
sensors

Article

Railway Infrastructure Classification and Instability
Identification Using Sentinel-1 SAR and Laser
Scanning Data

Ling Chang 1,* , Nikhil P. Sakpal 1, Sander Oude Elberink 1 and Haoyu Wang 2

1 Department of Earth Observation Science, Faculty of Geo-Information Science and Earth Observation,
University of Twente, 7514 AE Enschede, The Netherlands; nikhil17.sakpal@gmail.com (N.P.S.);
s.j.oudeelberink@utwente.nl (S.O.E.)

2 Fugro B.V., 3515 ET Utrecht, The Netherlands; ha.wang@fugro.com
* Correspondence: ling.chang@utwente.nl

Received: 8 November 2020; Accepted: 8 December 2020; Published: 11 December 2020
����������
�������

Abstract: Satellite radar interferometry (InSAR) techniques have been successfully applied for
structural health monitoring of line-infrastructure such as railway. Limited by meter-level spatial
resolution of Sentinel-1 satellite radar (SAR) imagery and meter-level geolocation precision, it is
still challenging to (1) categorize radar scatterers (e.g., persistent scatterers (PS)) and associate
radar scatterers with actual objects along railways, and (2) identify unstable railway segments
using InSAR Line of Sight (LOS) deformation time series from a single viewing geometry.
In response to this, (1) we assess and improve the 3-D geolocation quality of Sentinel-1 derived
PS using a 2-step method for PS 3-D geolocation improvement aided by laser scanning data;
after geolocation improvement, we step-wisely classify railway infrastructure into rails, embankments
and surroundings; (2) we recognize unstable rail segments by utilizing the (localized) differential
settlement of rails in the normal direction (near vertical) which is yielded from the LOS deformation
decomposition. We tested and evaluated the methods using 170 Sentinel-1a/b ascending data
acquired between January 2017 and December 2019, over the Betuwe freight train track, in the
Netherlands. The results show that 98% PS were associated with real objects with a significance level
of 25%, the PS settlement measurements were generally in line with the in-situ track survey Rail
Infrastructure aLignment Acquisition (RILA) measurements, and the standard deviations of the PS
settlement measurements varied slightly with an average value of 6.16 mm.

Keywords: railway infrastructure; Sentinel-1; SAR; structural health; settlement

1. Introduction

Satellite radar interferometry (InSAR) is a precise and efficient technique to map surface dynamics
on Earth caused by natural process and anthropogenic activities [1–5]. Examples are using InSAR
for monitoring surface deformation due to e.g., volcano eruption, earthquake, landslide, mining,
and oil/gas extraction [6–14]. Thanks to the dramatic increase of high spatio-temporal resolution
satellite radar (SAR) data, a recent development in the InSAR application has shifted the focus to
monitoring individual civil infrastructure such as buildings, railways and bridges. References [15–19]
have demonstrated the applicability of using Time-Series InSAR (TS-InSAR) such as PSI (Persistent
Scatterer Interferometry) [20,21], for systematically monitoring line-infrastructure (which is expanded
in one direction but has a limited scale in the other direction)—railways, dams, tunnels, and highways.
These studies show that the detected coherent radar scatterers such as persistent scatterers (PS)
along such line infrastructure have a comparable spatial observation density w.r.t. ground-instrument
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observations, and the precision of the corresponding (relative) deformations in satellite Line of Sight
(LOS) direction can be up to millimeter levels. However, the geopositioning precision of coherent
radar scatterers is rather poor in the order of meters [22]. Therefore, directly and accurately associating
coherent radar scatterers with actual ground targets based on TS-InSAR derived geolocation estimates
is almost impossible, especially for line infrastructure, and using medium-resolution SAR data.

In [22], a novel method was developed to improve the PS geopositioning precision in three
dimensions by decoding the PS position in a 3-D voxel and associating the PS to a physical
object with known 3-D geolocation. The association of the PS interprets deformation behavior at
the sub-infrastructure level [22,23]. In recent years studies were conducted to determine the PS
geopositioning precision for high resolution SAR data [24–26]. For instance, the improvement for
PS geopositioning precision for X-band (TerraSAR-X) in [25] resulted in the order of centimeter for
2-D and in the order of decimeter for 3-D. Scaling down the geolocation uncertainty to subcentimeter
level is feasible with a known 3-D position ground object, i.e., a passive corner transponder (CR).
Reference [27] showed for medium resolution SAR data such as Sentinel-1 a/b, 2-D positioning could
be improved, ranging between decimeter and couple of meters, with CRs. In addition, [28] showed
that using laser scanning data (LiDAR, e.g., AHN3), the Radarsat-2 (Extra Fine mode) derived PS
geolocation along a railway line can be improved. This study will further test and evaluate the
Sentinel-1 derived PS geolocation improvement aided by laser scanning data.

