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Objective: To explore the application of the Cox model based on extreme learning

machine in the survival analysis of patients with chronic heart failure.

Methods: The medical records of 5,279 inpatients diagnosed with chronic heart failure

in two grade 3 and first-class hospitals in Taiyuan from 2014 to 2019 were collected; with

death as the outcome and after the feature selection, the Lasso Cox, random survival

forest (RSF), and the Cox model based on extreme learning machine (ELM Cox) were

constructed for survival analysis and prediction; the prediction performance of the three

models was explored based on simulated data with three censoring ratios of 25, 50,

and 75%.

Results: Simulation results showed that the prediction performance of the three models

decreased with increasing censoring proportion, and the ELM Cox model performed

best overall; the ELM Cox model constructed with 21 highly influential survival predictors

screened from actual chronic heart failure data showed the best performance with

C-index and Integrated Brier Score (IBS) of 0.775(0.755, 0.802) and 0.166(0.150,

0.182), respectively.

Conclusion: The ELM Cox model showed good discrimination performance in the

survival analysis of patients with chronic heart failure; it performs consistently for data with

a high proportion of censored survival time; therefore, the model could help physicians

identify patients at high risk of poor prognosis and target therapeuticmeasures to patients

as early as possible.

Keywords: chronic heart failure, survival analysis, extreme learning machine, random survival forest, clinical

prediction model

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2021.726516
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2021.726516&domain=pdf&date_stamp=2021-10-29
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:syhqh@sohu.com
mailto:sxmuzyb@126.com
https://doi.org/10.3389/fcvm.2021.726516
https://www.frontiersin.org/articles/10.3389/fcvm.2021.726516/full


Yang et al. Application of ELM in CHF

INTRODUCTION

Chronic heart failure (CHF), one of the most severe
cardiovascular diseases of the 21st century (1), is a complex
clinical syndrome manifested when the heart does not pump
enough blood for tissue and metabolic needs (2). As the
prevalence of heart failure in China increases year by year, it has
become a major cause of hospitalization and rehospitalization
among the elderly, imposing a heavy medical burden on
individuals and society (3). Adverse prognosis in heart failure
patients can be intervened promptly with lifestyle modifications
and medications that effectively slow the progression of the
disease or prevent the onset of adverse prognosis (4).

Therefore, a prediction model for people with HF is
beneficial to the development of patients, doctors, and even
the entire society. Doctors can prescribe more aggressive
treatment plans for high-risk patients based on accurate risk
prediction, and patients will follow the treatment more because
they have confidence in the treatment plan prescribed by
the doctor (5). An accurate prediction model can also help
clinical researchers design clinical trials to target high-risk
patients with heterogeneous characteristics and change treatment
interventions (6). Multiple heart failure survival prediction
models have been developed and verified in multiple cohorts,
such as the Seattle heart failure prediction model (7, 8), and the
above prediction models have been successfully used in routine
clinical care to manage patients with different degrees of heart
failure. However, the above survival predictionmodel data comes
from clinical trials. These data have a small sample size, strict test
conditions, lack of heterogeneity in the patient population, and
poor population representation (9). In addition, these models
based on clinical trials are not derived from real-world data. Even
if such a model is constructed with high accuracy, it is not very
useful for real-world research (10). As electronic medical records
(EHRs) become more common in clinical research, methods for
predicting the prognosis of HF using EHRs instead of clinical trial
data have become necessary (11, 12).

In recent years, with the rapid development of artificial
intelligence, machine learning technology has been used to build
cardiovascular disease prediction models more and more widely
(13–15). In models for aging patients, many studies have also
proved that the prediction performance of the survival model
based on machine learning is better than the traditional Cox
proportional hazard model (16). Survival analysis models the
time to event (17). A major challenge in survival analysis is
censoring, which is the problem that makes the modeling time
of event data more complicated, compared with traditional
regression methods (18–21). Miao (22) used the Cox and RSF
models to predict cardiovascular disease in 2015 and assessed
the performance of the constructed models by comparing the
discrimination ability, the identification of nonlinear effects, and
the identification of significant predictors, and the results showed
that the RSF model could automatically identify nonlinear effects
among variables, while the Cox model could not. However, the
RSF model was not as good as the Cox model in identifying
some variables with small population proportional distribution.

