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Abstract
Thoracic aortic dissection (TAD) is an aortic disease associated with dysregulated 
extracellular matrix composition and de- differentiation of vascular smooth muscle 
cells (SMCs). Growth Differentiation Factor 11 (GDF11) is a member of transforming 
growth factor β (TGF- β) superfamily associated with cardiovascular diseases. The pre-
sent study attempted to investigate the expression of GDF11 in TAD and its effects 
on aortic SMC phenotype transition. GDF11 level was found lower in the ascending 
thoracic aortas of TAD patients than healthy aortas. The mouse model of TAD was 
established by β- aminopropionitrile monofumarate (BAPN) combined with angioten-
sin II (Ang II). The expression of GDF11 was also decreased in thoracic aortic tissues 
accompanied with increased inflammation, arteriectasis and elastin degradation in 
TAD mice. Administration of GDF11 mitigated these aortic lesions and improved the 
survival rate of mice. Exogenous GDF11 and adeno- associated virus type 2 (AAV- 
2)- mediated GDF11 overexpression increased the expression of contractile proteins 
including ACTA2, SM22α and myosin heavy chain 11 (MYH11) and decreased syn-
thetic markers including osteopontin and fibronectin 1 (FN1), indicating that GDF11 
might inhibit SMC phenotype transition and maintain its contractile state. Moreover, 
GDF11 inhibited the production of matrix metalloproteinase (MMP)- 2, 3, 9 in aortic 
SMCs. The canonical TGF- β (Smad2/3) signalling was enhanced by GDF11, while its 
inhibition suppressed the inhibitory effects of GDF11 on SMC de- differentiation and 
MMP production in vitro. Therefore, we demonstrate that GDF11 may contribute 
to TAD alleviation via inhibiting inflammation and MMP activity, and promoting the 
transition of aortic SMCs towards a contractile phenotype, which provides a thera-
peutic target for TAD.

K E Y W O R D S

contractile/synthetic SMC phenotype, GDF11, inflammation, MMPs, TAD

www.wileyonlinelibrary.com/journal/jcmm
mailto:
mailto:
mailto:￼
https://orcid.org/0000-0002-1190-8714
http://creativecommons.org/licenses/by/4.0/
mailto:ysq1962@126.com
mailto:duanweixun@126.com


4624  |     REN Et al.

1  | INTRODUC TION

Thoracic aortic dissection (TAD) is one of the most fatal aortic dis-
eases with high morbidity and mortality rates.1 The incidence of tho-
racic aortic aneurysms and dissection in the world has increased year 
by year and occurs at a rate of 4- 6 cases per 100 000 person- years.2,3 
Although the advances are made in computed tomography imaging, 
surgical repair and endovascular techniques, there are neither spe-
cific biomarkers for prompt diagnosis or alternative therapies for 
treating this disease. The underlying pathological mechanism of TAD 
remains unclear. Previous studies have shown that the phenotype 
of vascular smooth muscle cells (SMCs) changed from contractile to 
synthetic,4 and the dysfunction of vascular SMCs interacting with 
extracellular matrix (ECM) could affect the behaviour of vessel.5 
Besides, the inflammatory cytokines and matrix metalloproteinases 
(MMPs) released by activated macrophages can be detected in the 
aortic tunica media. Del Porto reported that acute aortic dissection 
caused a significant increase of serum IL- 6.6 High expression levels 
of IL- 6 and MMP- 2 were also found in the aortic tissues of rats with 
aortic dissection.7 These findings suggest that TAD is the result of 
artery remodelling which is associated with aneurismal phenotypic 
transition of vascular SMCs, inflammation and extracellular matrix 
degradation.

Previous studies have indicated an involvement of TGF- β sig-
nalling in TAD formation, however, its exact role is still equivocal 
and controversial. Increasing evidence showed that the trans-
forming growth factor β (TGF- β) signalling pathway plays an im-
portant role in the formation of aortic aneurysm and dissection.8 
Both over- activation and over- inhibition of this pathway was re-
ported to induce the formation of aortic aneurysm and dissection. 
Meester and co- workers found that activation of TGF- β pathway 
promotes the genesis and development of aortic aneurysms.9 
However, Wang et al10 reported that TGF- β suppressed angio-
tensin II (Ang II) - induced aortic aneurysm in mice via controlling 
excessive monocyte and macrophage activation, inhibiting matrix 
degradation and preserving medial smooth muscle cell survival. 
Growth Differentiation Factor 11 (GDF11) is a member of TGF- β 
superfamily and broadly expresses in embryonic tissues, spinal 
cord, skeletal muscle, brain, heart, etc.11,12 Higher GDF11 levels 
were found to be closely related to lower risk of cardiovascular 
disorders and death.13 GDF11 could reduce atherosclerosis and 
protect against endothelial injury.14 It is noteworthy that GDF11 
counteracts sclerotic arterial disease through preventing the phe-
notypic transition of carotid arterial SMCs induced by autophagy 
deficiency.15 Therefore, we hypothesize that GDF11 participates 
in the formation of TAD.

