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Aquatic environments, under frequent anthropogenic pressure, could serve as reservoirs

that provide an ideal condition for the acquisition and dissemination of antibiotic

resistance genetic determinants. We investigated the prevalence and diversity of

antibiotic-resistant Escherichia coli by focusing on their genetic diversity, virulence, and

resistance genes in anthropogenic-impacted Larut River. The abundance of E. coli

ranged from (estimated count) Est 1 to 4.7 × 105 (colony-forming units per 100 ml)

CFU 100 ml−1 to Est 1 to 4.1 × 105 CFU 100 ml−1 with phylogenetic group B1

(46.72%), and A (34.39%) being the most predominant. The prevalence of multiple

antibiotic resistance phenotypes of E. coli, with the presence of tet and sul resistance

genes, was higher in wastewater effluents than in the river waters. These findings

suggested that E. coli could be an important carrier of the resistance genes in

freshwater river environments. The phylogenetic composition of E. coli and resistance

genes was associated with physicochemical properties and antibiotic residues. These

findings indicated that the anthropogenic inputs exerted an effect on the E. coli

phylogroup composition, diversification of multiple antibiotic resistance phenotypes, and

the distribution of resistance genes in the Larut River.
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INTRODUCTION

Escherichia coli (E. coli) of the family Enterobacteriaceae, is a Gram-negative, facultative anaerobe,
non-spore-forming, rod-shaped, commensal, and potentially pathogenic bacterium that resides
largely in the gastrointestinal tracts of warm-blooded vertebrate animals (1–3). Most E. coli strains
are harmless, and only some are pathogenic. The pathogenic E. coli can be classified as either
intestinal pathogenic E. coli (IPEC) or extraintestinal pathogenic E. coli (ExPEC). The IPECs are
major diarrhoeagenic pathogens that cause gastroenteritis with six intestinal pathotype subgroups:
enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), enteroaggregative E. coli
(EAEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), and diffusely adherent E. coli
(DAEC). Meanwhile, ExPEC consists of three human pathotype subgroups: neonatal-meningitis E.
coli (NMEC), uropathogenic E. coli (UPEC), sepsis-associated pathogenic E. coli (SePEC), and the
avian pathogenic E. coli (APEC) (4).
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Studies have shown that E. coli is a highly adaptable
bacterium that can survive and grow in hostile external
environments-niches (5, 6). Environmental E. coli, from aquatic
riverine environments, are genetically diverse (7) and with
the current application of a PCR-based diagnostic method,
seven major phylogenetic groups (A, B1, B2, C, D, E, and F)
and five cryptic clades are categorized (8, 9). These different
phylogroups have different associations with phenotypic and
genotypic traits, metabolic properties, ecotype, lifestyle, and
pathogenicity (10–13).

Studies have found that antibiotic-resistant (AR) E. coli are
ubiquitous in the aquatic environment and the rising emergence
of multiple AR (MAR) E. coli (14, 15), coupled with the potential
presence of virulent strains, is a great concern for public health
(16). The antibiotic residues, AR E. coli, and their resistome
concomitantly enter into the aquatic environment through
wastewater discharge from anthropogenic activities (17, 18).
Thus, aquatic ecosystems may serve as reservoirs that provide
an ideal setting for the acquisition and dissemination of AR
resistome between the environmental bacterial communities and
non-pathogenic and pathogenic bacteria via horizontal gene
transfer (19–21), which is also known as a lateral gene transfer
(22).

Despite the different studies on E. coli from different aquatic
ecosystems, phenotypic and genotypic studies of antibiotic
resistance of these bacteria, and their distribution remain scarce,
particularly in tropical aquatic ecosystems. The rivers of Asia
are amongst the most polluted in the world and contain up
to three times as much bacteria from human waste, where the
reported fecal count is 50 times that of the WHO guidelines (23).
In Malaysia, the major causes of pollution in rivers are related
to anthropogenic activities and the sources of contamination
are mainly attributed to industrial areas, sewages, workshops,
residential areas, animal, and agricultural farming activities
according to the Department of Environment (DOE), Malaysia
(24, 25). These anthropogenic influences subsequently lead to
the deterioration of water quality with elevated concentrations of
heavy metals, mercury, coliforms, and nutrient loads (26).

Ghaderpour et al. (27) reported the prevalence of diverse AR
E. coli in the Larut River estuarine waters, with one of the largest
mangrove forests in Malaysia, and suggested anthropogenic
sources as the major contributor of antibiotic resistance. Larut
River is the only river flowing through the town of Taiping, Perak.
This study aimed to determine the impact of anthropogenic
wastewaters from a hospital, a zoo, and a poultry slaughterhouse
in the town of Taiping to the occurrence, genetic diversity, and
virulence of AR E. coli, as well as their resistance genes in the
riverine estuarine waters of Larut River.