Therefore, the Cox model cannot be completely replaced by the
RSF model in survival analysis.

Hong (23) applies the emerging extreme learning machine
(ELM) algorithm to the survival analysis of a single-layer
feedforward neural network. It performs well in high-
dimensional and ultra-high-dimensional real data sets. The
results show that ELM Cox has good predictive performance.
In addition, it also has a greater advantage in shortening the
calculation time (24). Wang (25) proposed an ELM survival
model in 2018 that could effectively solve the above problems.
Wang (26) applied the ELM algorithm to survival analysis and
showed the ELM Cox model’s good prediction performance
on high and ultra-high dimensional datasets and reduced
computation time.

In this study, we used the EHRs of inpatients with heart failure
to construct least absolute shrinkage and selection operator
Cox regression model (Lasso Cox), RSF, and ELM Cox survival
analysis prognostic models. According to VIMP and minimal
depth method, the predictors that have a significant impact on
the prognosis are selected out, and a model with high predictive
ability is constructed. To provide the basis for patients, doctors,
and clinical researchers to initiate subsequent treatment and
intervention measures.

OBJECTS AND METHODS

Sources of Information
Data in this study are from the complete inpatient medical
records of patients diagnosed with CHF in the cardiology
departments of two grade 3 and first-class hospitals in Taiyuan,
Shanxi Province during the period Jan. 2014 to Apr. 2019.
The data were obtained according to the case report form of
chronic heart failure (CHF-CRF) developed by our research
group according to the case record content and HF guidelines
(27). Patients were followed up at 3, 6, and 12 months after
discharge and every 6 months after that until July 2019. The
primary outcome is CHF-related mortality. Inclusion criteria
are patients aged ≥18 years presenting with typical signs or
symptoms of CHD, in NYHA class II to IV, and receiving heart
failure medications or other therapeutic measures. Patients were
excluded if they had experienced an acute cardiovascular event
within the past 2 months, they had a psychiatric disorder or other
major non-cardiovascular chronic disease.

Statistical Analysis
SPSS (V26.0) and R 3.6.5 were used for statistical analysis. For
group comparisons, we used chi-square tests for categorical
variables; Student’s t-test or nonparametric Kruskal-Wallis tests
for continuous variables. Univariate Cox regression analysis was
used to describe the influence of variables on primary outcomes.
Random forest VIMP (variable Importance) and minimal depth
(28) methods are used to select variables. Significance thresholdα
= 0.05. The R packages SurvELM (29), randomForestSRC (30),
and glmnet (31) are used to build the ELM Cox, RSF, and Lasso
Cox survival models.
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Data Preprocessing and Feature Selection
In clinical practice, patients undergo different tests, resulting
in missing indicators in the data collected. Variables
with ≥30% missing were removed from the analysis
(Supplementary Table 3). According to previous research
(32), this paper uses the MissForest algorithm in the missForest
R package (33) to impute variables with <30% missing rate. We
use random forest’s VIMP and minimal depth method to carry
out 5-fold cross-validation to select variables for constructing

predictive models. The research process is shown in Figure 1

(Details in Supplementary Materials).

RESEARCH METHODOLOGY

The Lasso Cox Model
Lasso is a regression analysis method that performs
regularization along with variable selection to improve the
prediction performance and interpretability of statistical models.

FIGURE 1 | A flowchart describing the general framework of the study.
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Tibshirani (34) applied Lasso to the Cox proportional hazards
model in 1997 and performed variable selection by reducing the
absolute values of the penalty coefficients to even zero so that
the estimated variance of the final model was decreased and its
interpretability increased.

Random Survival Forest
RSF is an algorithm that estimates risks under the framework
of the random forests using statistical methods without making

any assumptions about individual risk functions. RSF randomly
selects the features and samples of subtrees and uses the log-
rank test to split the trees; the overall cumulative risk function is
estimated after calculating the cumulative risk function for each
tree. RSF extends the application of Breiman’s Random Forests
method for truncated data with advantages such as being free
from the assumption of equal scaling conditions and suitability
for complex variable problemswith variablemulticollinearity and
high dimensionality (35).