In this study, the ascending thoracic aortas from patients with 
TAD and healthy individuals were collected to detect the expression 
of GDF11. Furthermore, β- aminopropionitrile monofumarate (BAPN) 
and angiotensin II (Ang II) were used to establish TAD mouse model. 
Exogenous GDF11 and adeno- associated virus type 2 (AAV- 2) me-
diated GDF11 overexpression were used to investigate its effect in 
the phenotypic switching of vascular SMCs. Our data indicated that 

BAPN/Ang II- induced GDF11 down- regulation as a contributor for 
synthetic switching of aortic SMCs.

2  | MATERIAL S AND METHODS

2.1 | Patient specimens

This study complied with the Helsinki Declaration (2000) and was 
approved by the Ethics Committee of Xijing Hospital affiliated to 
the Fourth Military Medical University (No. 20120216- 4). From 
September 2017 to May 2019, 20 TAD patients underwent com-
puted tomography angiography (CTA) and surgery repair were 
enrolled in this study, and their thoracic aortic medial tissues and 
serum samples were collected within 30 minutes after surgery. 
Normal control aortic tissues and serum were derived from heart 
donors (n = 8), aortic valve replacement for aortic valve insufficiency 
with normal aorta (n = 2). Some medial layer tissues were paraffin- 
embedded for serial histological sections and subsequent staining, 
and the rest were used to extract tissue proteins and RNAs.

2.2 | Content of GDF11 and inflammatory factors

The content of GDF11 in the serum samples and supernatant of cul-
tured mouse SMCs and endothelial cells (ECs) was measured by a 
GDF11 ELISA kit (Uscn, Wuhan, China) according to the manufac-
turer's instructions. Serum levels of inflammatory cytokines (TNF- α 
and IL- 6) were assessed by TNF- α (Multi Sciences, Hangzhou, China) 
and IL- 6 (Roche, Switzerland) ELISA kit respectively according to the 
manufacturers' instructions.

2.3 | Expression and production of GDF11

GDF11 CDS fragment (GenBank Accession No. NM_005811) 
was synthesized by GENEWIZ (Jiangsu, China) and cloned into 
the pET30a prokaryotic protein expression vector (Novagen, 
MerckEurolab, Fontenay- sous- Bois, France). This expression vector 
was then introduced into Escherichia coli BL21 for protein produc-
tion. BL21/pET30a- GDF11 cells were grown in LB medium (NaCl 
10 g/L, tryptone 10 g/L, yeast extract 5 g/L) with shaking at 37°C 
for 3 hours. Isopropyl- β- d- thiogalactoside was then added to the 
medium (final concentration, 1 mmol/L) with shaking overnight at 
16°C, followed by centrifugation at 5000 g. Proteins were purified 
on a HisTrap HP column (GE Healthcare, Madison, Wisconsin, USA) 
based on the manufacturer's instructions. Endotoxin was removed 
through an endotoxin removal column (high- capacity endotoxin 
removal spin column, Pierce, Thermo Fisher Scientific, San Jose, 
California, USA). The purified proteins were then desalted and cen-
trifuged using Amicon ultra- 15 centrifugal filter units (UFC900396, 
Millipore, Billerica, MA, USA). SDS- PAGE of GDF11 was used to 
verify the size of recombinant protein.
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2.4 | Animal model of TAD

Three- week- old male C57BL/6 mice were purchased from the ani-
mal centre of the Fourth Military Medical University. The mouse 
model of TAD was established by BAPN combined with Ang II 
(Sigma- Aldrich, St. Louis, MO, USA) as previously reported.16 Briefly, 
mice were fed on a normal diet and administered BAPN solutions 
dissolved in the drinking water (1 g/kg/d) for 4 weeks. Subsequently, 
osmotic mini pumps (Alzet, Cupertino, CA, USA) filled with Ang II 
were implanted subcutaneously in mice for 24 hours (1 μg/kg). 
Intraperitoneal injection of GDF11 into mice (0.1 mg/kg/d) was per-
formed from the beginning of BAPN administration. The survival of 
mice was recorded daily. Mice were euthanized by excess pentobar-
bital sodium and thoracic aortic tissues were collected.