As a promising medium-resolution SAR mission, Sentinel-1a/b [29] deliver radar imagery
routinely on a weekly basis, which have been employed for structural health monitoring of
line infrastructure [16,30–33]. Specifically for railway line infrastructure, it is composed of various
sub-structures, including rail track, sleeper, embankment, catenary, platform, surrounding buildings.
Every sub-structure depreciates once it was built [34] and may have some specific structural health
issue. To detect the structural health problem per sub-structure, it is relevant to categorize all
sub-structures and identify unstable and unhealthy sub-structure(s). However, the classification
in terms of structural health situation and instability identification, is not a standard TS-InSAR output,
thereby, a tailored post analysis is required.

The main goal of this work is to assess and improve the geolocation quality of Sentinel-1 derived
PS and classify sub-structures to identify deforming railway structures. This paper is structured as
follows: Section 1 presents the current status and challenges of using Sentinel-1 SAR data for railway
infrastructure monitoring. Section 2 briefly describes the method adopted to associate PS with LiDAR
point and approach to classifying PS along the track, and method to estimate and evaluate settlements
of PS. In Section 3 the test area and data are specified. Section 4 addresses the results and discussion,
followed by the conclusions in Section 5.

2. Method

This section first reviews the 2-step method for PS geolocation improvement aided by LiDAR data,
see Sections 2.1 and 2.2, and geo-located PS classification method in Section 2.3. The way to identify
unstable rail segments along with (deformation) measurement quality, is discussed in Section 2.4.

2.1. 2-D Geolocation Estimation Improvement

The 2-step method for PS geolocation improvement starts with the PS geolocation estimation
improvement in 2-D radar coordinates. The 2-D radar coordinates include the range and azimuth
direction, which separately indicates radar signal direction and satellite flying direction, see Figure 1.
Here, the PSI results, i.e., the PS along with deformation time series, are the input data for the PS
geolocation improvement. The absolute 2-D positioning precision is dependent on the quality of the
sub-pixel positioning, which is affected by systematic errors. Given a PS, denoted as P, its range and
azimuth position, (rP, aP), are measured as [22]



Sensors 2020, 20, 7108 3 of 16

rP =
v0

2
·
(

τ0 + µ
P
· ∆τ +

2 · rQ

v0
− τµQ

)
+ rpdP

+ rtectP
+ rsetP

, (1)

aP = vs/c ·
(

t0 + νP · ∆t +
aQ

νs/c
− tνQ

)
+ ashiftP

+ atectP
+ asetP

, (2)

where v0 is the velocity of radar signal in vacuum [m/s], τ0 is the time to the position of the first
pixel, range sampling interval is ∆τ, i.e., inverse of resampling frequency. The dimensionless pixel
position in range direction is µ

P
, rQ and aQ are empirically measured from the calibration target Q,

τµQ
and τνQ

are measured in the commissioning phase, and the impact of second-order errors rpdP
,

rtect P
, rsetP

are path delays, tectonic delay, and SET (Solid Earth Tides) respectively. vs/c denotes the
satellite platform velocity along the orbit [m/s]. The first emitted pulse time of the scene is denoted as
t0, the dimensionless pixel position in azimuth direction is νP, the inverse repetition frequency (PRF) is
∆t, the position shift of the pixel in the azimuth direction, ashiftP

, atectP
, asetP

, are caused by the azimuth
timing delay, tectonic, and SET respectively.

Figure 1. 3D radar (with range, azimuth and cross-range directions), terrestrial reference (with east,
north, and up directions), and local rail-track-fixed Cartesian coordinates (with transversal, longitudinal
and normal direction). θ, γs, γt, αh, and βa separately represent the satellite look angle, longitudinal
slope of track, cant of the track, satellite heading angle, and azimuth of the track w.r.t. the north.
Adapted from [35].