FIGURE 2 | C-index and IBS of Lasso COX/RSF/ELM Cox model at different censoring ratios. Nonparametric Friedman test and Nemenyi post hoc test were used to

make comparison with the ELM Cox group, P < 0.05 means statistically significant.
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TABLE 1 | Univariate Cox regression of time to death.

variables βb SE Waldχ2 P HR HR95%CI

Age (<63 as reference,

n = 1,371)

90.291 <0.001

Age (63 – <70,

n = 1,320)

0.205 0.163 1.586 0.208 1.228 (0.892, 1.690)

Age (70 – <79,

n = 1,356)

0.933 0.144 42.117 <0.001 2.541 (1.917, 3.368)

Age (≥80, n = 1232) 1.086 0.142 58.251 <0.001 2.962 (2.241, 3.914)

NYHA (II as reference,

n = 2,211)

172.134 <0.001

III (n = 1,899) 0.751 0.119 39.866 <0.001 2.119 (1.678, 2.675)

IV (n = 1,169) 1.507 0.117 165.613 <0.001 4.512 (3.587, 5.675)

Comorbidity

PMI 0.391 0.088 19.782 <0.001 1.479 (1.245, 1.757)

Atrial fibrillation 0.470 0.092 26.181 <0.001 1.601 (1.337, 1.917)

VHD 0.565 0.127 19.701 <0.001 1.759 (1.371, 2.257)

Diabetes 0.322 0.091 12.418 <0.001 1.380 (1.154, 1.650)

Renal insufficiency 0.894 0.106 70.828 <0.001 2.444 (1.985, 3.01)

Cancer 0.662 0.108 37.346 <0.001 1.939 (1.568, 2.397)

Medication use

Oral anticoagulants −0.479 0.125 14.629 <0.001 0.619 (0.484, 0.792)

Statin −0.682 0.104 42.763 <0.001 0.506 (0.412, 0.620)

β-blockers −0.491 0.093 28.022 <0.001 0.612 (0.510, 0.734)

Aldosterone 0.595 0.098 37.001 <0.001 1.812 (1.496, 2.195)

Diuretic 0.956 0.099 93.978 <0.001 2.603 (2.145, 3.158)

Cardiac stimulant 0.855 0.099 74.637 <0.001 2.352 (1.937, 2.856)

In hospital examination

Breaths per minute 0.295 0.101 8.569 0.003 1.343 (1.102, 1.635)

DBP (mmHg) −0.444 0.089 25.190 <0.001 0.641 (0.539, 0.763)

BMI (Kg/m2) −0.628 0.092 47.007 <0.001 0.534 (0.446, 0.639)

Heart rate per minute 0.477 0.091 27.285 <0.001 1.611 (1.347, 1.926)

WBC (1012/L) 0.256 0.089 8.215 0.004 1.291 (1.084, 1.538)

RBC (1012/L) −0.438 0.090 23.774 <0.001 0.646 (0.541, 0.770)

RDW (%) 1.074 0.100 116.48 <0.001 2.928 (2.409, 3.559)

hemoglobin (g/L) −0.524 0.091 33.435 <0.001 0.592 (0.496, 0.707)

ANC (1010/L) 0.546 0.091 36.098 <0.001 1.727 (1.445, 2.064)

NEUT (%) 0.888 0.096 86.172 <0.001 2.431 (2.015, 2.933)

ALT (U/L) −0.199 0.088 5.082 0.024 0.820 (0.690, 0.974)

albumin (g/L) −0.920 0.097 90.183 <0.001 0.398 (0.329, 0.482)

DBIL (µmol/L) 0.757 0.095 64.122 <0.001 2.133 (1.772, 2.567)

γGT (U/L) 0.518 0.090 33.090 <0.001 1.679 (1.407, 2.003)

Blood glucose (mmol/L) 0.312 0.09 12.138 <0.001 1.366 (1.146, 1.628)

TC (mmol/L) −0.391 0.089 19.202 <0.001 0.676 (0.568, 0.806)

Triglyceride (mmol/L) −0.762 0.093 66.951 <0.001 0.467 (0.389, 0.560)