2.5 | Immunofluorescence

Human and mouse aorta samples were taken from the obviously 
thickened areas of the thoracic aorta. After fixation, paraffin- 
embedded sections (5- μm- thick) were treated with xylene, followed 
by antigen retrieval for 10 minutes. Subsequently, the sections were 
blocked in goat serum and incubated with primary antibodies tar-
geting GDF11 (1:100, Biorbyt, Cambridge, MA, UK), ACTA2 (1:100, 
Novus Biologicals, Littleton, CO, USA) and elastin (1:100, Bioss, 
Beijing, China). Incubation with Cy3/FITC- conjugated secondary an-
tibody (1:200, Beyotime Biotechnology, Haimen, China) and DAPI 
(Beyotime Biotechnology) was then carried out. Images were cap-
tured using an Olympus BX53 fluorescence microscope.

2.6 | Histological assessments

The aortic tissues were stained with haematoxylin and eosin (H&E). 
After deparaffinization and rehydration, sections from aortic tis-
sues were stained with haematoxylin for 5 minutes and eosin for 
3 minutes and then examined under a light microscope. For EVG and 
Masson staining, the sections were stained with Verhoeff staining 
solution (Leagene Biotechnology, Beijing, China) and Masson tri-
chrome solution (Siopharm Chemical Reagent, China), respectively.

2.7 | Isolation and culture of mouse aortic 
SMCs and ECs

SMCs and ECs were isolated from aortas of C57BL/6 mice for in 
vitro experiments according to previous studies.15,17 Briefly, aortic 
medial tissues free of fat tissues were sliced into pieces (1 mm3) and 
pasted on the bottom of culturing bottle using micro- dissecting scis-
sors. For isolation of ECs, aorta was placed with lumen- side- down 
onto the culturing bottle. The dissected tissues were incubated in 
DMEM medium (Hyclone, Utah, Logan, USA) with 20% foetal bo-
vine serum (FBS, Biological Industries, Kibbutz, Israel) at 37°C in a 

humidified incubator with 5% CO2. The medium was replaced every 
2 days for 1 week. SMCs or ECs were isolated when they grew out 
from the dissected tissue. Subsequently, ACTA2 immunofluores-
cence was performed to identify the SMCs. Primary SMCs and ECs 
of passage 3 were used for following study. SMCs were incubated 
with Ang II (500 nmol/L), with GDF11 (50 ng/mL) and/or SB- 431542 
(10 μmol/L) post- infection with AAV- 2 containing GDF11 or GDF11- 
shRNA (Wanleibio, Shenyang, China).

2.8 | Cell proliferation assay

SMCs were seeded in a 96- well plate at 4 × 103 per well. SMC prolif-
eration was analysed with MTT (Sigma- Aldrich). OD values at 0, 24, 
48 and 72 hours were measured using an Absorbance Microplate 
Reader (BioTek, Winooski, VT, USA).

2.9 | Real- time quantitative PCR (RT- qPCR)

Total RNAs were isolated from SMCs through TRIpure reagent 
(BioTeke, Beijing, China), and then reversely transcribed into cDNA 
using Reverse Transcriptase M- MLV (Takara, Dalian, China) in the 
presence of random hexamers and oligo (dT). RT- qPCR was per-
formed by using SYBR Green (BioTeke) and the primer sequences 
were listed in Table S1. The 2−ΔΔct method was used to determine 
relative gene expression.

2.10 | Western blotting

Human and mouse aortas or cultured SMCs were harvested and 
lysed using RIPA Lysis Buffer (Beyotime Biotechnology). Equal 
amount (15- 30 μg) of total protein was fractionated on 5%- 15% 
SDS- polyacrylamide gel and transferred onto a PVDF membrane 
(Thermo Fisher Scientific, Waltham, MA, USA). Then the blots were 
incubated with primary antibodies: anti- GDF11 (1:1000, abcam, 
Cambridge, MA, USA), anti- ACTA2 (1:1000, Novus Biologicals), 
anti- MMP- 2 (1:500, Proteintech, Rosemont, IL, USA), anti- MMP- 9 
(1:1000, Proteintech), anti- MMP- 3, anti- TNF- α (1:500, ABclonal, 
Wuhan, China), anti- IL- 6, anti- p- Smad- 2, and anti- p- Smad- 3 
(1:1000, ABclonal) at 4°C overnight. The membranes were probed 
with species- relevant HRP- linked secondary antibodies (1:10 000, 
Proteintech) at 37°C for 40 minutes. Besides, housekeeping protein 
β- actin (1:2000, Proteintech) was used as the internal control.

