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Enhancer RNAs (eRNAs) are intergenic long noncoding RNAs (lncRNAs) participating in the development of malignant cancers
via targeting cancer-associated genes and immune checkpoints. Immune infiltration of the tumor microenvironment was
positively associated with overall survival (OS) in lung adenocarcinoma (LUAD). In this study, we aimed to explore the clinical
significance of PCBP1-AS1 in LUAD and developed a novel prognostic signature based on two eRNAs. Our team discovered
that the expression of PCBP1-AS1 was distinctly downregulated in LUAD specimens compared with nontumor specimens.
Lower PCBP1-AS1 expression was related to advanced clinical stages and poor prognosis. KEGG analysis unveiled that the
coexpression genes of PCBP1-AS1 were involved in the regulation of several tumor-related pathways. In addition, remarkable
associations were observed between the expression of PCBP1-AS1 and the levels of several immune cells. Then, we used
PCBP1-AS1 and TBX5-AS1 to develop a prognostic model. Survival assays unveiled that patients with higher risk scores
exhibited a shorter OS in contrast to patients with lower risk scores. In addition, multivariable Cox regressive analysis
indicated that the risk score was an independent prediction factor in LUAD sufferers. The anticancer drug sensitivity analysis
indicated that risk score had a positive relationship with several anticancer drugs. Taken together, our findings indicated
PCBP1-AS1 as a function modulator in LUAD development. In addition, we constructed a robust immune-related eRNA
signature which might be a clinical prognosis factor for LUAD patients.

1. Introduction

Lung cancer, as the leading cause of tumor-relatedmortality, is
still a severe public healthcare challenge across the world [1].
Tumor epidemiologic data revealed that, in 2012, there were
approximately 1.8 million novel pulmonary carcinoma
patients and 1.6 million mortalities, separately, representing
approximately 13% of the sum of tumor cases and 20% of
the sum of tumor mortalities, respectively [2, 3]. Lung adeno-
carcinoma (LUAD) is the predominant subtype of pulmonary
carcinoma [4]. The 5-year OS of pulmonary carcinoma suf-
ferers can attain 55.2%. Nevertheless, over half of pulmonary
carcinoma sufferers are diagnosed in late periods with a 5 −
yearOS < 20%, even with the fast advancement of diagnoses

and therapies [5, 6]. As LUAD sufferers represent the majority
of pulmonary carcinoma sufferers, it is imperative to identify
LUAD biomarkers with higher sensitiveness and specificness.

With the progress of the second- and third-generation
sequence identification techniques, ncRNAs have aroused
remarkable interest because of the capability of regulating
genetic expression [7]. eRNA is a kind of ncRNA transcribed
from the enhancer [8]. Substantial eRNAs have been identified
to be vital for the transcriptional process of mankind cells [9].
Mounting data have revealed that lncRNAs participate in
almost all biology processes. Increasing evidence points to
functional roles of at least a subset of eRNAs in gene regulation
in both normal and cancer cells, adding new insights into the
action mechanisms of enhancers [10, 11]. In the progression
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Figure 1: Continued.
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of malignancies, eRNAs can be involved in the expressions of
tumor genes and the stimulation of oncogenesis pathways [12,
13]. For instance, the expression of eMARC1 was reported to
be high in bladder cancer samples and lineage cells, and
eMARC1 overexpression facilitated the development of blad-
der cancer cells, whereas the knockout of eMARC1 repressed
tumor genesis [14]. Shang et al. reported that SLC2A1-AS1
was often regulated downward in hepatocellular carcinoma
specimens. Deleting SLC2A1-AS1 was remarkably related to
relapse-free survival in hepatocellular carcinoma. SLC2A1-
AS1 overexpression remarkably repressed proliferative and
metastatic activities in hepatocellular carcinoma via the tran-
scription suppression of GLUT1 [15]. Moreover, several
eRNAs have been reported to be related to the prognoses of
several tumors, including LUAD patients [16, 17]. Intrigu-
ingly, mounting proofs have revealed the direct or nondirect
interplay between eRNAs and immunity status in the LUAD
microenvironment, despite the fact that the potential causal
links are still elusive [18, 19].

