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Abstract: Indoor Positioning Systems (IPSs) are used to locate mobile devices in indoor environments.
Model-based IPSs have the advantage of not having an exhausting training and signal characterization
of the environment, as required by the fingerprint technique. However, most model-based IPSs
are done using fixed model parameters, treating the whole scenario as having a uniform signal
propagation. This might work for most small scale experiments, but not for larger scenarios.
In this paper, we propose PoDME (Positioning using Dynamic Model Estimation), a model-based
IPS that uses dynamic parameters that are estimated based on the location the signal was sent.
More specifically, we use the set of anchor nodes that received the signal sent by the mobile node and
their signal strengths, to estimate the best local values for the log-distance model parameters. Also,
since our solution depends highly on the selected anchor nodes to use on the position computation,
we propose a novel method for choosing the three best anchor nodes. Our method is based on several
data analysis executed on a large-scale, Bluetooth-based, real-world experiment and it chooses not
only the nearest anchor but also the ones that benefit our least-square-based position computation.
Our solution achieves a position estimation error of 3 m, which is 17% better than a fixed-parameters
model from the literature.

Keywords: indoor positioning systems; bluetooth low energy; path-loss model; localization systems

1. Introduction

Today´s most commonly used positioning system is the Global Navigation Satellite Systems
(GNSS), which includes the Global Positioning System (GPS). They allow people to navigate from
place to place through applications such as Google Maps, Waze, and Apple Maps. However, the
satellite signals are easily blocked by buildings, decreasing its accuracy, and making its usage limited
to outdoor environments [1]. For this reason, Indoor Positioning Systems (IPSs) have been proposed to
allow the location of mobile devices indoors, using the local infrastructure. IPSs have been drawing
the attention of many companies since it allows the development of several interesting applications,
such as monitoring the position of the elderly in retirement homes, monitoring children in schools,
assisting customers in supermarkets, and tracking patients and equipment in hospitals [2].

Many IPSs have been proposed in the literature, but to date, no system has been established as
standard since each one has its pros and cons. Positions can be estimated using several data sources,
such as the Angle of Arrival (AoA), Time of Arrival (ToA), Time Difference of Arrival (TDoA), and the
Received Signal Strength Indicator (RSSI). However, most IPS solutions are based on the RSSI due to
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its low cost and high availability since they can use signals from WiFi and Bluetooth, both of which are
available in most mobile devices [3].

The RSSI can be used to estimate the distance between two devices since there is a decrease in the
signal strength as the distance increases [4]. However, the RSSI is sensitive to environmental noises,
such as obstacles from furniture and walls, people’s movements, and opening or closing doors, all of
which can cause a high signal variation making it difficult to convert the signal strength to distance
accurately [3]. Consequently, the position estimation of the mobile device is affected. Many wireless
communication technologies can be used in IPS, such as WiFi and Bluetooth, as mentioned, but also
Radio Frequency Identification (RFID), Ultra-Wide Band (UWB), ZigBee, and others. WiFi has greater
prominence since it is the most used technology and, therefore, more easily found indoors, which
results in no need for extra hardware [5]. However, WiFi consumes more energy, making it unfeasible
for small, low-power devices [6]. Thus, with the development of Bluetooth Low Energy (BLE), it has
become increasingly common to employ this technology due to its low energy consumption, ease of
deployment, and low cost [7].

IPSs can be classified into two categories: fingerprint-based and model-based. Fingerprint-based
IPSs use an extensive and exhaustive training of reference points in the scenario to feed a machine
learning algorithm that will later be used to localize the mobile devices. The created signal map is
susceptible to changes in the environment [8] and is unfeasible to be generated and maintained for
larger scenarios. On the other hand, model-based IPSs require only some information from the scenario,
such as the coordinates of the anchors (reference nodes) and, in some cases, a simple collection of
signal data, to create a better signal propagation model for the scenario. The model-based IPSs have
two main phases: model data gathering and position computation [9]. In the first phase, RSSI samples
are taken to obtain the signal propagation model (also known as path loss model) that characterizes
the signal strength in the scenario as the distance increases. This is the most sensitive step since it
depends directly on the measured RSSI values in the real environment, which are known to have a high
variance, and they will also affect the estimated distances accuracies [4]. In the position computation
phase, the positions of the mobile devices are computed using the distances estimations and the known
position of the anchors. This computation is usually done by some optimization algorithms, such as
the least-squares [10].