2.11 | Statistics

Data were analysed by Graphpad Prism 8 (Graphpad Prism Software, 
inc.) and presented as means ± SD. Statistical analysis was done 
through unpaired t- test between two groups and one- way analy-
sis of variance (ANOVA) with Tukey's multiple comparison among 
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multiple groups. The threshold of statistical significance was set at 
P < .05.

3  | RESULTS

3.1 | Patient characteristics

Demographics and clinical characteristics of all participants are 
shown in Table 1. The average age of TAD patients was older than 
healthy individuals (54.2 ± 8.5 years vs 46.6 ± 9.2 years). The av-
erage aortic diameter of TAD patients was significantly bigger than 
those of healthy individuals (56.8 ± 6.5 mm vs 32.1 ± 3.2 mm). 
TAD patients had significantly higher percentage of aortic valve 

insufficiency, hypertension, smoking and chest pain than the control 
(40% vs 20%; 75% vs 10%; 30% vs 10%; 80% vs 10%, respectively).

3.2 | GDF11 content and expression in aorta 
tissues of TAD patients

Ascending aortic tissues of TAD patients and healthy individuals 
were collected (Figure 1A). The histomorphology of aortic tissues 
was assessed by H&E, Masson and EVG stainings (Figure 1B- D). 
Uniform structures and strong elastin laminae were presented in 
the control tissues, while TAD samples showed disorderly arrange-
ments, collagen over- deposition and elastin degradation. Serum lev-
els of inflammatory cytokines (TNF- α and IL- 6) were higher in TAD 
patients (Figure 1E). Protein expression levels of TNF- α, IL- 6, MMP- 
2, MMP- 3 and MMP- 9 in TAD thoracic aortic tissues were also el-
evated (Figure 1F). ELISA results showed a significant decrease of 
serum GDF11 in TAD patients (Figure 1G), which were consistent 
with the results from western blotting (Figure 1H). Furthermore, 
the expression of ACTA2 in aortic medial tissues was decreased sig-
nificantly (Figure 1H), which was confirmed by immunofluorescence 
staining (Figure 1I). GDF11 found to be co- localized with ACTA2 in 
thoracic aortic tissues and had a positive correlation with the ex-
pression of ACTA2 (Figure 1J,K).

3.3 | GDF11 expression in the mouse model of TAD

We established mouse model of TAD by BAPN/Ang II to verify the 
above results. Similar to human specimens, the expression of GDF11 
and ACTA2 in the aortic tissues from TAD mice also decreased 
(Figure 2).

3.4 | GDF11 inhibited the formation of 
experimental TAD

After verifying the size of recombinant GDF11 with SDS- PAGE 
(Figure 3A), GDF11 was then injected into TAD mice in order to de-
tect its influence on the formation of TAD. We found that GDF11 
treatment improved the survival of TAD mice (Figure 3B). While 
55.56% of mice treated with BAPN/Ang II developed TAD, only 
33.33% developed TAD when treated with GDF11 (Figure 3C). 
Mice treated with BAPN/Ang II developed TAD, and their tho-
racic aortas were significantly dilated (Figure 3D,E). The tunica 

TA B L E  1   Clinical characteristics of patients

Variable
TAD
(n = 20)

Controls
(n = 10)

Demographics, n (%)

Age (y) 54.2 ± 8.5 46.6 ± 9.2

Male, n (%) 14 (70.0) 8 (80.0)

Aortic diameter, mm 56.8 ± 6.5 32.1 ± 3.2

Medical history, n (%)

Hypertension 15(75.0) 1 (10.0)

Smoking 6 (30.0) 1 (10.0)

Marfan syndrome 2 (10.0) 0

Bicuspid aortic valve 1 (5.0) 0

Diabetes mellitus 2 (10.0) 0

Coronary artery disease 0 0

Hypertrophic 
cardiomyopathy

0 0

Aortic valve insufficiency 
(moderate or severe), n (%)

8 (40.0) 2 (20.0)

Presenting symptoms and signs

Chest pain, n (%) 16 (80.0) 1 (10.0)

Back pain, n (%) 3 (15.0) 0

Chest and back pain, n (%) 1 (5.0) 0

Syncope, n (%) 4(20.0) 0

Hypotension/tamponade/
shock, n (%)

3 (15.0) 0

Note: Results are represented as n (%) or mean ± standard deviation.
Abbreviation: TAD, Thoracic aortic dissection.