2.2. 3-D Geolocation Estimation Improvement

The second step of the 2-step PS geolocation improvement aims to improve the 3-D geolocation
estimation with the aid of LiDAR. The 3-D radar coordinates include range, azimuth, and cross-range
directions, in which the cross-range direction is orthogonal to the range-azimuth plane, see Figure 1.
The position of PS, P, in the cross-range direction can be computed by [22]

cP = rP · θPR, (3)

where θPR is the change in look angle θ. R indicates the reference (PS) point. Equation (3) implies that
on improving 2-D positioning (rP, aP), the estimate in the cross-range direction can be adjusted.
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2.2.1. 3-D Error Ellipsoid Generation

After the (rP, aP, cP,) estimation in range, azimuth and cross-range directions using
Equations (1)–(3), the improved 3-D PS geolocation estimation associated with its error ellipsoid
is used to perform the geometric match with real objects. The 3-D error ellipsoid is structured by the
(co)variance matrix in range, azimuth and cross-range directions, Qrac. Using a transformation matrix
R, Qrac can be projected to a terrestrial reference coordinates (with east, north, and up directions,
see Figure 1), denoted as QENU . QENU can be computed by [23,36],

QENU = RQracRT = R

σ2
rP

σ2
aP

σ2
cP

RT =

 σ2
e σ2

en σ2
eu

σ2
en σ2

n σ2
nu

σ2
eu σ2

nu σ2
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 , (4)

where the variance in range, azimuth, and cross-range directions are described as σ2
rP

, σ2
aP

and σ2
cP

.
(σ2

e , σ2
n , σ2

u), and (σ2
eu, σ2

en, σ2
nu), are the variances and covariances in east, north, and up directions.

An error ellipsoid example from Potree viewer is displayed in Figure 2a. The ellipsoid has the longest
semi-axis length in cross-range and up directions due to high uncertainty in the cross-range and up
directions [22].

2.2.2. Association with LiDAR Points

The accurate information (e.g., high-precision Digital Surface Model (DSM)) of the LiDAR point
cloud on geo-objects, is treated as a (reference) real-object datum, cf. [15,22,35,37]. To compute the offset
between PS geolocation with the error ellipsoids and LiDAR data, and geometrically associate PS to
their most likely points in the LiDAR point cloud, the Nearest Neighbor Linking (NNL) approach [23]
can be employed. The NNL approach is customized upon the K-Dimensional tree based Nearest
Neighbor searching method which is widely used in point cloud data, to find the point in a given
set that is closest in e.g., spatial distance to a point of interest [38–41]. Prior to conduct the Nearest
Neighbor searching, the NNL approach requires the Whitening transform W to project both PS and
LiDAR point cloud on the eignevectors of QENU ,

W = E−1D− 1
2 ET , (5)

where E and D indicate the eigenvalues and diagonal matrix of the eigenvectors of QENU , respectively.
In this regard, the Nearest Neighbors are the statistically nearest rather than the nearest in spatial
distance, i.e., Euclidean metric distance. Figure 2b illustrates the graphic result of the NNL. For instance,
for alleged 0.25σrac case, known that error ellipsoid (built based on σrac = diag(σr, σa, σc)) is centered
at PS (rP, cP) in range and cross-range plane, with the semi-major and minor length σcP and σrP ,
and allowing 25% significance level, the associated real object on surface for this PS is detected and
denoted as the black solid circle. The gray-colored and white-colored circles in the proximity located
within/beyond 50% significance level are discarded.

2.3. Geo-Located PS Classification

To differentiate railway sub-structures from each other, and interpret the rail sub-structure’s
deformation dynamics, the associated PS points are required to be classified spatially. With the
2-step method for PS geolocation improvement, all PS points are associated with the (LiDAR-built)
real-world objects, and inherit the geolocation and feature attributes (including e.g., ground, buildings,
water bodies, and vegetation labels) of the LiDAR point cloud. Such newly assigned attributes of PS
are used for the geo-located PS classification.