The abnormal expressions of eRNAs and aberrant varia-
tions are commonly seen in oncocytes and are related to
cancer development [20, 21]. Nevertheless, the direct inter-
play and effects on LUAD are elusive and warrant more
explorations. Our team aimed to first investigate the expres-
sion and clinical significance of eRNAs in LUAD by biolog-
ical information approaches and find biomarkers with
potential utilization value so as to improve the clinical effi-
cacy and improve the prognosis of LUAD patients.

2. Materials and Methods

2.1. Data Acquiring and Cleaning. LUAD sufferers’ tran-
scriptomic sequence data and clinic data were acquired from
the UCSC Xena TCGA LUAD cohort. After deleting LUAD

samples with low-quality data, 513 LUAD patients were
used for survival assays. The variant profiles were obtained
from the TCGA database via R program 4.0.0 with the pack-
age TCGAbiolinks. Data cleaning was completed via the R
program.

2.2. Identifying Candidate eRNAs in LUAD. lncRNAs tran-
scripted from active tissue-specific enhancers and the poten-
tial targeted genes were explored via Predicting Specific
Tissue Interactions of Genes and Enhancers (PreSTIGE,
https://galaxyproject.org/use/prestige/). Then, BioMart
(https://http://www.ensembl.org/) was used to realize the
conversion of the Ensembl transcript ID into a genetic sym-
bol for further analyses. The prognosis-related eRNAs were
screened by Kaplan-Meier (K-M) analyses. OS (p < 0:05)
were considered candidate eRNAs in LUAD.

2.3. Gene Set Enrichment Analysis (GSEA). GSEA was com-
pleted on the normalised RNA sequencing data, which was
acquired from the TCGA database. The GO terms and
KEGG pathways were utilized to explore the potential bio-
functions of PCBP1-AS1. A false discovery rate ðFDRÞ <
0:050 and a nominal p < 0:050 had significance on
statistics.

2.4. Difference Analysis of Scores with Clinical Stages. The
clinicopathologic feature data in correspondence to LUAD
specimens were acquired from TCGA. The analyses were
completed by R language and Wilcoxon rank sum or
Kruskal-Wallis rank sum test as the significance test relying
on the quantity of clinical phases for contrast.

2.5. Tumor Immune Microenvironment Analyses. CIBER-
SORT was utilized to speculate the relative fractions of 22
infiltration immunocyte types in every cancer specimen via
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Figure 1: PCBP1-AS1 expression was increased in LUAD patients. (a) PCBP1-AS1 expression in 33 types of cancer on the foundation of
TCGA datasets. (b) The distinct upregulation of the expression of PCBP1-AS1 in LUAD samples and healthy pulmonary samples. (c, d)
There were no distinct associations between PCBP1-AS1 expression and age and gender. (e) The different levels of PCBP1-AS1 in LUAD
specimens with different clinical stages. ∗p < 0:05.
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R package [22]. The ESTIMATE arithmetic was leveraged to
obtain the immunity scoring for every specimen [23].

2.6. Construction of Prognostic Immune Gene Signature. Our
team tried to design a prognosis-related multiple immuno-
gene hallmark based on PCBP1-AS1 and TBX5-AS1. The
stepwise variable selection was completed via the Akaike
Information Criterion in Cox models. Posterior to the
selection of immunogenes, the prognosis indicator,
namely, risk scoring, was produced: risk scoring = A1 ∗ B1
+ A2 ∗ B2+⋯+AiBi, where A1 was the expressing level
of every gene and B1 was the risk coefficient of every gene
originated from the Cox model. K-M curves, log-rank
tests, and univariable Cox analysis were used to evaluate
the relationship of the immunity-associated genetic hall-
mark and clinic features with OS. Multivariable analyses
were completed for the risk scores with modification for
age, sex, and clinical phase. The time-reliant receiver oper-

ating characteristic (ROC) curves were utilized to identify
the prognosis accurateness of the risk scores via the sur-
vival ROC package.