MATERIALS AND METHODS

Sampling Sites
Sampling was conducted at six sampling sites located in the
upstream, middle, and downstream of the Larut River. Larut
River is 20.9 km long, serving a population of approximately
217,647 (28). Water samples were collected from upstream (S1a,
04◦51.158’N, 100◦45.737’E), at the reserve forest Larut Hill

(elevation: 1,250m) followed by the middle downstream
where the river water received wastewater discharges
from a zoo (04◦51.101’N, 100◦45.045’E), a public hospital
(04◦51.149’N, 100◦44.018’E), and a slaughterhouse (04◦50.238’N,
100◦44.709’E) before passing through downstream Larut (S1b,
04◦50.535’N, 100◦43.925’E) and finally reaching the Larut
Estuary (S1c, 04◦50.140’N, 100◦37.583’E) (Figure 1).

Sample Collection and Physicochemical
Analysis
The greywater effluents, with possible fecal contamination, were
collected at the main outlet of a hospital, a slaughterhouse, and a
zoo while the river surface waters were collected from S1a, S1b,
and S1c of the Larut River. The water samples were collected
in triplicates from each sampling site using sterilized 2 L amber
glass bottles and were kept on ice until further analysis in the
laboratory. A simultaneous study was conducted to measure
the in situ physicochemical parameters [temperature, salinity,
pH, and dissolved oxygen (DO)] and the dissolved inorganic
nutrients [nitrate (NO3), nitrite (NO2), ammonium (NH4),
phosphate (PO4), and silicate (SiO4)]. The physicochemical
results were published earlier in Lye et al. (29).

Isolation and Enumeration of Coliform and
E. coli
For the isolation and enumeration of coliform and E. coli,
the membrane filtration technique with the CHROMagarTM

ECC media (CHROMagar Inc., Paris, France) was used. After
filtering a suitable volume of sample onto a pre-sterilized 0.45µm
nitrocellulose membrane, the membrane filter was transferred
onto the CHROMagarTM ECC media and incubated at 37 ±

0.5◦C overnight. Blue colonies were enumerated as E. coli,
whereas mauve colonies were enumerated as total coliform.
Presumptive E. coli isolates were further purified with Luria
Bertani medium and were preserved in stab and glycerol solution
before further tests. The abundance of total coliform and E.
coli were reported as colony-forming units per 100ml (CFU
100 ml−1).

E. coli Identification and Detection of
Virulence Genes
The identity of presumptive E. coli isolates was confirmed by a
monoplex PCR targeting the E. coli housekeeping gene [alkaline
phosphatase (phoA) gene] using primers and amplification
conditions as described by Kong et al. (30). Detection of virulence
genes was performed by two multiplex PCR assays, in which
nine virulent genes were for the differentiation of six E. coli
pathotypes. The two multiplex PCR was conducted in a 25 µl
of reaction mixture consisting of 5 µl DNA, 1× Green GoTaq
buffer (pH 8.5), 0.5U of Taq DNA polymerase (Promega, USA),
1.65mM of MgCl2, 220µM dNTP, and 0.24µM of each primer.
The primers used and the amplification conditions were adopted
from Nguyen et al. (31), Vidal et al. (32), and Aranda et al.
(33) (Supplementary Table 1). The E. coli 2060-004, E2348/69,
JM221, E9034A, C1845, and EC-12 were used as positive controls
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FIGURE 1 | Map of sampling sites along Larut River. Geolocation: S1a (4◦51.158’N, 100◦45.737’E), Zoo (4◦51.101’N, 100◦45.045’E), Hospital (4◦51.149’N,

100◦44.018’E), Slaughterhouse (4◦50.238’N, 100◦44.709’E), S1b (4◦50.535’N, 100◦43.925’E), and S1c (4◦50.140’N, 100◦37.583’E).

for EHEC, EPEC, EAEC, ETEC, DAEC, and EIEC, respectively,
whereas sterile water was used as the negative control.

Phylogenetic Grouping of E. coli
A quadruplex PCR assay was performed to determine the
phylogroups (A, B1, B2, C, D, E, and F) that belong to E. coli
sensu stricto, or one of the five cryptic clades (I-V) using primer
concentrations and PCR conditions according to Clermont et al.
(9) (Supplementary Table 1). For each quadruplex reaction,
20 µl reaction volume was carried out containing 3 µl DNA
template, 2µM each dNTP, 1X PCR buffer, 2U Taq polymerase,
1mM MgCl2, 1µM for primers except for Acek-F (2µM),
ArpA1-R (2µM), trpBA-F (0.6µM), and trpBA-R (0.6µM). The
combination of presence or absence of the genes arpA, chuA,
yjaA, and TspE4.C2 was used to determine the phylogenetic
groups according to Clermont et al. (9).

Antimicrobial Susceptibility Tests
The disc diffusion method onMueller-Hinton agar (Difco, USA),
as described by the Clinical Laboratory Standards Institute (34),
was used to determine the antibiotic resistance profiles of the
E. coli isolates. A total of 20 commonly used antibiotics from
11 classes were tested: tetracyclines [tetracycline (TE) 30 µg],
quinolones [nalidixic acid (NA) 30 µg, oxolinic acid (OA) 2 µg,
and ofloxacin (OFX) 5 µg], penicillins [ampicillin (AMP) 10
µg, amoxicillin/clavulanic acid (AMC) 30 µg], sulfonamides
[sulfafurazole (SF) 300 µg and sulfamethoxazole/trimethoprim
(SXT) 25 µg], fluoroquinolones [ciprofloxacin (CIP) 5 µg,
ofloxacin 5 µg, and enrofloxacin (ENR) 5 µg], phenicols
[chloramphenicol (C) 30 µg and florfenicol (FFC) 30 µg],
aminoglycoside [streptomycin (S) 10µg, gentamicin (CN) 10µg,
and neomycin (N) 30 µg], macrolide [azithromycin (AZM)
15 µg], cephalosporins [cephazolin (KZ) 30 µg and ceftriaxone
(CRO) 30 µg], carbapenems [imipenem (IPM) 10 µg], and