Two main steps are proposed for categorizing geo-located PS: (1) coarse classification, PS are
classified into ground, buildings, water bodies, and vegetation classes, using feature attributes; The PS
on (left and right) rails and embankment are sorted in ground class. The PS on station platforms,
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surrounding buildings are sorted in building class. As PS are point-wise coherent scatterers, and thereby
no PS is expected from vegetation areas if there is no artificial/natural ground object. We then label
PS in water bodies and vegetation classes as erroneous geo-located PS. (2) fine classification, PS on
rails are further differentiated from embankments using the mm-level-accuracy railway geometry
measurements obtained by the in-situ railway geometry data. Particularly for Sentinel-1 mission,
we have to define a spatial buffer such as 5 m, to fine-classify PS which originate from rails and
embankment areas, separately. Note that Potree can be used to verify the PS classification, and it is
useful for relatively small target recognition and validation, such as bridges.

(a) (b)

Figure 2. (a) Example of error ellipsoid from Potree viewer (center latitude and longitude is
51.840◦ N, 5.030◦ E). The ratio (azimuth: range: cross-range = 1:1.5:6) of semi-axis length is taken
for visualization purposes. (b) A cross-section of error ellipsoid in range and cross-range dimensions.
The error ellipsoid is centered at PS (rP, cP) in range and cross-range plane, with the semi-major and minor
length σcP and σrP . The associated real object on surface for this PS is denoted as the black solid circle given
25% significance level, when having the 3 × 3 error matrix σrac = diag(σr, σa, σc). Adapted from [23].

2.4. Differential Settlement Detection

The railway instability can manifest itself as localized differential settlement of railway segments.
The settlement is the deformation in the normal direction in rail-track-fixed Cartesian coordinates in
the transversal, longitudinal and the complementing normal direction, see Figure 1. The transversal
and longitudinal direction separately indicate cross-track and along-track direction of the rails, and the
normal direction is near-vertical, and orthogonal to the transversal-longitudinal plane.

To obtain settlement measurements from the line-of-sight (LOS) deformations, the LOS
deformation decomposition is applied, shown as [5],

dLOS = pTdgeo, (6)

where dLOS indicates the LOS deformation [mm], the projected 3-D deformation components in a
terrestrial reference coordinates, are denoted as dgeo = [de, dn, du]T , p is the projection matrix, shown as
p = [− sin θ cos αh, sin θ sin αh, cos θ]T . The satellite look angle and the heading are denoted as θ

and αh.
Converting the east-north-up measurements dgeo into a local, track-fixed, Cartesian reference

system is implemented by dgeo = R1 R2 R3 dtrack, in which dtrack = [dT, dL, dN]
T (with the components

in the transversal, longitudinal and normal direction), and the three rotation matrices are [35]

R1 =

 cos βa sin βa 0
− sin βa cos βa 0

0 0 1

 , R2 =

1 0 0
0 cos γs − sin γs

0 sin γs cos γs

 , (7)
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R3 =

 cos γt 0 sin γt

0 1 0
− sin γt 0 cos γt

 ,

where βa, [−90◦,+90◦) is the azimuth of the track relative to the north, γs and γt represent the
longitudinal slope of the track and the cant of the track respectively. To obtain a unique solution of
the 3-D deformation components, LOS deformations from at least three different viewing geometry
satellites are recommended. Otherwise, additional constraints should be introduced.

Assuming deformation is subtle in the transversal and longitudinal directions i.e., dT and dL are
close to zero, dLOS can be directly projected onto the normal direction, using

dLOS = [sin θ cos αh sin βa sin γs − sin θ sin αh cos βa sin γs + cos θ cos γs]dN . (8)

According to the error propagation law, given the measurement uncertainty (i.e., variance) σ2
LOS

of dLOS, the measurement uncertainty σ2
N in the normal direction can be computed by

σ2
N = (AT(σ2

LOS)
−1 A)−1, (9)

where A = [sin θ cos αh sin βa sin γs − sin θ sin αh cos βa sin γs + cos θ cos γs]. Assuming σ2
LOS equals to

1 mm2, with the variation of βa between [−90◦, 90◦] and γr between [−4◦, 4◦], the resultant σ2
N is

illustrated in Figure 3 using Equation (9). When βa approaches to zero, implying the railway runs
northwards, σ2

N is rather invariant with the variation of γs. Having larger values of both γs and βa,
σ2

N is rather poorer. σ2
N goes better when having smaller values of both γs and βa.