F I G U R E  1   Expression levels of GDF11 and ACTA2 were significantly decreased in thoracic aortic tissues of TAD patients. (A) 
Representative morphology of aortic tissues. (B- D) Representative H&E, Masson and EVG staining for the aortas in patients with TAD and 
control group. Scale bar = 200 μm. (E) Serum levels of TNF- α and IL- 6. (F) Protein expression of TNF- α, IL- 6, MMP- 2, MMP- 3 and MMP- 9 in 
TAD thoracic aortic tissues. (G) ELISA result of the serum GDF11 levels. (H) Protein blots of GDF11 and ACTA2 in thoracic aortic tissues. (I) 
Representative fluorescence microscopy images for GDF11 (Red), ACTA2 (Green), and DAPI (Blue) in the thoracic aortic tissues. Scale bar, 
50 μm. (J) Quantification analysis of fluorescence intensity of GDF11 (Red), ACTA2 (Green) and co- expression of GDF11 and ACTA2 (Yellow) 
from immunofluorescence. (K) Linear regression analysis of the expression of GDF11 and ACTA2. Data are presented as Mean ± SD (n = 6- 8). 
*P < .05 vs control group, **P < .01 vs control group
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media of thoracic aorta of TAD mice presented elastin degrada-
tion, only 2- 3 layers of elastic lamina were observed (Figure 3F). 
Significant adventitial thickening and collagen over- deposition 
were shown (Figure 3G). GDF11 treatment prevented the path-
ological damage induce by BAPN/Ang II (Figure 3E- G). The av-
erage thoracic aortic diameter in TAD mice was reduced from 
3.001 mm to 1.724 mm after GDF11 treatment (Figure 3D,H). In 

addition, quantification analysis of elastin breaks was performed 
to assess the medial degeneration, and the results showed that 
TAD mice had a remarkably higher elastin degradation score than 
the control. GDF11 treatment significantly prevented elastin 
degradation (Figure 3I).

The development of TAD is associated with loss of SMC con-
tractile markers, secretion of MMPs and inflammatory infiltration. 

F I G U R E  2   Expression of GDF11 was significantly reduced in thoracic aortic tissues of TAD mice. (A) Protein blots of GDF11 and ACTA2 
in thoracic aortic tissues. (B) Relative densitometry of protein levels. (C) Representative fluorescence microscopy images of for GDF11 
(Red), ACTA2 (Green), and DAPI (Blue) in the thoracic aortic tissues of control and TAD mice. Scale bar, 50 μm. (D) Quantitation analysis of 
fluorescence intensity of GDF11 (Red), ACTA2 (Green) and co- expression of GDF11 and ACTA2 (Yellow) from immunofluorescence. Data are 
presented as mean ± SD (n = 6- 8). **P < .01 vs control group
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The expression of ACTA2 and elastin was enhanced in the thoracic 
aorta tissues of TAD mice treated with GDF11 (Figure 4A). Further, 
the expression levels of MMPs, IL- 6 and TNF- α were also confirmed 
to be significantly down- regulated in aortas after GDF11 treatment 
in TAD mice (Figure 4B,C).

3.5 | GDF11 prevented Ang II- induced phenotypic 
transition of aortic SMCs

The expression levels of GDF11 and ACTA2 was determined 
by immunofluorescence and western blotting (Figure S1A,B). 

F I G U R E  3   GDF11 attenuated pathological features in the TAD mice model. (A) SDS- PAGE of recombinant GDF11. (B) Effect of GDF11 
on BAPN/Ang II- induced mice mortality. (C) The rate of interlayer formation in mice with TAD. (D) Representative pictures of aortas from 
mice treated with BAPN/Ang II and GDF11 for 4 wk and thoracic aorta diameter detected by colour Doppler ultrasonography (H). H&E 
staining (E) EVG staining (F) and Masson staining (G). (I) Elastin degradation score was calculated in TAD mice. Scale bar, 200 μm. Data are 
presented as mean ± SD (n = 6- 10). **P < .01 vs control group, ##P < .01 vs TAD group
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Phosphorylation of Smad- 2/3 was enhanced in GDF11- treated 
SMCs (Figure S1C,D). GDF11 increased the expression of contrac-
tile proteins including ACTA2 and SM22α, and decreased synthetic 
marker osteopontin in SMCs without Ang II stimulation (Figure S1E). 
GDF11 also reduced their MMP expression (Figure S1F). Moreover, 
SB- 431542 was used to block TGF- β/Smad- 2/3 signalling pathway. 