2.7. Statistical Analysis. The entire analysis was completed
via R 3.4.3 (R Core Team, Massachusetts, USA). Continu-
ous variates were studied via the t-test or the Wilcoxon
rank sum test, and categorical variates were contrasted
with the Pearson chi-square test. When the midvalue of
risk scores in every dataset was utilized as a cut-off to con-
trast survival risks between the riskhigh group and the risk-

low group, a K-M curve was plotted. To determine
independent risk factors for OS, multivariable Cox regres-
sive analyses were completed to modify covariables. The
immunity scores were computed via the ESTIMATE pack-
age. Time-dependent ROC curves were done with time-
ROC package. Differences were considered statistically
significant when p was less than 0.05.
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Figure 2: The prognosis significance of the expressions of PCBP1-AS1 in LUAD sufferers. (a) Survival probability of 512 LUAD patients
separated into 2 groups on the foundation of the mean expression of PCBP1-AS1. (b, c) Univariable and multivariable analyses of OS in
LSCC sufferers.
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3. Results

3.1. The Distinct Upregulation of PCBP1-AS1 in LUAD. For
the sake of investigating the potential roles of PCBP1-AS1
in tumor progression, our team retrieved GEPIA [24], and
the pancancer expressions of PCBP1-AS1 are shown in
Figure 1(a) which revealed that the dysregulation of
PCBP1-AS1 levels in tumors may be a frequent event.
Importantly, our team discovered that the expressions of
PCBP1-AS1 were remarkably reduced in LUAD samples in
contrast to nontumor lung samples (Figure 1(b)). Then, we
analyzed the expressing pattern of PCBP1-AS1 in LUAD
specimens with different clinical features. No distinct rela-
tionship existed between the PCBP1-AS1 expression and
age and sex (Figures 1(c) and 1(d)). However, we found that
LUAD specimens with late period phases displayed a
decreased expression of PCBP1-AS1 compared with samples
with early phases (Figure 1(e)).

3.2. The Prognostic Value of PCBP1-AS1 in LUAD Patients.
To identify the correlation of PCBP1-AS1 levels with the
prognoses of LUAD, we divided sufferers into 2 groups as
per the expressing levels of PCBP1-AS1. As expected, K-M

analyses revealed that high expressions of PCBP1-AS1 pre-
dicted remarkably better OS (p = 0:032, Figure 2(a)). More-
over, we further performed COX analyses for further
identification of the effects of PCBP1-AS1 used as a potential
biomarker for LUAD patients. Univariate analysis showed
that clinical stage and PCBP1-AS1 expression levels were
significantly related to overall survival (Figure 2(b)). Multi-
variate analysis showed that clinical stage (HR = 1:408, p <
0:001) and PCBP1-AS1 expression levels (HR = 0:529, p =
0:031) were independent prognostic factors (Figure 2(c)).

3.3. GO Annotation and KEGG Pathway Enrichment
Analysis. For the purpose of further revealing the biofunc-
tions of PCBP1-AS1 in LUAD, we screened the related genes
of PCBP1-AS1. As shown in Table S1, an overall 2183
transcripts displayed a remarkable association with PCBP1-
AS1 (p < 0:05). GO enrichment analyses and KEGG
pathway analyses of the 2183 targeted genes offered the
foundation to biologically research those genes. GO BP
analysis revealed that 2183 genes were markedly enriched
in the RNA splicing through transesterification reaction
with bulged adenosine as the nucleophile and mRNA
splicing via spliceosomes. For GO CC analysis, the
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Figure 3: Function enrichment analyses of 2183 genes involved in the levels of PCBP1-AS1: (a) GO enrichment analysis; (b) KEGG pathway
enrichment analysis.
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significantly enriched terms were nuclear speck, spliceosome
complexes, and U2-type prespliceosome. The significantly
enriched MF terms included methyltransferase, taste
acceptor, and bitter taste acceptor activities (Figure 3(a)).
In addition, the markedly enriched pathways for 2183
genes were Herpes simplex virus 1 infection, spliceosome,
GnRH signal path, and inflammation mediator modulation
of TRP channels (Figure 3(b)).