-90° -60° -30° 0° 30° 60° 90°
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1.4
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2
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Figure 3. σ2
N values in response to the variation of βa [−90◦, 90◦] and γs [−4◦, 4◦]. The Sentinel-1

satellite look angle θ = 35.7◦ and heading αh = 349.8◦ are used.

The localized differential settlement can be computed by

dN,(P,Q) = dN,(P) − dN,(Q), (10)

where dN,(P), dN,(Q), dN,(P,Q) represent the settlement of two (PS) adjacent point P and Q and the
differential settlement between P and Q. The standard deviation of dN,(P,Q) is formulated as
σN,(P,Q) = (σN,(P) + σN,(Q)), (σN,(P), σN,(Q) are the standard deviation of the settlement estimates of point
P and Q respectively, cf. Equation (9)). For instance, having σN,(P) = 1.22 [mm] and σN,(Q) = 1.25 [mm],
σN,(P,Q) ≈ 2.47 [mm]. It implies that 1 mm LOS deformation error of point P and Q propagates itself
to the localized differential settlement estimation of P and Q with 1.47 times larger. The unstable
rail segments can be identified when the associated localized differential settlements exceed the
predefined threshold.
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3. Test Site and Data Description

The test area selected for this study is a railway segment of Betuwe Freight Corridor. The dual-track
rail corridor (153 km within the Netherlands, 172 km in total) was built to operate transport
goods connecting Rotterdam port to central Europe and is important for the regional economy
(see Figure 4b,c). A stretch of approx. 13 km long and a buffer area of 100 m of the corridor is
monitored in this study (indicated by the magenta square in Figure 4a,b).

Figure 4. (a) Sentinel-1 satellite radar (SAR) data coverage (in black) over the Netherlands
superimposed on an AHN3-derived Digital Surface Model (DSM) map. The extent of the test area
is shown in purple. A GNSS station, as a reference point, is indicated in the red circle. (b) Dutch
main railway network with the Betuwe route in red. (c) Train carrying heavy freight on the Betuwe
dual track.

In this study, 170 Sentinel-1a/b (S-1a/b), SAR data in ascending orbit, in VV polarimetric channel,
acquired between 4 January 2017 and 8 December 2019, were used. The S-1a/b spatial coverage is
indicated in black in Figure 4a and the used SAR data details are specified in Table 1.

The coverage of AHN3 LiDAR is illustrated in Figure 4a and details are specified in Table 2.
In comparison, three AHN3 point cloud tiles were processed to generate high-precision Digital Terrain
Model (DTM) and Digital Surface Model (DSM) models for the test area shown in magenta, which was
∼96 km2.
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Table 1. Sentinel-1a/b data specification. az, rg are short for azimuth and range direction, respectively.

Sentinel-1 a/b Specification

Pass Ascending
Track number 88

Acquisition mode Interferometric Wide swath (IW)
Polarization mode VV

Swath width 250 km
Imaging frequency 5.405 GHz
Nr. of SAR images 170
Spatial resolution 20 m × 5 m (az × rg)

Temporal resolution 6 days
Pixel spacing 13.94 × 2.32 (az × rg)

Table 2. AHN3 LiDAR data specification.

AHN3 LiDAR Specification

Aqusition type Airborne
Imaging Frequency 800 nm and 1550 nm

Height accuracy 5 cm × 5 cm
(Systematic and Stochastic error)

Planimetric accuracy 8 cm × 5 cm
(Systematic and Stochastic error)

Acquisition Mode Laser scanned
Point density 18 points per m2

Pixel/Grid size 0.5 m × 0.5 m
Total Nr. of tiles 3

Temporal resolution 6 years

4. Results and Discussion

By applying a standard PSI approach, 170 S-1a/b SAR images were processed and the PSI results
over the test area were generated. 3328 PS points were identified and unevenly distributed along the
railway track, with a 100 m buffer zone at the both side of rails. The LOS deformation map prior to 3-D
PS geolocation improvement is displayed in Figure 5a. The deformations of all PS were with respect
to a common reference point which was a GNSS station located at 51.9667◦ N, 4.10◦ E, indicated in
the red circle in Figure 4a. The LOS deformation velocity estimates mainly ranged between −10 and
5 mm/yr with an average deformation rate of −3 mm/yr. The average deformation velocity in the test
area was −3.5 mm/yr, and 64% PS had a deformation velocity between [−5, +5] mm/yr.