We noted that SB- 431542 reversed the effects of GDF11 on the ex-
pression of contractile/synthetic markers and MMPs (Figure S1E,F). 
Besides, forced overexpression of GDF11 showed similar effects as 
GDF11 recombinant protein in SMCs (Figure 5).

Next, to simulate the in vivo condition, primary SMCs were 
further stimulated with Ang II. As indicated in Figure 6A, GDF11 

F I G U R E  4   GDF11 restrained synthetic phenotype and inflammation. (A) Representative images of immunofluorescence staining for 
ACTA2 (Red), Elastin (Green) and DAPI (Blue) in the thoracic aortic tissues of TAD mice with or without GDF11 treatment. Scale bar = 50 μm. 
(B) Western blotting experiment for MMP- 2, MMP- 3 and MMP- 9 levels in thoracic aortic tissues of TAD mice. (C) Western blotting 
experiment for TNF- α and IL- 6 levels in thoracic aortic tissues. Data are presented as Mean ± SD (n = 6). **P < .01 vs TAD group
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suppressed Ang II- induced SMC proliferation in vitro. Meanwhile, 
in line with the in vivo study, GDF11 inhibited Ang II- induced syn-
thetic transition and decreased MMP expression (Figure 6C). GDF11 
increased the expression of contractile proteins (ACTA2, SM22α and 
myosin heavy chain 11 (MYH11)) and decreased that of synthetic 
markers (osteopontin and fibronectin 1 (FN1)) in Ang II- treated 
SMCs (Figure 6B,D). Additionally, GDF11 knockdown decreased the 
expression of ACTA2 and SM22α, and increased that of Osteopontin 
and MMPs (Figure S2). We also found that GDF11 expressed in 
SMCs and ECs, and was released by these cells (Figure S3). These 
results implied that GDF11 may be involved in the formation of TAD 
through both autocrine and paracrine pathways.

4  | DISCUSSION

In this study, our data firstly revealed that GDF11 level was lower 
in the human thoracic aorta tissues with TAD than healthy aorta 
tissues. We noticed that GDF11 could also decline during aging.18 
The ages were different in our human groups, which may be a 
confounder in clinical analysis. Further studies are required to in-
crease the number of samples so as to provide more accurate data 
and convincing evidences regarding the expression of GDF11 in 

TAD. Here, we investigated the role of GDF11 in vivo and in vitro. 
Administration of GDF11 was found to inhibit inflammation, MMP 
production and ECM remodelling and prevent synthetic phenotype 
switching of SMCs, and thus alleviating BAPN/Ang II- induced TAD 
formation in mice.

ECM disorder in aortic media is considered as a dominating con-
tributor to the development of TAD. In the aortic wall, elastin and col-
lagen are the most abundant ECM components that regulate aortic 
mechanical function, and their abnormities can initiate dissection.19 
Increased collagen deposition and elastin degradation were shown 
in aortic tissues of patients with TAD and mouse model of TAD,20,21 
which were inhibited by administration of exogenous GDF11 in 
BAPN/Ang II- induced mice. SMCs are the main type of cells and also 
the main source of ECM proteins in aortic media. Vascular SMCs 
in healthy blood vessels normally exhibit slowly proliferation and 
mainly contractile phenotype with the expression of contractile pro-
teins. The contractile function of SMCs is vital for maintaining the 
tolerance of the ascending thoracic aorta to blood pressure and pre-
venting TAD formation.22 Loss of contractile- associated gene such 
as MYH11 and ACTA2 can result in TAD in human,22,23 and SMC 
dysfunction leading to vascular injury in mice.24,25 The aortic expres-
sion of the contractile marker ACTA2 was reduced accompanied with 
reduced elastin/collagen ratio in vivo, which is in coincidence with 

