  yi n yi+1 n  ⋯  yi n yNi
n 1

×

ai1

⋮

aii−1

aii+1

⋮

aiNi

hi

+ vi n = ϕi,PPIN n θi,PPIN + vi n ,

 for i = 1,… ,N , n = 1,… , L, hi ≥ 0,
4

xi n = y1 n Mi n  ⋯  yi−1 n Mi n  yi+1 n Mi n

⋯ yKi
n Mi n  xi n xmiR

1 n Mi n  

⋯  xi n xmiR
Vi

n Mi n  Mi n

×

bi1

⋮

bii−1

bii+1

⋮

biKi

−ci1

⋮

−ciVi

κi

+ ωi n = ϕi,GRN n θi,GRN + ωi n ,

 for i = 1,… ,N , n = 1,… , L, κi, civ ≥ 0,

5

where ϕi,PPIN n and ϕi,GRN n denote the regression vectors,
which consist of mRNA expression data and its correspond-
ing DNA methylation profiles, and θi,PPIN and θi,GRN indicate
the parameter vectors, which consist of protein interaction
abilities, transcriptional and posttranscriptional regulatory
abilities and basal levels, i.e., linking weights of GEN.

Moreover, we rewrite the regression forms in (4) and (5)
as the following matrix forms for all L patients, respectively:

Yi =Φi,PPINθi,PPIN +Vi, for i = 1,… ,N , hi ≥ 0,

Xi =Φi,GRNθi,GRN +Wi, for i = 1,… ,N , κi, civ ≥ 0,
6

where

Yi =

yi 1

⋮

yi L

,

Xi =

xi 1

⋮

xi L

,

Φi,PPIN =

ϕi,PPIN 1

⋮

ϕi,PPIN L

,

Φi,GRN =

ϕi,GRN 1

⋮

ϕi,GRN L

,

Vi =

vi 1

⋮

vi L

,

Wi =

ωi 1

⋮

ωi L

7

Therefore, the parameter vectors θi,PPIN and θi,GRN can
then be obtained by solving the following constrained least
square parameter estimation problems, respectively [52]:

min
θi,PPIN

 
1
2

Φi,PPINθi,PPIN − Yi
2
2

s t   0 ⋯ ⋯ ⋯ ⋯ 0 −1 , θi,PPIN ≤ 0,

8

min
θi,GRN

 
1
2

Φi,GRNθi,GRN − Xi
2
2

s t  

0 ⋯ 0 ⋯ ⋯ 0 1 0 0 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮ 0 ⋱ 0 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮ 0 0 1 0

0 ⋯ ⋯ 0 ⋯ 0 0 0 0 −1

, θi,GRN ≤ 0,

9

where the accuracies of the parameter estimations in (8)
and (9) were given by the following error estimations

σ2
i = Yi −Φi,PPINθi,PPIN

T
Yi −Φi,PPINθi,PPIN /Land σ2i =

Xi −Φi,GRNθi,GRN
T
Xi −Φi,GRNθi,GRN /L, respectively, and

θi,PPIN and θi,GRN represent the identified parameters. The
solutions of the above problems, in which inequality con-
straints can guarantee the negative effect of miRNA
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regulation on genes and the positive basal levels of genes/pro-
teins, can be obtained by applying the system identification
method in MATLAB optimization toolbox using genome-
wide mRNA expression data and DNA methylation profiles
based on a reflective Newton method for minimizing a qua-
dratic function [53].

Since genome-wide expression measurement of protein
behaviors in normal liver, NAFLD&NASH, PBC&PSC,
and HCC has not been realized yet and gene expressions
are proportional to their corresponding proteins, in which
73% variance of protein abundance can be explained by
mRNA abundance [54], the mRNA expressions can replace
protein expressions for the above constrained least square
parameter estimation problems in (8) and (9). Because
mRNA expression data (GSE61260) and its corresponding
DNA methylation profiles (GSE61258) from normal liver,
NAFLD&NASH, and PBC&PSC have been reported and
NGS data and its corresponding DNA methylation profiles
from HCC have been also proposed in TCGA, i.e., Yi, Xi,
Φi,PPIN, and Φi,GRN in (8) and (9) are all available; protein
interaction abilities, transcriptional and posttranscriptional
regulatory abilities, and basal levels, i.e., linking weights of
GEN, in θi,PPIN and θi,GRN can then be identified.