4.1. PS Geo-Location Improvement and Association with Real Objects

To adjust the PS geolocation and improve positioning accuracy, we applied the 2-step method
for geo-location improvement of those 3328 PS points, as mentioned in Sections 2.1 and 2.2.
First, we corrected the offset by removing systematic and second-order positioning errors to improve
sub-pixel positioning, then further improved the cross-range estimation by employing the histogram
match technique. The corrected position (r, a, c) per PS along with its 3-D positioning uncertainty
(σ2

r , σ2
a , σ2

c ) (e.g., with an averaged ellipsoid-axis-length ratio of 1:5:43) were used to construct an error
ellipsoid, as explained in Section 2.2.1. To align PS and AHN3 LiDAR data in a common coordinate
system, the 3-D PS geolocation estimates were transformed to the Dutch National Triangulation system
(RD—‘Rijksdriehoeksstelsel’ in Dutch) and vertical (NAP—‘Normaal Amsterdams Peil’) reference
system, denoted as RDNAP using an S-transformation [42], and then to WGS84. The estimated
3-D geolocation uncertainty in RDNAP was decorrelated using the whitening transform and then
included to associate every PS point to the LiDAR point. The search for the nearest possible point
with a successful association of 98% PS was achieved with a significance level of 25% (i.e., 0.25σrac

in Figure 2b). Note that lowering the significance level value led to the reduction of the association
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percentage. For instance, Ref. [28] obtained an association of 94% PS by customizing the significance
level to 5%, for the high-resolution Radarsat-2 (Extra Fine mode) SAR data. At the end, 3259 PS out
of 3328 were geometrically associated with the real objects. The correction in offset, of 3259 PS in
radar and terrestrial reference coordinates, with the most likely points in LiDAR was completed by
inheriting the positional attributes of LiDAR with PS, and introducing the geolocation uncertainty
in each dimension, see Figure 6. The major offset correction was encountered in the azimuth and
cross-range directions, whereas the offset correction in the range direction was relatively small. The PS
geolocation estimates in the azimuth and cross-range directions were corrected in the order of several
meters. The mean (absolute) height of 3259 PS was 0.5 m. The PS geolocation estimates in range were
corrected from the order of decimeters to several meters. The LOS deformation velocity map after
3-D geolocation improvement is shown in Figure 5b. As an illustration, the zoomed-in map before
and after 3-D geolocation improvement, over an example area, is shown in Figure 5d,e, respectively.
For instance, the PS point PS1 which was originally and wrongly geolocated on a canal in Figure 5d,
was re-geolocated at a trail area in Figure 5e. The PS point PS2 which was geolocated on a tree in
Figure 5d, was re-geolocated and associated to the foot of a power pole in Figure 5e.

[mm/yr]
-20–-15
-15–-10
-10–-5
-5–0
0–5	

(a)

(b)

(c)

(d) (e) (f)

PS1 PS1
PS2

PS2

Figure 5. Line of Sight (LOS) deformation velocity map (a) before and (b) after 3-D geolocation
improvement, and (c) of persistent scatterers (PS) on rails. Subfigures (d–f) separately illustrate the
zoomed-in map before and after 3-D geolocation improvement, and of PS on rails, over an example area.
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Figure 6. 3-D geolocation offset estimates [m] in radar coordinates with range, azimuth and cross-range
directions (top row), and in terrestrial reference coordinates with latitude, longitude and height
(bottom row). The ’mean’ is the mean of the offset values.

4.2. PS Classification Map

After the association of each PS point to the physical object, the PS points were classified
into three classes in terms of their association within the proximity of railway track, based on the
LiDAR-assigned feature attributes, railway geometry data, and PS height estimates (Section 2.3).
For instance, ground-level PS points were categorized in terms of the feature attributes. Then we
differentiated the PS associated to rails and embankments using railway geometry measurement
(provided by Fugro) and PS height information. Considering the S-1a/b medium spatial resolution,
we had to define the threshold of 10 m for rail track, between 10 m and 15 m for embankment area and
above 15 m as surrounding area. 94% of the 3259 PS points were associated to the terrain, among which
1552 PS points were associated to rail track. Figure 5c shows the LOS deformation velocity map
of PS on rails and Figure 5f depicts the zoomed-in map over an example area. Almost all of them
had a [−5, 5] mm/yr deformation rate and the average deformation rate was −4 mm/yr. Figure 7a
displays the PS classification map, with three classes: PS on rail track in green, PS in embankment
in yellow, and PS in surrounding in red. Apart from 1552 PS on rail, 1030 PS points were associated
within embankment zone and the remaining 677 PS points were associated with surrounding areas.
The corrected PS height histogram is shown in Figure 7b. The mean height of PS associated with the
rail track, within embankment, and in surroundings was 1.6 m, 1.2 m, and 1.2 m respectively.