nitrofurans [nitrofurantoin (F) 100µg]. The antibiotic discs were
applied to the inoculated plates and were incubated at 37± 0.5◦C
overnight. The zone of inhibition for each E. coli isolate was
analyzed according to the standards and the interpretive criteria
of CLSI (34). The E. coli ATCC 25922, which is a recommended
reference strain for antimicrobial susceptibility testing, was used
as a control.

Multiple Antibiotic Resistance Index
The average MAR index of all E. coli isolates was calculated using
the following formula:

MARindex = a/bc (1)

where “a” is the aggregate antimicrobial resistance score of all the
E. coli isolates from one site, “b” is the number of E. coli isolates
tested, and “c” is the number of antibiotics used in the study. A
MAR index value of ≥0.2 indicates that the antibiotic resistance
at the study area is rendered from contamination by antibiotics,
whereas the value of <0.2 indicates that the antibiotic resistance
at the study area is indigenous (35).

Antibiotic Resistance Gene Detection
In this study, we assessed tetracycline and sulfonamide resistance
genes as both tetracycline and sulfonamide are old antibiotics
that were among the most widely used antibiotics in humans
and animals particularly in Southeast Asia, either as therapeutic
and/or prophylactic agents (36). For tet gene detection, multiplex
PCR was used to screen 14 tet genes (37). All reaction mixtures
were performed in 50 µl volume consisting of 2 µl DNA
template, 1× PCR buffer, 2.5U Taq polymerase, 300µM of each
dNTPs, 3mM MgCl2, and selected primers with 0.2µM for
tet(D), 0.4µM for tet(M) and tet(S), 0.6µM for tet(A), tet(B),
tet(E), tet(G), tet(K), tet(O), 0.8µM for tet(C), tet(L), tet(Q),
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tet(X), and 1.6µM for tetA(P). While for sul genes, duplex and
monoplex PCR were performed according to Kozak et al. (38)
and Pei et al. (39) by using gene-specific primers of sul1, sul2,
and sul3, respectively. The PCR amplifications were carried out
in 25µl volume containing 1× PCR buffer, 1mMMgCl2, 0.2µM
each primer, 2 µl DNA template, 1.5µM of each dNTPs, and
2U Taq polymerase for sul1 and sul2; while the reaction mixture
for sul3 contained 1× PCR buffer, 1mM MgCl2, 0.2µM each
primer, 1 µL DNA template, 0.2µM of each dNTPs, and 1.75U
Taq polymerase.

Genetic Diversity Determination via

REP-PCR
The genetic diversity of the E. coli isolates was analyzed by a
Repetitive Extragenic Palindromic-PCR (REP-PCR) using REP
oligonucleotides as previously reported by Lim et al. (40). The
E. coli isolates were prepared, and the PCR amplification was
essentially conducted as described by Ghaderpour et al. (27).
Amplifications were carried out in 25 µl volume including
4 µL DNA template, 200µM of each dNTPs, 1× PCR buffer,
1U Taq polymerase 2.5mM MgCl2, and 0.5µM primer. The
fingerprint patterns were analyzed by BioNumerics, version
7.6.3 (Applied Maths, Kortrijk, Belgium). The similarity between
profiles was calculated with the dice coefficient, while cluster
analysis was performed using the unweighted pair group method
using arithmetic averages (UPGMA) with Shannon diversity
index (H’). Shannon diversity index (H’) was calculated using the
following equation:

H′
= −Σ Pi log Pi (2)

Pi = ni/N (3)

where ni is the number of strains having each band pattern, N is
the total number of isolates applied for rep-PCR.

Statistical Analysis
Statistical analysis was performed with the SPSS version 21.0
(IBM, Chicago, USA). The criterion for statistical significance
for all the following analyses was at p ≤ 0.05. Pearson’s chi-
square (goodness of fit) test was performed to determine the
significant difference among phylogenetic groups, sul resistance
genes, and tet resistancemechanism types according to frequency
data, whereas the chi-square test for independence was applied
to determine any association between phylogroups and antibiotic
resistance. Prevalence of antibiotic resistance was defined as the
proportion of resistant E. coli isolates over the total tested isolates.
Correlation and linear regression analyses were performed to
establish any association between water quality (29) toward E.
coli and total coliform abundance. Cluster analysis for sampling
sites was performed based on the antimicrobial susceptibility
profile through the Bray-Curtis similarity index using PAST
version 3.22 (41). Besides that, canonical correlation analysis
(CCA) was performed using PAST to analyze the distribution
of E. coli phylogenetic groups among sampling sites relative to
the resistance genes sul and tet, water quality parameters, and
antibiotic residue concentrations (42).