Most model-based IPSs proposed in the literature [10–13] use the same fixed model parameters
for the whole scenario. This fixed model considers that the signals behave uniformly over the whole
scenario. However, this is not the case, especially for medium to large-scale scenarios in which
the signal behavior changes from place to place depending on the obstacles and other environment
variables. In this paper, we propose PoDME (Positioning using Dynamic Model Estimation), an IPS
that uses a signal propagation model with dynamically estimated parameters to improve the distance
computation between the mobile device and the anchor nodes. Our main idea is that these dynamically
estimated path loss parameters correspond more closely to the region’s characteristics the packet we
want to localize was sent from, improving the accuracy of the estimated distances. Also, since our
solution depends highly on the selected anchors used on the position computation, we propose a novel
method for choosing the three best anchors that focus not only on the nearest anchors but also the ones
that benefit the least-squares-based position computation.

The main goal of our proposed IPS is to provide location information for small, battery-powered
devices to be worn by people inside buildings, such as the elderly in retirement homes. These mobile
devices are required to be operated by a single, small battery while also having other sensors.
Thus, in our experiments, we decided to use the Bluetooth Low Energy (BLE) technology.
We implemented our solution in a real-world, large-scale testbed and compared its performance
to different variations of a fixed model-based IPS, as used by most model-based solutions in the
literature. Our results show an average error of 3 m, a 17% improvement compared to the best
experimented parameter of a fixed model-based IPS, which had an error of 3.6 m.
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The remainder of the paper is structured as follows: Section 2 presents our related work.
In Section 3, we present our proposed PoDME solution. In Section 4, we show the performance
evaluation of our solution in a real-world testbed. In Section 5, we briefly discuss some applicability
issues of our solution. Finally, in Section 6, we present our conclusions and future work.

2. Related Work

Current proposed IPSs are mainly based on Bluetooth [14–17] or WiFi [5,13,18,19] due to the
already available infrastructure and already supported devices, which reduces the implementation
cost. With the advances in Bluetooth Low Energy (BLE), an improved version of Bluetooth, it has been
possible to obtain a more significant reduction in cost while also reducing the power consumption,
ensuring an increased lifespan for the devices [16]. Also, BLE introduced the advertisement packets,
which are data packets used mainly for positioning, in which the receiving devices are required to
report the Received Signal Strength Indicator (RSSI).

Regarding the technique used to estimate the mobile nodes’ position, current IPSs can be classified
into fingerprint-based and model-based. In the fingerprint technique [20–23], training of the whole
scenario is required to generate an RSSI database that will be used by machine learning algorithms to
estimate positions in the online phase. The positioning system developed by [20], called RADAR, is a
classic work in the area because it was one of the first to create a signal map using RSSI. The solution
proposed by the authors resulted in an accuracy of 2 m to 3 m. The fingerprint method used in
RADAR is more accurate than model-based solutions, but it is time-consuming since it requires the
characterizations of the environment through the signal map. Also, this method is susceptible to
changes in the environment, requiring a new characterization in this case.

Among the RSSI-based methods, the nearest-anchor method is possibly the most simple solution.
It considers that the node’s position is the same as the anchor with the highest signal strength [17],
since the higher the signal strength, the closer the mobile node. This method’s accuracy is directly
linked to the organization of anchor nodes in the scenario, requiring a large anchors number for larger
environments [24]. The works of [9,17] compare the nearest-anchor with other model-based techniques.

As with the fingerprint-based IPSs, the main information used in model-based IPSs is the RSSI.
However, it is well-known that the signal strength value varies widely, either due to the nature of
the wireless channel or due to obstacles in the environment [12,25]. problem is worse in the packet
losses presences, especially when using BLE advertising packets, in which only half of the packets are
usually received. To decrease the signal variation, some authors suggest the use of filters such as the
mean filter [26], particle filter [27], and Kalman filter [28]. The sliding window filter also proved to be
a simple solution with some of the best results [26].