PS	on	track

PS	in	embankment

PS	in	surrounding

(a)

Figure 7. (a) Classification of PS associated to railway infrastructure. Height histogram of PS on track
in green (b), PS in embankment in yellow (c), and PS in surrounding in red (d).
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4.3. Settlement Detection and Quality Description

Using Equation (8), we projected the LOS deformation onto the normal direction, namely settlement.
The deformation components in the longitudinal and transversal directions were assumed to be marginal
(which was agreed and confirmed by the local rail asset manager). We computed the azimuth of track βa

and longitudinal slope γs of all 1552 PS, separately, see Figure 8a,b. As this rail mainly ran eastwards,
the βa values of most of PS were close to either −90◦ or 90◦. The γs values ranged between −0.83◦ and
0.80◦, and 98% PS points possessed the γs values within [−0.2◦, 0.2◦] which implies the rail tracks
were laid on rather flat terrain. The corresponding settlement rate and associated standard deviation
σN (using Equation (9)), per PS, is presented in Figure 8c,d. Here we defined the standard deviation
of LOS deformation measurements as 5 mm. The average value of σN was 6.16 mm. The settlement
measurement at a rail segment with a larger negative γs value showed a bigger σN . For instance, the PS
at 51.8483◦ N, 4.9518◦ E, having βa = 75◦ and γa = 0.83◦, had a −2 mm/yr settlement rate associated
with σN = 6.22 mm.
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Figure 8. (a) The azimuth of track βa, (b) longitudinal slope γs, (c) settlement rate in Normal direction,
and (d) the standard deviation σN in Normal when assuming σLOS = 5 mm, along the rails.

4.4. Settlement Measurement Validation

In order to compare and validate the S-1a/b derived settlement with in-situ reference
measurements, the measurements obtained by the train-borne measurement system Rail Infrastructure
Alignment Acquisition (RILA) are referred to, cf. [43]. The RILA system integrates Global Navigation
Satellite System (GNSS), Inertial Measurement Unit (IMU), LiDAR scanner, video cameras, and laser
vision technologies to measure the absolute track geometry at line speed. The RILA survey campaign
was conducted in January 2013 and February 2015 by Fugro, separately, with the measurement accuracy
of 8 mm in the transversal and longitudinal, and 12 mm in the normal direction [44]. The absolute
track geometry of an A-B segment with ∼1.4 km route length shown in Figure 9a was collected
by the RILA system and used to compare and evaluate S-1a/b derived settlement. Per hectometer
(100 m) there was a RILA measurement, in total there were 1410 RILA measurements over this
segment. Considering the difference in data collection period of the RILA and S-1a/b measurements,
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we assumed that the settlement in this segment kept coherent since 2013, and no drastic change in
settlement pattern occurred.

According to the criteria which are used to determine the stability of the track for trains with speed
70–100 km/h [45], a rail segment is labelled as stable when it retains structurally healthy condition
with less than 27 mm settlement, while a rail segment is labelled as potentially unstable when it
has larger-than-27 mm settlement. Therefore, using the settlement measurements per hectometer,
between 2013 and 2015, shown in Figure 9c in blue, a binary riskmap was generated based on the
criteria. Figure 9a shows the stable segments in green and unstable segments in red. Specifically, the rail
segments on the fixed structure, i.e., bridges, ∼435 m route length, in green, behaved stably over time,
thanks to the solid rail foundation. The rail segments on the soft soil, ∼975 m route length, in red,
were subsiding, possibly due to soil compaction in response to e.g., heavy axle loads. The average
settlement along the A-B segment is 30 mm, cf. [44].