3.4. Correlation of PCBP1-AS1 with the Level of Tumor-
Infiltrating Immune Cells (TICs). To substantiate the rela-
tionship between the expressions of PCBP1-AS1 and immu-
nity microenvironment, the level of TIC subsets was studied
via CIBERSORT arithmetic, and 21 types of immunocyte
profiles in LUAD sufferers were obtained (Figures 4(a) and

4(b)). We observed that the levels of monocytes, neutrophils,
activated NK cells were abnormal in LAUD specimens
(Figures 5(a) and 5(b)). In addition, remarkable associations
were observed between the expressions of PCBP1-AS1 and
the levels of stimulated DCs, resting DCs, stimulated masto-
cytes, neutrophilic cells, stimulated NK cells, resting NK
cells, CD4 memory stimulated T cells, CD4 memory resting
T cells, follicular helper T cells (Tfh), and regulatory T cells
(Tregs) (Figures 6(a)–6(d)). Those outcomes substantiate
the roles of the expressions of PCBP1-AS1 in the immu-
noactivity of TME.

3.5. TBX5-AS1 Expression Was Decreased in LUAD. To fur-
ther develop a novel prognostic model based on eRNAs, we
screened an eRNA and focused on TBX5-AS1. Previously,
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Figure 4: TIC profiles in LUAD samples and association assay. (a) Visualisation of the infiltration levels of several immunocytes in the
LUAD specimens and nontumor samples. (b) The association among all immune cells.
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TBX5-AS1 has been discovered to participate in the tumor-
ous development of several cancers, including LUAD [16,
25, 26]. In addition, its dysregulation was also reported.

Herein, our team studied TCGA datasets and discovered
that the expression of TBX5-AS1 was distinctly decreased
in LUAD specimens (Figure 7(a)). Moreover, sufferers with
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Figure 5: (a, b) Difference in the proportion of 22 TIICs in LUAD samples and nontumor samples.
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Figure 6: Continued.
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higher expressions of TBX5-AS1 exhibited a better OS in
contrast to sufferers with lower expressions of TBX5-AS1
(p = 0:020, Figure 7(b)). Moreover, we observed that
remarkable associations existed between the expression of
TBX5-AS1 and the levels of resting DCs, Macrophagus
M0, Macrophagus M1, Macrophagus M2, stimulated masto-
cytes, resting mastocytes, mononuclear cells, stimulated NK
cells, CD4 memory stimulated T cells, CD4 memory resting
T cells, CD8 T cells, and Tfh, highlighting its involvement in
immune function (Figures 8(a)–8(c)).

3.6. Construction and Verification of Immune-Associated
eRNA Signature. We used TBX5-AS1 and PCBP1-AS1 to
develop establishment of a prognosis model via the risk
scoring = ð−1:0372 ∗ expressing level of PCBP1 −AS1Þ + ð−
0:4178 ∗ expressing level of TBX5 −AS1Þ (Figure 9). The
mean risk scores were utilized to separate all LUAD sufferers
into the riskhigh and risklow groups. The expression details of
TBX5-AS1 and PCBP1-AS1 are shown in Figure 10(a). The
distributional status of risk scores and survival status are
presented by Figures 10(b) and 10(c). The K-M analysis

revealed that the OS of the riskhigh patients was remarkably
worse in contrast to that of the risklow patients (Figure 10
(d)). The area under the time-reliant ROC curves (AUCs)
for 5-year OS was 0.603, revealing a satisfactory prediction
power of such prognosis model (Figure 10(e)). Moreover,
univariate analyses revealed that phase and risk scores were
distinctly associated with overall survival (Figure 11(a)).
More importantly, multivariate analysis demonstrated that
phase and risk scores were independent prognosis factors
(Figure 11(b)).