FIGURE 2 | Abundance of Escherichia coli and total coliform. EST, estimation.

Sampling sites: Z, Zoo; H, Hospital; SH, Slaughterhouse.

RESULTS AND DISCUSSION

Abundance of Coliform and E. coli
Coliform and E. coli were detected at all sampling sites; their
concentrations at Larut River are up to 4.7 × 105 CFU
100 ml−1; up to 4.1× 105 CFU 100 ml−1, respectively (Figure 2).
The results clearly showed that Larut River was affected by
anthropogenic wastewaters that harbored more coliform and
E. coli (1–5 log CFU 100 ml−1 difference) compared to river
waters (p ≤ 0.05). The highest total coliform and E. coli counts
were observed in wastewater effluent from the slaughterhouse.
In addition to lower anthropogenic influence, the comparatively
low counts of coliform and E. coli detected at S1c were
associated with the inhibitory effect of salinity (>16 ppt) on
their survival and growth rates (29, 43), as coliform counts
decreased significantly with increasing salinity in Larut River
(R2 = 0.26, df = 16, and n = 18). The coliform and E. coli
concentrations detected in this study were within the range that
is previously reported for polluted Malaysian rivers and other
locations (18, 44–47), which exceeded the standard maximum
100 CFU 100 ml−1 limit in the National Water Quality Standards
(NWQS) class II for rivers set by the DOE Malaysia and the
Malaysia Interim Marine Water Quality Standards (25). The
important sources of fecal pollution in the Larut River are poultry
manure, agriculture runoff, poorly treated or untreated sewage,
and anthropogenic input from human and industrial activities
along the river basins that contributed to the deterioration of
water quality.

Distribution of E. coli Phylogenetic Groups
A total of 354 E. coli were isolated, and all the seven phylogenetic
groups were observed with no cryptic clades. The majority of
the E. coli isolated (77.97%) from Larut River were commensal
strains, with phylogroup B1 (39.55%) and phylogroupA (38.42%)
among the most prevalent. The predominance of groups A and
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B1 were consistent with other studies (27, 48). These two groups
are sister groups that are consistently more predominant and
prevalent in aquatic environments than virulent extraintestinal
strains from groups B2 and D (27, 48). The phylogroup B1
was found higher at the wastewaters from zoo, slaughterhouse,
and S1c of the Larut River, thus, receiving anthropogenic
discharges from upstream. This may be associated with the
influence of effluents discharge that contained more animal
waste as the phylogroup B1 tend to be isolated from animal
feces, particularly from herbivorous animals (49). Furthermore,
this group of bacteria has already been shown to benefit from
longer persistence in water than other phylogroups albeit for
estuarine and coastal waters (6, 44, 50). In this study, it
was expected to find a higher frequency of human-associated
phylogroup A in wastewater effluent from the hospital, followed
by slaughterhouse and S1b, which received the wastewater from
the same point source. The least abundant and rarely detected
phylogroups B2, C, D, E, and F isolated from Larut River were
consistent with other studies (51, 52). The phylogroups B2
and D are known to be related to virulence factors that cause
extraintestinal infections. Their higher detection frequencies at
upstream (S1a) (B2: χ2 = 74.799, df = 5, p = 0.000; D: χ2

= 11.094, df = 5, and p = 0.050) probably resulted from
commensal isolates from birds (53) and wild mammals (54,
55), as Larut Hill Forest Reserve is rich in biodiversity as
it shelters 227 bird and 27 mammal species (56). This is in
agreement with Petit et al. (57) and Ghaderpour et al. (27)
who reported a higher abundance of B2 and D phylogroup
at surface water collected near a forest with lesser human
activities. Thus, fecal pollution from wildlife could present
pathogenic E. coli infection risks. Hence determining the sources
of fecal pollution in environmental waters is essential for
pollution control and sustainable water quality management.
The distribution of phylogenetic groups was not homogenous
among the sites, and this may be attributed to the land use,
sources of pollution, selective pressures in the waters, availability
of nutrients, in situ physicochemical parameters (dissolved
oxygen, pH, salinity, etc), protozoan and bacterial predators,
and hydrological conditions (46, 58). The different survival
abilities of E. coli and their abilities to overcome stresses will
structure their community distribution and diversity in aquatic
environments (6).

Antimicrobial Susceptibility Profile
We examined the susceptibility of all the isolated E. coli in
this study with 20 antibiotics that represented 11 different
antibiotic classes. Of them, the highest frequency of resistance
was detected for tetracycline class (34.32–86.84%), followed by
quinolones (13.46–80.33%), penicillins (0–75%), sulfonamides
(14.29–65.79%), amphenicols (5.71–60.53%), fluoroquinolones
(8.57–57.38%), and aminoglycosides (0–47.37%) (Figure 3).
The resistance rates against macrolides (1.92–19.74%),
cephalosporins (0–18.57%), and nitrofurans (0–1.92%) were
low. All the isolates were susceptible to imipenem and none of
the isolates were resistant to all the antibiotics tested. Among
these isolates, 265 (74.86%) were confirmed resistant to at
least one or more antibiotics, two MAR E. coli isolates from