There were 196 PS points over this A-B rail segment. We selected a local reference PS point
with the coordinates 51.8467◦ N, 4.9878◦ E, −0.28 mm/yr in LOS. Using Equations (8) and (10),
we generated the cumulative settlement w.r.t. the local reference PS point in the cross, see Figure 9b.
The average standard deviation of the localized differential settlements, cf. σN, (P,Q), was 12.3 mm,
assuming σLOS = 5 mm. The cumulative settlement map shows the PS points on the fixed structure
had marginal settlement, while PS points on the soft soil were moving downward, between 2017 and
2019. The settlement measurements derived by the RILA (in blue) and S-1a/b (in red), see Figure 9c,
were matched in general. The measurement mismatching between RILA and S-1a/b could be caused by
unexpected settlement pattern change between 2013–2015 and 2017–2019, and/or the rail maintenance.
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Figure 9. (a) Risk map over the segment A-B using the Rail Infrastructure aLignment Acquisition
(RILA) data. The local reference PS point is indicated in the cross. (b) Cumulative settlement map for
196 PS points. (c) Settlement difference between January 2013 and February 2015 in blue and settlement
difference between 4 January 2017 and 8 December 2019. The blue dashed line indicates the settlement
threshold with the value of 27 mm. The location of the A-B segment is also indicated in Figure 8c.
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4.5. Discussion

The approach to PS geolocation estimation improvement, as presented in Sections 2.1 and 2.2,
and demonstrated in Section 4.1 over the Betuwe freight train track, can facilitate the geometrical
association of radar scatterers to real objects. As a generic approach, it can be employed over any
area, and not limited to line-infrastructure, when satellite SAR and laser scanning data are both
available. Yet, this approach does not take into account scattering mechanisms (mainly including
surface, volume and dihedral scatterings). Hence, it does not guarantee the physical matching
and association of radar scatterers and real objects. To realize physical matching and association,
satellite SAR data in dual or quad polarization channels are recommended to be included, with which
we can recognize scatterering mechanisms [46].

Regarding the geo-located PS classification method, addressed in Section 2.3 and demonstrated in
Section 4.2, it allows us to differentiate PS on track from embankment and surrounding, by aggregating
the feature attributes of PS, lidar and railway geometry data. Considering the medium spatial
resolution of S-1a/b, a handful of PS could be possibly misclassified. To investigate the occurrence of
the misclassified PS, classification after physical matching, as the follow-up research, could be of help.

Settlement detection method, as shown in Section 2.4 and tested in Section 4.3, enables us to reveal
unstable railway segments with relatively large localized differential settlements, from satellite LOS
deformation measurements. It is worth to note that when having satellite SAR data from more than two
different viewing geometries, the deformation components in the longitudinal and transversal direction
can be estimated in a better way, cf. [16]. Particularly for line-infrastructure, as it is unlikely having
considerable non-elastic deformation in the longitudinal direction [47], the deformation component in
the longitudinal direction can be considered as zero, and then we may use SAR data from merely two
different viewing geometries to obtain the settlement and deformation component in the transversal
direction. Besides, as we mentioned in Section 4.4, we compared and validated the detected settlement
with RILA data. The S-1a/b measurements did coincide with RILA in general. However, we did
also identify the measurement mismatching and hypothesize the cause. To further verify the cause,
additional information on RILA and rail maintenance measurements acquired between 2017 and 2019
is needed, however, it is unavailable for our study.

5. Conclusions

This study demonstrated that InSAR is an unarguably powerful and promising technique to
systematically monitor the structural health of line-infrastructure, railway infrastructure for our study,
over large spatial- and temporal- scale, using medium-resolution Sentinel-1 SAR data. The laser
scanning data, e.g., AHN3, can serve for the 3-D geolocation improvement and classification of all
coherent radar scatterers, i.e., PS. Our results of the Betuwe case show that the estimates in east,
north and up directions of all PS points were a couple of meters improved, using AHN3 data. With the
improved geolocated PS population, the classification of PS was straight forward based on the position
and features of the PS within rail structure premises, the number of PS points associated to the railways
was increased by 14%, and the PS point density on rail was ∼2 PS points every 10 m2. With the help of
the classification, the unstable rail segments which did experience considerably differential settlement
could be easily and accurately identified and well interpreted. We expect that our proposed methods
of classification and instability detection of railway infrastructure will add value to the early detection
of rail fatigue for the rail asset managers, thereby improving the sustainable safety of rail transport.
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