F I G U R E  5   AAV- 2 mediated 
overexpression of GDF11 in vascular 
SMCs prevented synthetic phenotype and 
proteolytic activity. Western blotting (A, 
B), RT- qPCR (C) were used to determine 
the expression of GDF11 in SMCs after 
AAV- 2 infection. Representative western 
blotting of p- Smad- 2/3 (D) and their 
quantification (E) in AAV- 2 infected SMCs. 
RT- qPCR was performed to examine the 
phenotypic markers (F) and MMPs (G) 
in GDF11 overexpressing SMCs with or 
without SB- 431542 treatment. Data are 
presented as mean ± SD (n = 3). **P < .01 
vs AAV2- EV group, ##P < .01 vs AAV2- 
GDF11 group
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F I G U R E  6   Exogenous GDF11 suppressed Ang II- induced synthetic switching of vascular SMCs. (A) MTT was used to detect the 
proliferation of SMCs. RT- qPCR was performed to examine the phenotypic markers (B) and MMPs (C) in Ang II- induced SMCs following 
GDF11 treatment. (D) Representative images of immunofluorescence staining for ACTA2 (Red) and DAPI (Blue) in the SMCs in different 
group. Scale bar = 33 μm. Data are presented as mean ± SD (n = 3). **P < .01 vs control group, ##P < .01 vs Ang II group, &P < .05 vs Ang 
II + GDF11 group, &&P < .01 vs Ang II + GDF11 group



     |  4633REN Et al.

previous studies. Interestingly, we found GDF11 was co- localized 
with ACTA2 and down- regulated in the similar pattern. Further 
GDF11 treatment mitigated TAD- induced vascular injury including 
ECM remodelling and inflammation, as well as improved the survival 
rate of mice. These findings suggest a potential therapeutic effect of 
GDF11 in TAD, which may link with SMC phenotypic switch.

In response to vascular injury or pathological stimulation, SMCs 
undergo a phenotypic switch and de- defferentiate into synthetic 
and proliferating cells, leading to alterations in their ability of gen-
eration of ECM components such as collagens and MMPs.26,27 This 
phenotypic transformation of aortic SMCs is known to be involved 
in the pathogenesis of TAD.28 The potential effect of GDF11 on 
phenotype transition of SMCs was further studied in vitro. Both 
exogenous GDF11- treated SMCs and SMCs expressing GDF11 fa-
vour a switch from the synthetic to the contractile phenotype, as 
evidenced by increased levels of ACTA2 and SM22α and decreased 
level of osteopontin.29,30 Moreover, GDF11 inhibited Ang II- induced 
SMC de- deferentiation by increasing the expression of contrac-
tile proteins and decreasing synthetic protein markers. Compared 
with contractile ones, synthetic SMCs exhibited enhanced abilities 
of proliferation and migration and expression of ECM components 
including MMPs.30 It is demonstrated that increased proliferation 
and migration and decreased apoptosis of vascular SMCs contrib-
ute to TAD development.31,32 The anti- proliferative role of GDF11 
has been demonstrated in tumour cells.33,34 A recent study showed 
that down- regulation of GDF11 increased the proliferation of vas-
cular SMCs.35 In line with previous reports, GDF11 suppressed Ang 
II- induced SMC synthetic and proliferation state, as well as the levels 
of MMP2, MMP3, and MMP9 in vitro. Together with previous stud-
ies and our findings, we demonstrate that GDF11 may promote SMC 
phenotypic switch from the synthetic to the contractile and thus at-
tenuate MMP production and ECM remodelling in TAD.

Imbalance between MMPs and tissue inhibitor of MMPs (TIMPs) 
is implicated in ECM degradation underlying aortic wall remoulding 
during TAD development. Increased expression of MMPs was found 
in TAD patients and BAPN/Ang II- induced TAD mice, which is in line 
with earlier studies.7,36 These findings suggest the importance of 
MMPs in TAD pathogenesis, and the potential benefits of inhibit-
ing MMPs in treating MMP- related aortic damage such as TAD.37 
GDF11 was reported to up- regulate MMP- 2 and MMP- 9 expres-
sion in metastatic oral cancer. Another study showed that GDF11 
inhibited the expression of MMP- 3 in the collagen- induced arthri-
tis.38 The effect of GDF11 on MMPs in TAD or in SMCs remains un-
clear. Each MMP expresses and functions differently in tissues and 
during inflammation.39 MMPs can be produced by several immune 
and matrix- resident cells such as SMCs in the vascular wall. In the 
present study, GDF11 inhibited TAD- induced MMPs (MMP- 2, MMP- 
3, and MMP- 9) in TAD mice and reduced the production of these 
proteins in aortic SMCs in vitro. Thus, administration of GDF11 may 
alleviate TAD- induced ECM remoulding and aortic dilatation possi-
bly via regulation of MMPs. Since the ECM degradation is mediated 
by both MMPs and TIMPs, measurement of their expression and ac-
tivity may better reflect the pathogeneses of TAD. Changes of these 

proteins in the presence of GDF11 and their interactions with SMC 
phenotype transition requires further investigation.