Model-based IPSs use propagation models to transform the RSSI value in the distance between
the sender and receiver. Such propagation models try to model the behavior of the signal in relation to
the variation of distance. In [14], the authors developed an empirical propagation model using the
RSSIs collected from a real-world experiment to estimate the distance based on the signal strength.
However, the proposed propagation model is valid only for the experimented site.

Li et al. [4] proposed an IPS that uses a distance-based RSSI adjustment model to correct signal
losses in the environment. The work compares three main propagation models: log-distance, back
propagation neural network (BPNN), and back propagation neural network with a particle swarm
optimization (PSO-BPNN). Their experiment is performed in a small-scale scenario with an area
of 9 × 6 m², consisting of four anchor nodes, an Android-based mobile device, and a gateway.
The proposed solution resulted in a root mean square error (RMSE) of 2 m when using PSO-BPNN.
However, these results were obtained by evaluating only 8 reference points and without considering
the corners of the scenario as well as other regions with more complex signal behaviors.

After using the propagation model to convert RSSI to distance, the position computation is done
using algorithms such as maximum likelihood and least-squares [1,11,13,29], which estimate the
location of the target by representing the distance as the radius of the circles formed by the anchors or
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by representing triangles. The system proposed by [30], called AcMu, explores the static behavior of
mobile devices, using the regression of the partial least-squares to update the signal map with data
from the user’s mobile devices. The system uses the signal intensities’ readings in real-time received at
the reference points to update the model.

In [31], it is proposed a positioning system that uses signal information among anchor nodes
to obtain the exponent of the path loss model for the environment. This proposal uses the average
distance among all anchors to estimate the location. Similarly, the work of [32] uses the relative values
between pairs of anchors and the site map information, such as walls and obstacles, to decrease the
impact of the building infrastructure on the position computation. They evaluate the number of
anchors impact on the system performance and the effect of techniques to decrease the signal variation.
Their results show an average error of 2.8 m.

An IPS based on signal diversity and least squares is proposed in [13]. In the proposed solution,
the RSSI noise is first filtered using an adaptive Kalman filter to decrease the variability. Next, the values
of two functions are computed using a channel filter to obtain the degree of correspondence between
the RSSI values on the different channels to prevent the distance estimation between nodes from falling
into local optimum, which would prevent them from reaching the global optimum. The experiments
were performed in a small-scale area of 10 × 10 m² with three Bluetooth-based anchors. Their results
show an average error of 1.5 m.

Finally, in [15], the authors proposed a Bluetooth-based IPSs aimed at improving accuracy while
reducing both energy consumption and total cost. The system does not perform signal characterization
for the different regions and uses a fixed path loss exponent value. The results show an error of 4.6 m
in 90% of the time for a scenario with an area of 16.50 × 17.60 m². For this, their proposal focused
on frequency diversity, signal filtering using the Kalman filter, and a weighted least squares method
(WLS), without considering the form of anchors organization. WLS works by increasing the weights
of receivers that are closer to the emitter. Their work compares three different propagation models:
the International Telecommunication Union (ITU) model, the log-distance model with shadowing,
and a fitted empirical model.

Our proposed PaDME solution differs from all of the mentioned solutions. First, our solution
is implemented in large-scale scenarios compared to the scenarios from the previous works. Second,
our model-based IPS uses dynamic parameters that allow selecting the best values of the path loss
exponent that characterize the region of the mobile node we want to localize. This results in better
accuracies for the estimated distances, unlike the fixed parameters for all regions of the environment
used by the mentioned solutions. Third, we propose a novel method for choosing the best anchor
nodes that benefit the least-squares-based position computation by using both the highest RSSI values
and the similarity to equilateral triangles, which increases considerably the positioning accuracy.
The details of our proposed solution are described in the next section.

3. PoDME—Positioning Using Dynamic Model Estimation

In this section, we present our proposed PoDME architecture. Figure 1 shows the components
of our system. In the offline phase, we performed model data gathering and obtained the path loss
estimates between the anchor nodes. In the online phase, we perform the position computation using
the RSSI values, choosing the best anchor nodes, and using the path loss estimates obtained in the
offline phase to improve the distance mapping between the mobile device and the anchor nodes. All of
these components are detailed in the next sections.
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Figure 1. Phases and components of our PoDME architecture.