LDL (µmol/L) −0.382 0.089 18.331 <0.001 0.682 (0.573, 0.813)

BUN (mmol/L) 0.713 0.092 59.844 <0.001 2.040 (1.703, 2.445)

creatinine (mmol/L) 0.816 0.094 75.023 <0.001 2.262 (1.881, 2.721)

Uric acid (µmol/L) 0.634 0.091 48.406 <0.001 1.885 (1.577, 2.253)

Serum sodium

(mmol/L)

−0.466 0.088 27.974 <0.001 0.628 (0.528, 0.746)

Serum chlorine

(mmol/L)

−0.655 0.090 52.395 <0.001 0.519 (0.435, 0.620)

Cystatin C (mg/L) 0.894 0.096 86.666 <0.001 2.445 (2.026, 2.952)

(Continued)

TABLE 1 | Continued

variables βb SE Waldχ2 P HR HR95%CI

FT3 (umol/L) −1.205 0.097 153.433 <0.001 0.300 (0.248, 0.363)

FT4 (pmol/L) 1.208 0.103 137.403 <0.001 3.346 (2.734, 4.095)

NT-proBNP (ng/L) 1.437 0.107 179.584 <0.001 4.208 (3.411, 5.193)

Cardiac troponin (µg/L) 0.877 0.099 78.197 <0.001 2.405 (1.980, 2.921)

QRS (ms) 0.312 0.091 11.827 0.001 1.366 (1.143, 1.631)

QTC (ms) 0.519 0.091 32.804 <0.001 1.680 (1.407, 2.007)

LVEF (%) −0.740 0.092 64.401 <0.001 0.477 (0.398, 0.572)

NYHA, New York Heart Association; PMI, previous myocardial infarction, acute myocardial

infarction occurred 6 months ag; VHD, valvular heart disease; renal insufficiency, previous

symptoms of renal insufficiency were diagnosed by two attending physicians; oral

anticoagulants, warfarin, aspirin, heparin, clopidogrel hydrogen sulfate tablet; DBP,

diastolic blood pressure; WBC, white blood cells; RDW, red blood cell distribution width;

ANC, absolute neutrophil count; NEUT, the neutrophils ratio; DBIL, direct bilirubin; TC,

total cholesterol; LDL, low-density lipoprotein; BUN, blood urea nitrogen; FT3, free

triiodothyronine; FT4, free thyroxine; LVEF, left ventricular ejection fraction (P < 0.05, the

difference was statistically significant).

The Cox Model Based on Extreme
Learning Machine
Some recent interesting studies have shown that when the
assumptions of classic parametric or semi-parametric survival
models [such as the Cox (1972) model] are seriously violated,
neural network models are useful alternatives in modeling
survival data (23). The Faraggi-Simon method is a feedforward
neural network nonlinear proportional hazard model. This
method uses the nonlinear output function of the neural network
to replace the linear combination of covariates and optimizes
the improved Cox partial likelihood estimation coefficient.
Therefore, the Faraggi-Simon method (36) is generally regarded
as a nonlinear extension of the Cox model and a classic
proportional hazard model with the most advantages (23, 37).
Wang (29) introduced the ELM algorithm into survival analysis
and proposed a new regularized Cox model based on the simple
framework of the Faraggi-Simon method.

There are several reasons why we choose ELM as the single-
hidden-layer feedforward neural network (SLFN) Cox model
instead of other popular deep neural network survival models.
First, it has been proved that any continuous objective function
can be approximated by SLFN with adjustable hidden nodes.
This means that complex network structures such as MLP
neural networks or deep neural networks may not always be
necessary (38, 39). Second, most of the backpropagation or
similar algorithms used in deep learning neural networks adjust
the input and output weights and hidden layer bias values
through optimization based on gradient descent. This is likely
to reduce the generalization ability of the network. In contrast,
ELM hidden node parameters do not need to be adjusted, and
better model performance can be obtained without complicated
parameter tuning (40). Third, the simulation study of Wang et al.
(23) showed that ELM Cox can choose a simple linear kernel
in various types of data, and has good stability under different
ratios of censoring conditions. This may be the linear check is
not sensitive to Kernel parameter c (41).
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Model Development
Censoring can have an important influence on the results of
survival analysis. A high degree of censoring can result in lower
accuracy and effectiveness of a model, increasing the risk of bias
(42). The censored rate of heart failure data in this study was
90.2%. To build a stable performance model, we used stratified
bootstrap (43). In this study, we stratified the training sets and the
testing sets in the ratio of 2:1 by the outcome. To obtain reliable
model indicators, the entire process was repeated 100 times, and
the performance of the model was compared.