phylogroups F and B1, each isolated from the slaughterhouse
and hospital effluents, respectively, were resistant against 16
types of antibiotics. Only 25.14% of the isolates were susceptible
to all antibiotics tested, indicating the prevalence of AR E.
coli in the Larut River. Our results are consistent with other
studies that reported the resistance of E. coli against old and
widely used antibiotics in aquatic environments (27, 59–61).
Furthermore, these antibiotic classes, except aminoglycosides,
were the frequently detected antibiotics in Larut River (antibiotic
concentration: LOD−1,092.49 ng/L) (29, 42). Our results
showed that the frequency of MAR was higher in wastewater
effluents (zoo > slaughterhouse > hospital) than in river waters
(S1b > S1c > S1a). The prevalence of environmental MAR
E. coli detected in this study was comparable to Kat River
in South Africa (62) and Cochin Estuary in India (63), but
higher than Matang Estuary in Malaysia (27), Tagus Estuary
in Spain (18), Kshipra River in India (64), San Pedro River in
Mexico (65), and generally lower than DongJiang River in China
(88.00%) (66).

Cluster analysis revealed that the distribution of antibiotic
resistance phenotype of E. coli isolates from the zoo and the
slaughterhouse effluents were more similar than the hospital
effluent and S1c. This could be due to the influence of wastewater
effluent discharge that contained animal waste that received
similar and commonly used veterinary antibiotics as previously
reported by Low et al. (42). In contrast, the almost similar
distribution of phylogenetic groups, together with the wastewater
effluents containing human waste, could be a contributing
factor to the similarity of antibiotic resistance phenotypes
from the zoo and slaughterhouse effluent compared to S1b,
which received the anthropogenic inputs from upstream. In
this study, the phylogroup with the most resistant strains
was observed in B1 followed by A, B2, D, E, F, and C.
Our findings were consistent with other studies that MAR of
E. coli mostly belonged to phylogroups B1 and A (27, 67).
Despite these groups generally being considered harmless, their
prevalence as intestinal pathogenic strains (68) has increased
the risk on public health. The lower percentage of antibiotic
resistance in phylogenetic groups B2 and D were also consistent
with Ghaderpour et al. (27). These phylogroups were detected
more upstream (S1a), which was associated with an animal
origin. Phylogroup B2 was found to have higher resistance
against penicillin, quinolones/fluoroquinolones, sulphonamides,
and aminoglycosides, whereas Phylogroup D was detected
to have higher resistance against tetracycline, penicillin, and
sulfonamides. Studies have revealed their occurrence in wild,
companion, and food animals, suggesting diet may be the
main factor introducing MAR bacteria to animals (55, 69–
72). Besides, rapid urbanization causes habitat loss and has
simultaneously exposed animals to various environmental
pollutants, which subsequently favors the transfer and emergence
of MAR bacteria in animals through the food chain (72–
74). The MAR index of 0.2 was observed at all the sampling
sites, except for S1a and S1c, indicating that the midstream
Larut River is contaminated with different anthropogenic
inputs from the hospital, zoo, and slaughterhouse effluents that
contained high risks sources, which were able to influence
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FIGURE 3 | Antibiogram of antibiotic resistance phenotype detected in surface water among sampling sites in Larut River organied by similarity. Abbr, abbreviation.

Antibiotic class: I, Tetracycline; II, Quinolone; III, Penicilin; IV, Sulfonamide; V, Fluoroquinolone; VI, Amphenicol; VI, Aminoglycoside; VIII, Macrolide; XI, Cephalosporin; X,

Nitrofuran; XI, Carbapenem. Antibiotic type: TE, Tetracycline; OA, Oxolinic acid; NA, Nalidixic acid; AMP, Ampicilin; AMC, Amoxycillin/Clavulanic acid; SF, Sulfafurazole;

SXT, Sulfamethoxazole/trimethoprim; ENR, Enrofloxacin; OFX, Ofloxacin; CIP, Ciprofloxacin; C, Chloramphenicol; FFC, Florfenicol; N, Neomycin; S, Streptomycin; CN,

Gentamicin; AZM; Azithromycin; KZ, Cephazolin; CRO, Ceftriaxone; F, Nitrofurantion; IPM, Imipenem. Sampling sites: Z, Zoo; H, Hospital; SH, Slaughterhouse.

the prevalence and phylotype diversity of MDR E. coli in the
Larut River.

Pathotypes of E. coli
Recent studies began using virulence factors as risk indicators
in the environment, due to their close relation to pathogenicity
among E. coli isolates (75). We found that 9 environmental
E. coli isolates harbored an intestinal pathogenic E. coli
(IPEC)-associated virulence gene. The relatively low abundance
of presumptive IPEC in this study concurred with other
aquatic environments with non-point source contamination
(27, 44, 76), but contrasted with waters impacted by a sewage
treatment plant (77). The virulence factor aggR, which indicates
a positive EAEC pathotype, was the most prevalent gene

(n = 5) detected in effluents from the zoo and the hospital.
Runoff from sewage overflows likely transported these E.
coli isolates, with virulent factors from feces of animals and
humans, into environmental waters. Additionally, bfpA (n =