3.1. Model Data Gathering

Our solution’s first step is to collect some RSSI samples to obtain signal behavior in the
environment. Most proposed model-based solutions in the literature require some signal information
to fit their models. In some solutions, it is done automatically [31,32], in others, manually [3,4].

Our goal is to create a database containing the RSSI values that represent the distances among
anchor nodes and use it in the next sections to estimate the path-loss in different regions of the
environment. We consider that we know the positions of the anchors, which is common in these type
of IPS [9,12,13,33] and, thus, we can quickly obtain the distance among anchors by computing the
Euclidean distance, as shown in Equation (1).

dab =

√
(xa − xb)

2 + (ya − yb)
2 (1)

where dab is the distance between Anchora and Anchorb.
Now we need to know the RSSI behavior among the anchors. Therefore, in this part of our

PoDME solution, we propose a simple data gathering methodology in which a person gets one or more
mobile devices and physically positions himself below or near an anchor node. From that location,
the mobile devices start sending packets. These packets will be received by all nearby anchors with
different RSSI values, depending on their positions and the characteristics of the environment in that
region. This step is repeated for all anchors in the scenario.

Since we are using Bluetooth advertising packets, we need to filter the RSSI values before
using them. Besides the known RSSI variation, the use of Bluetooth advertising packets has another
problem: packet loss. It happens because the nodes send these packets in three different channels
and, thus, the receiver needs to alternate among these channels constantly. In our experiments, it is
common for the anchors to lose nearly 50% of the packets. To solve this problem, we used the highest
RSSI value from the last 10 seconds to smooth out RSSI on each measurement.

As a result, after taking the measurements, we obtain the RSSI values of all anchors to all of their
neighbors. However, since we need only one RSSI value, we take several RSSI samples and use the
average RSSI as the value that represents the signal among each anchor node. In Table 1, we have
an example of a Model Data Gathering containing the RSSI values between 5 anchors. In the table,
not filled cells mean that we have no signal between the two anchors, which indicates that they are
far from each other. The relationship between RSSI and distance can be seen in Table 1 and Figure 2.
For example, the Anchor1 is positioned at a distance of 5.2 m from Anchor4 and has an RSSI average
of −85 dBm.
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Figure 2. Real distances among anchor nodes.

Table 1. RSSI values between anchor nodes. Gathered by physically positioning a mobile node near
an anchor node and sending packets that will be received by all other nearby anchors. This step is
repeated for all anchor nodes in the scenario.

Anchorneighbor Anchor1 Anchor2 Anchor3 Anchor4 Anchor5

Anchor1 - −89 −90 −85 −77
Anchor2 −89 - −75 - −80
Anchor3 −90 −75 - −73 -
Anchor4 −85 - −73 - −82
Anchor5 −77 −80 - −82 -

3.2. Path Loss Estimations

Now that we have the distances among anchor nodes, given by the map information and
Equation (1), and also the RSSI values among these anchors, collected in the previous section, we can
estimate the best parameters for a Path-Loss Model. Given that the distances and RSSIs among the
anchors change, we will have a different Path Loss Model for each pair of anchors.

A Path Loss Model predicts the fading of a signal as it travels a given distance. Such behavior of
the signal variation with respect to distance is usually modeled by a logarithmic equation. Several
propagation models are proposed in the literature to better relate the signal, distances, and obstacles.
However, the Logarithmic Distance Path Loss Model is the most known and used [4,12,34]. This model
is given by the following equation:

R(d) = R0 − 10η log10

(
d
d0

)
+ Xσ (2)

where R(d) is the RSSI value measured at distance d, R0 is the RSSI value measured at distance d0, η is
the path loss exponent, i.e., a signal loss rate related to the environment and, finally, Xσ is a zero-mean
Gaussian random variable [33] that models the RSSI variation. For the d0 model parameter, a distance
of 1 m is commonly used in the literature [35,36]. Thus, R0 is the RSSI at 1 m, and we will use a
fixed value based on the data gathered from the previous section. Also, even if this value is not the
optimal one, this error is easily corrected by the least-squares technique, as explained in the last part of
our solution.