The parameter combination of the RSF model with the
optimal prediction performance was selected through 5-fold
cross-validation, i.e., ntree = 500, mtry = 7, and nodesize = 60;
ELM Cox model was constructed with the default parameters,
i.e., implied layer nodes L = 100 and regularization parameter
C= 1e5.

Model Evaluation Metrics
Two common survival analysis evaluation metrics, Integrated
Brier Score (IBS) (44) and Harrell’s concordance index (C-index)
(20) were used to assess the accuracy of the survival analysis
models in the follow-up experiments. The C-index for survival
prediction indicates the proportion of observations with correct
ranking divided by all valid pairs, and the closer C-index is to
one, the better the model prediction; IBS is the Brier score of the
survival model over a certain period, and the smaller the IBS,
the stronger the prediction model. Comparisons of indicators
between models were made using nonparametric rank-sum tests
and Nemenyi post hoc tests.

Simulation Analysis
In this paper, the R package SimSurv (45) was used to test the
applicability of the Lasso Cox, RSF, and ELM Cox algorithms to
low-dimensional data, in which the fundamental risk function

was set to be Weibull distributed and the scale parameter was
set to two to give a simulation dataset with 1,000 samples and
five normal covariates (23). We generated on the data set and
were still alive until the end of follow-up, that is, the proportion
of censoring was 25, 50, and 75%. And the three models were
constructed by repeating 50 times with default parameters. The
results are shown in Figure 2.

When the censoring ratio is 25%, the performance of RSF and
ELM Cox models is almost the same with a C-index >0.75. The
evaluation indexes of the two models have a small fluctuation
range, indicating relatively good performance. The Lasso Cox
model performed slightly worse, but the results were still
acceptable. The IBS of the three models is all below 0.1, indicating
that their overall performance is stable. The ELM Cox model
outperformed the other twomodels when the censoring ratio was
50%. At a censoring ratio of 75%, the performance of all three
models decreased, with a C-index below 0.6 and IBS over 0.15.
In summary, the performance of the three prediction models
gradually decreases as the survival time data censoring ratio
increases and the ELM Cox model performs most consistently
among the three constructed models. Performance comparison
of the three algorithms in low-dimensional data shows that the
ELM Cox model can be applied in the survival analysis of heart
failure patients.

RESULTS

Basic Information
According to the inclusion and exclusion criteria, at the end of
follow-up, a total of 5,819 patients were included in the study,
of which 444 (7.63%) were excluded due to loss to follow-up.
Five thousand two hundred seventy-ninth patients were finally
enrolled, of which 4,762 (90.2%) were alive and 517 (9.8%) died.

FIGURE 3 | Cumulative survival probability of age and NYHA.
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The mean age of the enrolled patients was (70± 11.7) years, with
3,404 (64.5%) male and 1,875 (35.5%) female cases (Details in
Supplementary Table 1).

Univariate Cox Regression
Univariate Cox analysis results are as follows (Table 1). In
Figure 3, we show the survival curves of patients by age and
NYHA subgroups.

Feature Selection
The RSF model was used to prioritize and explain the influencing
factors using VIMP and Minimal Depth to select variables. The

importance of the relationship between each attribute (predictor)
to outcome were plotted with different colored dots, red for low-
risk values and blue for high-risk values. Twenty-one Variables
selected by both methods were selected for subsequent modeling
(variables below the horizontal dotted line) (Figure 4, Table 2)
(Details in Supplementary Figure 1).

Interpretation of Predictive Features
In order to explain the selected variables intuitively, we use SHAP
(SHapley Additive exPlanations) (46) to illustrate how these
variables affect the mortality rate in the model. Figure 5A shows

FIGURE 4 | Variables selected by VIMP and minimal depth.
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TABLE 2 | Results of selected variables in the final model.