1), ST (n = 2), and eae (n = 1) virulence genes were also
detected along the river continuum with high susceptibility
to antibiotics except for a single phylogroup F isolate from
zoo effluent. Nevertheless, these detected virulence genes still
play their respective roles in lesion attachment, adherence, ion
outflow induction, etc. (78). Although these E. coli isolates
each carried a virulence gene, the observation of virulence
factors itself does not always demonstrate pathogenicity (79).
The present detection of single virulence gene patterns in
E. coli isolates could likely be explained by a horizontal
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FIGURE 4 | Trends of tet and sul gene among sampling sites in Larut River. (A) tet resistance gene type detected by site (B) Cumulative sul resistance gene type

detected by site. Z, Zoo; H, Hospital; SH, Slaughterhouse.

gene transfer among cells, which mediate the exchange of
virulence factors located on mobile genetic elements (80).
We identified five E. coli isolates (2.19%) from the zoo (n
= 3) and hospital (n = 2) effluents to be EAEC strains.
These are emerging diarrheal pathogens that cause acute
diarrhea in developing countries (81). These EAEC isolates
possessed MAR profiles of 5–16 antibiotics, with combinations

of sul2 and sul3 genes, and tet(B), tet(A), tet(L), tet(M),

and tet(X) genes. Studies have revealed similar findings on
EAEC strains to be associated with water surfaces (82) and

MAR EAEC belonging to phylogroup F from a stream with
poor water quality (83). Our finding suggested that the
dissemination of both virulence and resistance determinants

could occur in the same anthropogenic site and pose a health
risk. Either resistant or pathogenic isolates, when in contact

with autochthonous bacteria, may then disseminate resistance
and virulence determinants among natural ecosystems via a
horizontal gene transfer (84). Interestingly, the phylogroup F

strains isolated (n = 4/9) were found to carry virulent genes.
El-shaer et al. (85) found that although environmental isolates
which harbored virulence genes were located in phylogroup
B1, the newly described phylogroup, such as phylogroup F, has
also a virulence potential. The impact of this observation is not
well-elucidated and further study is needed. Members of these
phylogenetic groups are of particular interest because there is a
relationship between the genetic background of a strain and its
virulence factors (86).

tet and sul Gene Distribution in E. coli
Overall, 277 (78.25%) E. coli isolates harbored at least one
of the tested tet genes except for tet(S). The majority of the
resistance genes were found in the zoo (93.42%) effluents,
slaughterhouse (85.25%) effluents, and S1b (78.33%). Seventy-
seven E. coli isolates did not harbor any of the tested resistance
genes. The three predominant tet genes were tet(A) (52.64%),
followed by tet(L) (27.12%), and tet(X) (12.15%) (Figure 4A).
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Among sites, tet(A) was the dominant gene in zoo effluent, tet(L)
was abundant in S1c, and tet(X) was in hospital effluent. We
found that efflux genes were prevalent among the sites indicating
that the active efflux via membrane-associated proteins were
the main mechanisms for resistance in E. coli that resided in
the Larut River. Both tet(A) and tet(L) belonged to the active
efflux resistant mechanism. The predominance of these genes
could be due to the low concentrations of tetracycline [mean:
64.4 ng L−1 (42)] in the environment as the expression of
these genes are mainly induced at low tetracycline level (87).
Both resistance mechanisms of active efflux via membrane-
associated proteins, along with ribosomal protection proteins
(RPP), were found in zoo wastewater effluent. The expression of
the RPP tet(M) is mainly induced only at the high tetracycline
level (88). This fact could explain the overall low abundance
of tet(M) detected in this study. Certain E. coli (37.85%) in
this study were found to carry multiple tet resistance genes
with a high variation of tet gene combination. Our findings
concurred with previous studies that tetracycline-resistant genes
are ubiquitous in aquatic environments (89, 90). Among the
57 different tet combinations harbored by E. coli isolates, the
most prevalent multiple tet resistance genes [tet(A)(L) (8.19%),
tet(A)(M) (5.65%), and tet(A)(L)(M) (4.24%)] were significantly
dominant (p ≤ 0.05) in wastewater effluents from the hospital.
Notably, we had detected the presence of all three tet resistance
mechanisms that include enzyme inactivation [tet(X)] in E.
coli isolates isolated from hospital effluent. In contrast, E.
coli isolates that harbored significantly fewer resistance genes
were observed at less polluted sites. Our results indicated that
tetracycline-resistant E. coli acquired multiple mechanisms to
confer resistance.

For the sulfonamide resistance gene, there were 125 (35.31%)
E. coli isolates that harbored at least one among all sites,
with the gene-frequency distribution of sul3 (20.90%) > sul2
(5.08%) > sul1 (3.11%) (Figure 4B). Among the multiple sul
gene combinations, the sul1 and sul3 combination was the
most frequently detected in this study. The pattern of gene
frequency distribution observed concurred with Lai et al. (91),
where sul3 was prevalent in urban freshwater aquatic recipients
of Sweden. The sul1 gene has been widely documented in
receiving aquatic environments that can be regarded as a
marker for anthropogenic pollutants (92, 93). Meanwhile, sul3
is initially suspected to be of human origin (94), but numerous
studies have reported their prevalence in E. coli isolates from
animals and livestock (95–97). Thus, the widespread of sul3
among E. coli isolates in this study was most likely due to
the consumption of sulfonamide by humans and veterinary
use (29, 36, 42). Sulfonamides are widely used in Asian
countries, and in Malaysia, the usage in veterinary medicine
was ∼18,000 kg per year (98). While for the healthcare industry,
the usage ranged from 0.0982 to 5.9900 daily defined dose
(DDD)/1,000 population/day (99). In the absence of selective
pressure from sulfonamide, sulfonamide-resistant bacteria may
remain stable in the environment for at least 5–10 years
longer than sulfonamide itself (100). The sulfonamide-resistant
phenotypes that carried no resistant determinants wasmost likely
due to the acquisition of other mechanisms (e.g., mutations