Because the candidate GEN obtained from biological or
computational experiments in human cells contains all puta-
tive interactions in PPIN in (8) and regulations in GRN in
(9), in order to prune the false-positive protein interaction
abilities and transcriptional and posttranscriptional regula-
tory abilities, i.e., links of GEN, based on the genome-wide
expression data in normal liver, NAFLD&NASH, PBC&PSC,
and HCC, we applied a system order detection scheme, AIC,
to the system identification method in solving (8) and (9) to
detect the real system order (or real links) by minimizing the
following AIC value [55, 56]:

AIC Δi = log σ2i +
2 Δi

L
, 10

where Δi denotes the number of parameters, i.e., Δi =
Ni + 1 in the estimation problem of the PPIN model
(8) and Δi = Ki +Vi + 1 in the estimation problem of
the GRN model (9), and σ2i is the estimated residual
error obtained from the system identification method,

i.e., σ2i = Yi −Φi,PPINθi,PPIN
T
Yi −Φi,PPINθi,PPIN /L and

σ2i = Xi −Φi,GRNθi,GRN
T
Xi −Φi,GRNθi,GRN /L in the esti-

mation problems of the PPIN model (8) and the GRN model
(9), respectively. In this study, we applied stepwise selection,
a combination of the forward selection and backward elimi-
nation techniques until none improves the minimization
problem in (10), to the candidate GEN. According to the the-
ory of system identification [55, 57], the true system order Δ∗

i
(or the true number of links) of the real GEN could minimize
AIC Δi in (10). After getting the true system order Δ∗

i by
minimizing AIC Δi in (10), we could prune the false-
positive interactions and regulations of the candidate GEN
by deleting the insignificant links out of true system order
Δ∗
i detected by AIC. Moreover, we applied Student’s t-test

to the real GEN to calculate the p value of each interaction
or regulatory ability (or each link of the real GEN) under
the null hypothesis H0 aim = 0 or H0 bin = 0 [58]. In this
study, we applied random permutation to the sample data
to generate 1000 random sets of the data. For example, if
none of the 1000 permutation values exceeds the test statistic,
p value is less than or equal to 10−3. The p value of each inter-
action or regulatory ability is used to support our findings.

According to the data in GSE61260 and GSE61258, we
obtained genome-wide mRNA expression data and its corre-
sponding DNA methylation profiles in normal liver from 62
patients, NAFLD&NASH from 47 patients, and PBC&PSC
from 25 patients. Additionally, according to the data in
TCGA, we obtained genome-wide mRNA expression data
and its corresponding DNA methylation profiles from HCC
in 369 patients. Therefore, we can identify four GENs of
liver cells for normal liver, NAFLD&NASH, PBC&PSC, and
HCC, respectively.

In brief, we first identified the interaction and regulatory
abilities, including aij, bij, and civ in (1) and (2), of the candi-
date GEN in each of four liver conditions by applying the sys-
tem identification method using the genome-wide expression
data. We then applied AIC to prune the false-positive inter-
actions and regulations in the candidate GEN and finally
obtain the real GEN according to the gene expression data
and its DNA methylation profiles in each of liver conditions.
We applied Student’s t-test to the real GEN to calculate
the p value of each interaction or regulatory ability in each
of four liver conditions to support our findings.

4.4. Extracting the Core GEN from the Genome-Wide Real
GEN via PNP. After identifying the genome-wide real GENs
of four liver conditions using gene expression data and DNA
methylation profiles to prune the false-positive interactions
and regulations in the candidate GEN by applying a system
order detection scheme, these genome-wide GENs are still
very complex and not easy to get an insight into their
pathogenic and hepatocarcinogenic mechanisms in four
liver conditions. We then apply the PNP method to deter-
mine the core proteins/genes/miRNAs, which compose the
core GENs from the genome-wide real GENs of four liver
conditions. The PPIs, gene regulations, miRNA inhibitions,
and DNA methylation of the real GENs are described by
the following models:

yi n = 〠
j∈NP

âijyi n yj n + ĥi + vi n , for i = 1,… ,N , n = 1,… , L,

11

xi n = 〠
j∈KG

b̂ijyj n Mi n − 〠
v∈VG

ĉivxi n xmiR
v n Mi n

+Mi n κi + ωi n , for i = 1,… ,N , n = 1,… , L,
12

where NP , KG, and VG indicate the real number of PPIs,
gene regulations, and miRNA inhibitions, respectively,
and âij, b̂ij, and ĉiv represent the estimated interaction
abilities of proteins, the estimated regulatory abilities of
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TFs, and the estimated posttranscriptional regulatory abil-
ities of miRNAs by applying a system identification
method and a system order detection scheme to (8) and
(9), respectively.