Variables βb SE Waldχ2 P HR HR95%CI

Age (<63 as reference) 19.789 <0.001

Age (63 – <70) 0.130 0.164 0.625 0.429 1.139 (0.825, 1.571)

Age (70 – <79) 0.567 0.146 15.025 <0.001 1.762 (1.323, 2.347)

Age (≥80) 0.369 0.149 6.104 0.013 1.446 (1.079, 1.937)

NYHA (II as reference) 14.331 0.001

III 0.335 0.124 7.352 0.007 1.398 (1.097, 1.782)

IV 0.510 0.135 14.245 <0.001 1.665 (1.278, 2.170)

LVEF (%) −0.288 0.095 9.270 0.002 0.749 (0.622, 0.902)

β-blockers 0.224 0.104 4.635 0.031 1.251 (1.020, 1.534)

Uric acid (µmol/L) 0.323 0.100 10.364 0.001 1.381 (1.135, 1.679)

ANC (1010/L) 0.016 0.005 12.947 <0.001 1.016 (1.007, 1.026)

DBP (mmHg) −0.012 0.004 10.833 0.001 0.988 (0.981, 0.995)

QRS (ms) 0.002 0.001 6.334 0.012 1.002 (1.001, 1.004)

BUN (mmol/L) 0.308 0.106 8.487 0.004 1.361 (1.105, 1.673)

DBIL (µmol/L) 0.207 0.100 4.290 0.038 1.23 (1.011, 1.496)

BMI (Kg/m2) −0.047 0.013 13.497 <0.001 0.954 (0.930, 0.978)

albumin (g/L) −0.035 0.009 15.066 <0.001 0.966 (0.949, 0.983)

Diabetes 0.241 0.094 6.607 0.010 1.273 (1.059, 1.530)

Cystatin C (mg/L) 0.296 0.131 5.111 0.024 1.345 (1.040, 1.739)

FT3 (pmol/L) −0.150 0.065 5.330 0.021 0.861 (0.758, 0.978)

FT4 (umol/L) 0.061 0.015 16.952 <0.001 1.063 (1.032, 1.094)

NT-proBNP(ng/L) 0.580 0.125 21.572 <0.001 1.786 (1.398, 2.282)

Cardiac troponin (µg/L) 0.289 0.099 8.486 0.004 1.335 (1.099, 1.622)

RDW (%) 0.370 0.106 12.26 <0.001 1.447 (1.177, 1.780)

Serum chlorine

(mmol/L)

0.227 0.106 4.618 0.032 1.255 (1.020, 1.544)

Creatinine (µmol/L) 0.003 0.001 5.970 0.015 1.003 (1.001, 1.005)

P < 0.05, the difference was statistically significant.

the 21 risk factors assessed by the average absolute SHAP value.
Figure 5B shows the details of the features in the model. The
feature ranking (y-axis) indicates the importance of the predictive
model. The SHAP value (x-axis) is a unified index that responds
to the influence of a certain feature in the model. In each feature
important row, use different colored dots to draw the attribution
of all patients to the results, where the red dot represents the
high-risk value, and the blue dot represents the low-risk value.

Older age, elevated NYHA Classification, a higher Uric
acid, absolute neutrophil count, QRS, Blood urea nitrogen,
direct bilirubin, Cystatin C, free thyroxine, NT-proBNP, Cardiac
troponin, red blood cell distribution width, Serum chlorine,
Creatinine; the presence of previous diabetes mellitus and noβ-
blockers have increased the risk of CHF-related mortality.
Furthermore, a lower blood pressure, BMI, albumin, left
ventricular ejection fraction and free triiodothyronine were
also associated with a higher predicted probability of CHF-
related mortality.

Lasso Cox, RSF, and ELM Cox were then applied to construct
the survival prediction models for CHF. In 2017, Voors (47)
developed and validated a mortality risk model based on the
clinical data of patients with heart failure with preserved ejection

fraction from 11 European countries in the BIOSTAT-CHF and
showed that advanced age, higher BUN and NT-proBNP, lower
hemoglobin, and no β-blocker were the five variables with the
strongest prediction effect on mortality, among which age, BUN,
NT-proBNP, and β-blockers were consistent with the results of
this paper.