The activation of inflammatory and immune processes and infil-
tration of inflammatory cells are important drivers of aortic expan-
sion and rupture.40 Recent studies showed the anti- inflammatory 
properties of GDF11 in multiple human diseases.41,42 GDF11 was 
reported to antagonize TNF- α- induced inflammation,38 and inhibit 
IL- 1β secretion in macrophage.43 GDF11 protected against endo-
thelial injury by reducing inflammation in mice.14 Administration of 
GDF11 alleviated BAPN/Ang II- induced inflammation in mice, as 
evidenced by reduced IL- 6 and TNF- α levels. Lacking IL- 6 resulted 
in fewer incidences of aortic dissections in Ang II- infused mice.44 
Inflammation induced SMC proliferation and inhibited contractile 
phenotype resulting in thickened intestinal wall.45 The expression of 
pro- inflammatory factors has been demonstrated to be associated 
with phenotype transition of vascular SMCs.46- 48 Moreover, MMPs- 
mediated proteolysis can regulate inflammatory cell transmigration 
from vessels to the target tissue.49 Studies have shown the impor-
tance of MMPs by their own activity in tissues remodelling and in-
flammatory response.50 These findings suggest the involvement of 
inflammation and MMPs in SMC phenotype transition in TAD. The 
interaction and mechanism of SMC phenotypic transition in relation 
to inflammation and MMPs underlying the benefits of GDF11 in TAD 
would be investigated in the future.

TGF- β signalling pathways are categorized into two types: 
SMAD- dependent canonical signalling and SMAD- independent non- 
canonical signalling.51 Smad- 2 and Smad- 3 are transcription factors 
involved in the canonical signalling of TGF- β, which is of major im-
portance for homeostasis and tissue remodelling.52 TGF- β signalling 
activation is vital for maintaining the structure and function of the 
normal artery wall, and its inhibition posed deleterious effects on 
arteries.53,54 Abnormal TGF- β signalling has been demonstrated to 
induce SMC phenotype transition and contribute to TAD develop-
ment. SMCs lacking TGF- β signals resulted in a switching to a syn-
thetic phenotype with decreased expression of contractile proteins, 
and dysfunction of TGF- β signalling exacerbated TAD.55 In this study, 
both exogenous GDF11 treatment and overexpression of GDF11 
in SMCs were demonstrated to activate the canonical (Smad2/3) 
TGF- β signalling pathway in vitro, which is consistent with previous 
studies.56,57 Blocking TGF- β/Smad signals partially reverted GDF11- 
induced contractile proteins resulting in phenotypic transition to the 
synthetic state and increased MMP production in SMCs. These find-
ings indicate that activation of the canonical TGF- β signalling may be 
involved in the contribution of GDF11 to SMC phenotype transition, 
which helps understanding the molecular mechanism underlying the 
therapeutic function of GDF11 in TAD. However, Gallo et al58 re-
ported a opposite conclusion that increased TGF- β signalling wors-
ens aortic wall lesions in Loeys- Dietz syndrome. Compared with 
healthy aorta, Marfan vascular SMCs exhibited elevated expression 
of contractile proteins along with high TGF- β signals, while inhibition 
of TGF- β signalling reduced these alterations.59 It is suggested that 
increased contractile SMCs and elevated stiffness of aorta and ECM 
could be a result rather than a cause of aortic wall dilation, and these 
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could represent disease progression rather than initiation.60 Further 
study are required to unveil how aortic dilation and its relation with 
TGF- β signalling during TAD formation and development.

To analyse potential mutations in genes involved in the bio-
synthesis or processing of connective tissue proteins (eg PLOD1), 
genes encoding the ECM proteins (eg FBN1, FBN2 and COL3A1) or 
genes encoding cytoskeleton components (eg MYH11 and SM22α) 
is indeed import because the genetic state of these genes affects 
TAD progress.61- 63 It would be interesting to determine whether the 
down- regulation of GDF11 is correlated to genetic mutations of par-
ticular genes that participate in TAD progress in larger- sized clinical 
samples.

In conclusion, our data revealed that GDF11 alleviated BAPN/
Ang II- induced aortic injury by inhibiting MMP production and ECM 
remodelling and maintaining contractile phenotype of SMCs possi-
bly via TGF- β signalling pathway. These results suggest that GDF11 
may be a therapeutic target for TAD.
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