We generally integrated âij, b̂ij, and ĉiv , linking weights of
the real GEN, from (11) and (12) as the following network
structure matrix H:

If a link between any twomembers of genes, proteins, and
miRNAs in the real GEN is disconnected, its corresponding
element inH is set to zero. PNP is a network structure projec-
tion method based on singular value decomposition (SVD) as
follows [56]:

H =QSRT, 14

where Q ∈ℛ 2N+V ×N ; H = h1 ⋯ hk ⋯ h2N+V
T ∈ℛ 2N+V ×N ;

hk ∈ℛ1×N ; R = r1 ⋯ rm ⋯ rN ∈ℛN×N ; rm ∈ℛN ; S is a diag-
onal matrix such as S = diag s1,⋯, sm,⋯, sN , which
consists ofN non-negative singular values ofHwith descend-
ing order s1 ≥⋯≥ sm ≥⋯ ≥ sN ; and diag s1, s2 denotes the

diagonal matrix of s1 and s2, i.e.,
s1 0

0 s2
. We then defined

the eigenexpression fraction (Em) as follows:

Em =
s2m

∑N
m=1s

2
m

15

The principal components to satisfy ∑M
m=1Em ≥ 0 85 with

the minimalM are selected as the topM singular vectors of R
in (14) to determine the core proteins/genes/miRNAs. Fur-
thermore, the genome-wide real GEN in H is projected to
the top M singular vector of R as follows:

p k,m = hkrm, for k = 1,… , 2N +V , m = 1,… ,M
16

We can then obtain the projection value from each
member of the real GEN onto the top M singular vectors
(i.e., principal network structure) by applying the 2-norm to
(16) as the dependent score D k of each member as follows:

D k = 〠
M

m=1
p k,m 2

1/2

, for k = 1,… , 2N + V 17

According to the projection value, i.e., dependent score
D k , from each member of the real GEN onto the topM sin-
gular vectors of H based on their respective interactions or
regulatory abilities, âij, b̂ij, and ĉiv , we can finally calculate
the dependent score D k of proteins (k = 1,… ,N), genes
(k =N + 1,… , 2N) and miRNAs (k = 2N + 1,… , 2N + V)
to the principal network structure of the genome-wide real
GEN. If D k is close to zero, it means that the kth member
of the real GEN is independent of the topM singular vectors
(or principal network structure). Otherwise, a member of the
real GEN with higher D k is more important for the princi-
pal network structure of the real GEN. In order to determine
the core proteins/genes/miRNAs, which compose the core
GEN from a genome-wide real GEN, we choose the top 5%
proteins in D k for k = 1,… ,N and their connecting genes
and miRNAs not only to constitute the core GEN but also
to constitute the complete connections in signal transduction;
i.e., the top 5% proteins just could construct a complete sig-
naling cascade from receptors to TFs. Therefore, we applied
PNP to the real GENs of normal liver, NAFLD&NASH,
PBC&PSC, and HCC to obtain the core GENs of them. By
comparing the core GENs between two liver conditions, we
further extracted signaling pathways and network biomarkers
from the core GENs to investigate the cellular mechanisms of
pathogenesis and hepatocarcinogenesis for preventing the
progression of liver damage.

5. Conclusion

In this study, we focused on constructing the correspond-
ing signaling pathways involved in the core GENs to fur-
ther investigate cellular mechanisms of progression from
normal liver cells to HCC through NAFLD&NASH or
PBC&PSC in Figure 1(a), based on miRNA regulation
and epigenetic regulation in GENs. To begin with, we
proposed a novel approach to constructing the genome-
wide candidate GEN using big database mining. We then
pruned the false-positive regulatory interactions using a
system order detection scheme to identify the genome-

H =

â11 ⋯ â1j ⋯ â1N b̂11 ⋯ b̂1j ⋯ b̂1N −ĉ11 ⋯ −ĉ1v ⋯ −ĉ1V
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮

âi1 ⋯ âij ⋯ âiN b
∧

i1 ⋯ b̂ij ⋯ b̂iN −ĉi1 ⋯ −ĉiv ⋯ −ĉiV
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮

âN1 ⋯ âN j ⋯ âNN b̂N1 ⋯ b̂N j ⋯ b̂NN −ĉN1 ⋯ −ĉNv ⋯ −ĉNV

T

13

19Disease Markers



wide real GEN. We also used PNP to construct core
GENs for different liver diseases. Since core GENs are
complicated, mechanism interpretation is difficult. There-
fore, we extracted core networks for each progression
stage in Figure 1(a) by comparing different core GENs
and further submitted core networks to the KEGG data-
base to analyze relevant signaling pathways and to inves-
tigate cellular mechanisms of progression from normal
liver cells to HCC through NAFLD&NASH or PBC&PSC.
Based on the core signaling pathways, we also realized
genetic and epigenetic regulatory mechanisms of progres-
sion from normal liver cells to HCC through NAFLD&-
NASH or PBC&PSC using KEGG and GO database
mining. Finally, we observed that some miRNA regula-
tions and epigenetic regulations fulfilled essential roles in
the mechanisms of progression from normal liver cells
to HCC through the upper or the lower progression paths
in Figure 8. Hence, our results show key network biomarkers
of miRNA regulation and methylation in the mechanisms of
progression. Therefore, network biomarkers could also be
developed based on potential drug targets for the two pro-
gression paths of pathogenesis and hepatocarcinogenesis in
Figure 8.
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