3.7. Correlation Analysis between Risk Score and Drug
Sensitivity. Finally, we analyzed the possible association
between risk score and drug sensitivity. As shown in
Figure 12 and Figure S1, we observed that the risk score
was associated with the sensitivity of many anticancer
drugs, such as 5-fluorouracil, AC220, bleomycin, BMS
−509744, doxorubicin, epothilone B, etoposide,
gemcitabine, GSK-650394, GSK1904529A, JQ12, KIN001-
102, KIN001-135, midostaurin, mitomycin C, NG-25,
obatoclax mesylate, OSU-03012, PF-562271, phenformin,
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Figure 6: Relationship of TIC level with the expression of PCBP1-AS1. Dispersed point chart presented the relationship of 10 types of TIC
level with the expression of PCBP1-AS1 (p < 0:05), like (a) CD4 memory stimulated T cells and resting NK cells; (b) resting DCs and
stimulated DCs; (c) neutrophilic cells, stimulated NK cells, Tfh, and Tregs; (d) stimulated mastocytes and CD4 memory resting T cells.
The association assay was completed via Pearson coefficient.
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Figure 8: Association of TIC level with the expression of PCBP1-AS1. (a–c) Scatter plot presented the association of 12 types of TIC
proportion with the PCBP1-AS1 expressions.
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pyrimethamine, rapamycin, thapsigargin, tipifarnib, and TL-
2-105. Our findings firstly analyzed the relationships
between risk scores with the drug sensitivity of anticancer
drugs.

4. Discussion

As per the immune editing theory, the progression of immu-
noescape causal links in neoplasm damage enables oncocytes
to survive the original stage of cancer eradication reliant on
the stimulation of anticancer immune activity [27, 28]. The
change in the immunoresponse from anticancer status to
cancer-tolerant status facilitates the LUAD development
[29]. Immunocytes and immunogenes have been discovered
as new prognostic markers and treatment targets for LUAD
[30, 31]. Herein, our team strived to establish a new
immunity-associated eRNA prognosis hallmark of LUAD,
to characterise the eRNA hallmark as a promising prognosis
tool, and to determine treatment targets for LUAD.

Many studies have reported the vital effects of eRNAs on
the development of various cancers [26, 32]. Herein, our
team studied TCGA datasets and identified many survival-
associated eRNAs. Then, we focused on PCBP1-AS1 whose
expression was low in LUAD samples. Importantly, the
low expressions of PCBP1-AS1 were related to advanced
stages and poor prognosis. Recently, the effects of PCBP1-
AS1 have been studied in multiple tumors. Zhang et al.
found that higher expressions of PCBP1-AS1 might reveal
poorer prognoses for sufferers and might reinforce the deu-
biquitination of AR/AR-V7 via stabilising the USP22-AR/
AR-V7 complexes, hence avoiding AR/AR-V7 degradation
via the ubiquitin-proteasome channel [33]. Luo and his

group revealed that PCBP1-AS1 was highly expressed in
human hepatocellular carcinoma and markedly related to
unsatisfactory prognoses in sufferers with hepatocellular car-
cinoma. The knockout of PCBP1-AS1 suppressed the prolif-
eration, migration, and invasion of HCC cells through
modulating PCBP1/PRL-3/AKT signal path [34]. Previously,
the expression of PCBP1-AS1 was also discovered to be low
in LUAD, which was consistent with our findings [35]. More
importantly, we firstly provided evidence that PCBP1-AS1
was an independent prognosis factor for 5-year OS in LUAD
patients, suggesting it as a novel biomarker for LUAD
patients.

Herein, GO and KEGG outcomes reveal that PCBP1-
AS1 was related to several signal paths, like the GnRH sig-
naling pathway, glycerophospholipid metabolism, Herpes
simplex virus 1 infection, and serotonergic synapse. These
findings suggested that PCBP1-AS1 may play an important
role via regulating the above tumor-related pathways. In
recent years, many kinds of LUAD have been identified to
be immunogenic and sponged in cancer-infiltrating lymph
cells [36]. Several discoveries indicated that DRP1 exerted
an effect on cancer-immunity interplay and that the expres-
sions of PCBP1-AS1 were related to the levels of immunity
infiltration in LUAD. Our team explored the association
between the expressions of PCBP1-AS1 and immunity infil-
tration in LUAD via CIBERSORT. Intriguingly, our team
discovered that the expressions of PCBP1-AS1 were related
to the infiltrative activities of diverse immunocytes, like acti-
vated DCs, resting DCs, activated mast cells, neutrophils,
activated NK cells, CD4 memory resting T cells, Tfh, Tregs,
resting NK cells, and CD4 memory activated T cells. Tumor-
infiltrating immune cells have been confirmed to be related
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Figure 9: Multivariate analysis of OS in LUAD sufferers.
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Figure 10: Continued.
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to the clinical outcome of LUAD sufferers [37, 38]. Our find-
ings suggested that PCBP1-AS1 might affect the prognoses
of LUAD sufferers via modulating TICs.