in the chromosomal DHPS gene flop), as environmental E.
coli strains may acquire genetically unrecognized resistance
mechanisms more frequently compared to clinical E. coli strains
(101, 102).

Relationship between physicochemical and antibiotic residues
on E. coli phylogenetic distribution studies have shown that
E. coli phylogenetic groups are adaptable and genotypically
affected by environmental changes (103). In our study, the
correlation coefficient has shown that salinity explained 26%
of the variation in coliform abundance. Thus, other factors
in combination may also contribute to the distribution of E.
coli and their activity in the environment. Our CCA analysis
revealed that the E. coli phylogroups A, B1, and C were
greater in deteriorating water quality with SiO4, NH4, and
PO4 (Figure 5A). The phylogroup B1 seemed to grow well in
turbid water, with NO2, and have better tolerance to salinity,
and pH, while the other lower frequency phylogroups (B2,
D, E, and F) were associated with DO, temperature, and
NO3. Our findings were consistent with Jang et al. (103)
and Bong et al. (44), who reported that the occurrence and
distribution of E. coli phylogenetic distribution can be affected
by environmental variables. Collectively, a better adaptation
to environmental drivers, paired with a high turnover of
gene repertoires, made the phylogroup B1 exquisitely versatile
in the environment compared to other phylogenetic groups
(117). Our findings were in line with previous studies that
nutrient concentrations (C, N, and P) are one of the important
factors influencing the growth and survival of E. coli in the
environment (104, 105). The addition of nutrient concentrations
could also enhance the horizontal transfer of genetic resistance
materials (106), which further enhanced the adaptive ability
and plasticity of E. coli in a variety of environments. Lye
et al. (29) detected a positive correlation between PO4 with
sulfonamide-resistant heterotrophic bacteria and sulfonamide-
enteric bacteria in Larut River. They had found that on four
occasions, an exceptionally high PO4 concentration but low
nitrogen concentration was observed in wastewater effluents
from both the zoo and the hospital. However, further studies are
still required to understand the nature of these anthropogenic
stressors and the exact mechanisms in shaping the E. coli
prevalence, diversity, and dissemination of antibiotic resistance
in this river.

Our results also showed that the distribution of different
phylogroups and antibiotic resistance genes were also affected
by antibiotic use. The antibiotics detected in hospital,
slaughterhouse, and S1b exhibited a significant correlation
with the phylogenetic groups A, C, sul, and tet genes, while
oxytetracycline (OTC) and fluoroquinolones (ENRO and
ENX) detected in the zoo showed positive associations with
phylogroup B1 (Figure 5B). However, no correlation was
observed in the lower frequency phylogroups (B2, D, E, and F).
This observation of correlations concurred with Varela et al.
(107), Lye et al. (29), and Low et al. (42), who have revealed
that the wastewater effluents from the zoo, slaughterhouse,
and hospital are important antibiotic pollutant sources to the
Larut River. Thus, the antibiotic residues in these effluents
are expected to have a strong impact of selective pressure on
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FIGURE 5 | Square root normalized CCA ordination biplot showing the distribution of E. coli phylogenetic groups by sampling sites in Larut River with respect to their

phylogenetic group and resistance genes tet and sul. CCA 1 on axis 1 explained 52.60% whereas CCA 2 on axis 2 explained 25.81% of all explanatory variables. (A)

Relationship between E. coli and water physicochemical parameters of Larut River collected by Lye et al. (29). (B) Relationship between E. coli and water antibiotic

residue detected in Larut River collected by Low et al. (42). Water physicochemical factors abbreviation: Temp (◦C), salinity (ppt), pH, dissolved Oxygen (DO), turbidity

and concentrations (µM) of Silicate (SiO4 ), Ammonium (NH4), Nitrite (NO2), Nitrate (NO3), Phosphate (PO4). Antibiotic resistance gene: sul, sulfonamide resistance

gene; tet, tetracycline resistance gene. Antibiotic residue: RTM, Roxithromycin; CTM, clarithromycin, AZM, azithromycin; ETM-H2O, erythromycin-H2O; ENX,

enoxacin; ENRO, enrofloxacin; NOX, norfloxacin; OFX, ofloxacin, CIX, ciprofloxacin; CTC, chlortetracycline; OTC, oxytetracycline; TC, tetracycline; FF, florfenicol; CAP,

chloramphenicol; TMP, trimethoprim; SAAM, sulfacetamide; STZ, sulfathiazole; SDM, sulfadimethoxine; SMA, sulfadimidine; SPD, sulfapyridine; SDZ, sulfadiazine;