Model Prediction Performance
Comparison
As shown in Figure 6, compared to the other two models, the
ELM Cox model has the highest C-index 0.775(0.755, 0.802)
and the lowest IBS 0.166(0.150, 0.182), showing the best overall
performance. The results from the data application align with
those from the simulation studies in this manuscript, and it can
be concluded that the Cox proportional hazard model based
on ELM could produce better predictions when applied to the
survival analysis of patients with CHF.

DISCUSSION

Traditionally, the Cox proportional hazard regression algorithm
is used to construct models for heart failure research, but its
application conditions are subject to many restrictions (34).

In this study, the predictive performance of three survival
analysis models, Lasso cox, RSF, and ELM Cox models, on a
simulated dataset and an actual CHF dataset was compared. The
prediction performance of the three models under three survival
time data censoring ratios was compared, and the results showed
that the prediction performance of the three models gradually
decreases as the censoring ratio increases. However, the ELM
Cox model performed the best with the highest stability. The
simulation study laid the foundation for the study of actual
CHF data and explored the possibility of constructing chronic
disease survival analysis models on survival tie data with large
censoring ratios.

In this paper, the Lasso Cox and RSF models consumed
relatively longer training time on real data, especially when the
RSF cross-validation is used to select the optimal parameters,
each iteration taking 5–10min. In addition to the short
computational time, the evaluation metrics of the ELM Cox
heart failure prediction model (C-index and IBS: 0.775, 0.166,
respectively) were also the most ideal among the three models.
Compared with the performance of the Lasso Cox and RSF
models, the ELM Cox model showed stable performances on
simulated and real data, which was still superior even with high
censoring ratios.

The innovation of this study is that the classical parametric
or semiparametric survival analysis model has serious limitations
and cannot achieve good predictive effects in complex variables.
For example, in the Cox risk proportional model, there are
proportional hazards and log-linear assumptions. It is difficult to
fully analyze the nonlinear relationship between the independent
variable and the dependent variable. It is assumed that the
risk ratio is constant over time (18). However, these basic
assumptions are not easy to satisfy and difficult to verify in
practice. In this study, a newer ELM Cox algorithm can be used
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FIGURE 5 | The model’s interpretation. (A) The importance ranking of the variables according to the mean (|SHAP value|); (B) The importance ranking of the risk

factors with stability and interpretation using the RSF model.

FIGURE 6 | C-index and IBS of the three prediction models. Nonparametric Friedman test and Nemenyi post hoc test were used to make comparison with the ELM

Cox group, P < 0.05 means statistically significant.

to make up for the shortcomings of the traditional algorithm,
and from the perspective of model construction, the algorithm is
applied to the survival prediction of patients with chronic heart
failure. It can improve the predictive ability of the survival model.

In this study, three survival prediction models, Lasso Cox,
RSF, and ELM Cox models were constructed using electronic
medical records of patients with CHF, with the following
limitations: (1) This study analyzed survival censored higher

proportion, 90.6%; thus, the C-index of the models was not very
high; In the real-world high censored heart failure data research,
there is no further comparison with established approaches
that combine backpropagation-trained deep neural networks
with Cox proportional hazards models and other integrated
algorithms (29, 48), (2) The ELM Cox model is a black box
when it comes to how the variables are used, a characteristic
of all neural networks, and the intermediate links in building
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the model are not yet clear, (3) The data sources are only
from Taiyuan city, Shanxi Province. Therefore, it is necessary to
expand the sample sources in future studies, and (4) The models
are constructed without external validation, which may be added
in future studies.

CONCLUSION

Overall, this study applies a newer survival analysis algorithm,
the ELM Cox model, to build a survival prediction model
for patients with CHF, which has a better and more stable
prediction performance compared with the Lasso Cox and RSF
models. The 21 clinical variables with a significant impact on
the survival of heart failure patients are of great theoretical
significance and application value in assessing the mortality
risk of heart failure patients, assisting physicians to carry out
targeted therapeutic measures for high-risk groups with poor
prognosis, and preventing and mitigating the development of
poor prognosis in CHF patients.
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