The available largescale genetic expression profiles
enable us to determine more dependable prognosis hall-
marks in a variety of tumors [39, 40]. Some researches have
put forward genetic expression prognosis hallmarks in
LUAD [41, 42]. To further develop a novel prognostic model
based on eRNAs, we further focused on TBX5-AS1 which
also exhibited a distinct upregulation in LUAD and pre-

dicted a good prognosis [16]. Interesting, it is also an
immune-related eRNA and was related to the infiltrative
activities of diverse immunocytes. Then, we used the Cox
model to examine risk scoring which was utilized to separate
the entire sufferers into two groups. The elevating percent-
age of mortality usually occurs in riskhigh sufferers. In
Kaplan-Meier analysis, riskhigh sufferers presented poorer
OS, in contrast to risklow sufferers. The results of multivari-
able Cox regressive analysis verified that risk scoring was
an independent prognosis factor for the 5-year OS of LUAD
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Figure 10: A novel prognostic model of LUAD sufferers. (a) The expression pattern of PCBP1-AS1 and TBX5-AS1 in all LUAD specimens.
(b) The prognostic model distribution of LUAD patients. (c) The OS of sufferers in the TCGA dataset. (d) The K-M curve represented that
riskhigh sufferers displayed remarkably poorer OS in contrast to risklow sufferers. (e) ROC curve of risk scores and the rest of clinical factors.
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patients. Our findings suggested that such a hallmark could
be a selection tool for riskhigh sufferers in following molecule
biology researches and be a valid tool for doctors to forecast
prognoses.

There was a strong correlation between risk scores and
anticancer medication sensitivity in our study; we first estab-

lished this correlation. We observed that the risk score was
associated with the sensitivity of many anticancer drugs,
such as 5-fluorouracil, AC220, bleomycin, BMS-509744,
doxorubicin, epothilone B, etoposide, gemcitabine, GSK-
650394, GSK1904529A, JQ12, KIN001-102, KIN001-135,
midostaurin, mitomycin C, NG-25, obatoclax mesylate,
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Figure 11: Independent prognosis analyses of risk scoring and clinic parameters: (a) univariable Cox regressive analyses; (b) the
multivariable Cox regressive analyses.
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Figure 12: Correlation analysis between risk score and drug sensitivity of anticancer drugs.
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OSU-03012, PF-562271, phenformin, pyrimethamine, rapa-
mycin, thapsigargin, tipifarnib, and TL-2-105. Risk scores
and the sensitivity of anticancer medications were first
examined in our study, which provided a fresh insight into
the treatment of tumors and the prevention of tumor resis-
tance [43, 44].

There are certain flaws in the present work that should
be noted. First, although the dysregulated eRNAs were asso-
ciated with LUAD, no additional experiments were con-
ducted to validate these findings. Second, this paper was
finished retrospectively, and more prospective clinic datasets
are required to substantiate the outcome herein. Third, the
hallmark in this work was established by 2 genes; more bio-
functions need to be further investigated in LUAD.

5. Conclusions

Holistically, we were the first team to explore the prognostic
significance of eRNAs in LUAD. An eRNA signature was
established to forecast prognoses for LUAD sufferers. Never-
theless, the potency of the risk scoring signatures requires
further tests in larger cohorts of LUAD sufferers, and explo-
ration of the molecule-level causal links of genes in the sig-
nature is warranted in future studies.
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