SMX, sulfamethoxazole.
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FIGURE 6 | Dendrogram showing similarity of E. coli strains isolated from different sampling sites as determined by rep-PCR fingerprint analysis using REP primer. I,

Tetracycline; II, Quinolone; III, Penicilin; IV, Sulfonamide; V, Fluoroquinolone; VI, Amphenicol; VII, Aminoglycoside; VIII, Macrolide; IX, Cephalosporin; X, Nitrofuran; XI,

Carbapenem.

antibiotic resistance in environmental E. coli compared to river
waters. The variation in the response of different phylogenetic
groups of E. coli, including resistant genes to different antibiotic
residues, might be attributed to the types of antibiotics detected,

physiochemical properties and persistence of antibiotics in
water (64), water quality (6), acquired resistance mechanisms
(108, 109), environmental fitness of E. coli, and indigenous
microflora (58).
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Genetic Diversity of E. coli Through
Rep-PCR Fingerprint
A total of 354 band patterns, with amplicon sizes ranging
from 100 to 2,000 bp, were generated by REP-PCR. The
genetic diversity of the E. coli population was high in effluents
from the slaughterhouse (H’, 3.53) and the zoo (H’, 3.38)
compared to river waters. Our observation concurred with
Jang et al. (110) where diversity of E. coli genotypes tends to
be greater with increasing proximity to anthropogenic urban
sites. However, genetic heterogeneity between isolates from the
natural environment may be caused by differences between the
sampling sites (e.g., sampling sites were probably subjected to
high pollution from various sources) (111). In contrast, hospital
effluent had a low E. coli genetic diversity (H’: 2.91) among
other effluent sites, even though Low et al. (42) observed elevated
antibiotic concentrations. A similar observation was found by
McLellan (112) who reported lower diversity of E. coli in
contaminated surface waters, in which environmental survival
may be the factor that influences the recovery of the composition
of strains from contaminated waters.

Due to the large population size, only the non-repeating E.
coli genotypes (<85% similarity coefficient, n= 74) were selected
to have their genetic relationships characterized. Seven major
clusters were generated, with the highest number of isolates
grouped in cluster I (n = 40), while the lowest number was
shared among clusters II, IV, and VII (n = 4) (Figure 6). Cluster
I isolates were found in a roughly equal distribution at all sites at
Larut River, except for the hospital effluent and S1c with isolates
(72%) that are characterized under the generalist phylogroups
A and B1 with phenotypic resistance (77.50%). This cluster
constituted the prevalence of background antibiotic resistance
in this study (113–115). Similar to cluster I, cluster III (n =

10) were phylogroup A and B1 strains, with high antibiotic
resistance, in which S1b has a higher distribution among the sites.
In cluster VII, isolates from downstream site S1c co-clustered
with an isolate from midstream hospital, thus, suggesting that
the isolates along these sites shared a lineage. In contrast, low
AR phylogroup B2 isolates were abundant in clusters IV and VI.
These clusters collectively contained isolates (n = 14) that were
located at non-anthropogenic sites, except a strain from the zoo.
Similar to Liang et al. (116), there was no clear pattern of E. coli
clustering according to sites in this study. It is important to note
that the main aim of this study is not to trace the exact host
sources of commensal E. coli in a complex aquatic environment.
The diversity of E. coli genotypic and phenotypic is very large.
According to literature, a collection of more than 20,000 isolates
had only captured 27% of the predicted genotypes as estimated
by a rarefaction analysis (46). This was evidenced by the hospital
and the zoo isolates consisting of a diverse population with five
and four different clades, respectively, which were also observed
by Ghaderpour et al. (27). Given the limitation, this study did,
however, demonstrate that AR E. coli population diversity in
riverine estuarine water was, instead, related to the proximity of
source contamination, stream order, and land use as observed by
other studies (46, 76).

CONCLUSION

The present study affirmed that the prevalence and the
diversification of antibiotic-resistant E. coli in Larut River
were intensified by wastewater effluent from zoo, hospital,
and slaughterhouse as sources of antibiotic residues. Our
findings showed that phylogroups B1 and A were predominant
with the presence of resistance genes. The cluster analysis
revealed that the antibiotic resistance phenotype distribution
of E. coli isolates from the zoo and the slaughterhouse
effluents were more similar than the hospital effluent and
downstream site (S1b). The tet efflux genes were detected
in the majority of the E. coli isolates, thus, suggesting
that E. coli may be an important carrier and/or reservoir
of tetracycline resistance genes conferring resistance. The
prevalence of the sul3 gene in E. coli isolates might be
attributed to the consumption of sulfonamide for humans
and veterinary use. The CCA analysis revealed a significant
association between phylogroup and resistance genes with
physicochemical properties and antibiotic residues on the
environmental persistence of antibiotic-resistant E. coli. All
these findings are important to provide information on the
global comparison of persistence of antibiotic-resistant E. coli in
different aquatic ecosystems, and the need to have surveillance
and monitoring of virulence and antibiotic resistance in fresh
river water to mitigate the emerging resistance and dissemination
through water and environment.
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