Thus, the only environment-dependent variable of the model is the path loss exponent (η).
From Equation (2), we can compute this parameter for each pair of anchors:

ηab =
R0 − Rab

10 × log10

(
dab
d0

) (3)

where ηab is the path loss exponent between Anchora and Anchorb, Rab is the RSSI between them,
as shown in Table 1 and, finally, dab is the distance between them, as in Equation (1). Please note that
we ignored the parameter Xσ, since Rab is an averaged value from several samples.
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Therefore, we can estimate all of the path loss exponents in the scenario based on the distance
and RSSIs among anchors. A higher ηab would indicate a higher number of obstacles and other fading
factors between Anchora and Anchorb, while two anchors with direct visibility from each other would
result in a lower path loss exponent. Figure 3 and Table 2 show examples of path loss exponents for
the values in Figure 2 and Table 1. It is worth noting how these values change from one anchor node to
another. When we establish the path loss exponent between two anchor nodes, we are characterizing
the signal behavior in the region in which they are located, based on their respective positions on the
map. Thus, when a mobile device sends a packet and has the signal strengths collected, the distance
estimation is made using the respective values of path loss exponents between the nearest anchors.

η=4.4

η=4.3

η=5.4

01

05

04

03

η=5.1

02 η=4.2

η=4.8 η=3.8

η=5.9

Figure 3. Path-loss exponents among anchor nodes.

Table 2. Path-loss exponents among anchor nodes calculated through the Equation (3) using the RSSI
values from the Table 1.

Anchorsneighbors Anchor1 Anchor2 Anchor3 Anchor4 Anchor5

Anchor1 - 4.8 4.4 3.8 4.3
Anchor2 4.8 - 4.2 - 5.1
Anchor3 4.4 4.2 - 5.4 -
Anchor4 3.8 - 5.4 - 5.9
Anchor5 4.3 5.1 - 5.9 -

3.3. Choosing the Best Anchor Nodes

The next part of our proposed PoDME solution is executed every time we have a new sample to
locate, i.e., a mobile node sent a packet that was received by several anchor nodes, and we need to
estimate the mobile position. In this part, we will choose, among all anchors that received the packet,
which ones we will use in the next parts of our solution.

The main reason for choosing the best anchors is because the Position Computation part of our
solution, detailed in Section 3.5, uses the least-squares technique to find the position of the target.
This technique uses distances computed using our Dynamic Model Estimation (detailed in the next
section) to find the most consistent position. However, using all of the anchors information, leads to
greater errors, since we will use information from faraway anchors, that will have higher distance
errors. On the other hand, if we use only the information from the three closest anchors (based on
their RSSI values), their positions may be somewhat collinear, which greatly decreases the estimated
position accuracy. Thus, in this part, we aim at choosing the closest three anchors that are far from
being collinear.

For this, the first step is to sort the list of anchors that received the mobile node packet by their
RSSI values in such a way that the closest anchors will be at the beginning of the list. Then, we get
the three closest anchors and check their positions against an equilateral triangle similarity filter that
will be detailed in the next paragraphs. This test will tell how close the anchors positions form an
equilateral triangle since this would be the farthest from them being collinear and, thus, the best-case
scenario. If the three closest anchors pass the filter, they will be the chosen anchors for the next parts of
our architecture. However, if the anchors fail the check, i.e., they are somewhat collinear, we ignore
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them and test the second closest anchors, and so on. If we reach the end of all anchors combinations
and they all have failed the similarity checker, we then fall back to the three nearest anchors.

Given the positions of three anchors (Anchora, Anchorb, Anchorc), our equilateral triangle
similarity checker starts by computing the internal angles of the triangle formed by the
anchors positions:

α =

cos
(

dac
2 + dbc

2 − dab
2
)

2 × dac × dbc

× 180/π (4)

β =

cos
(

dab
2 + dbc

2 − dac
2
)

2 × dab × dbc

× 180/π (5)

γ =

cos
(

dab
2 + dac

2 − dbc
2
)

2 × dab × dac

× 180/π (6)

Then, we compute how far from 60° these angles are since an equilateral triangle has three internal
angles of 60°:

∆ =

√
(α − 60)2 + (β − 60)2 + (γ − 60)2 (7)

The closer ∆ is from zero, the closer the anchors are to form an equilateral triangle. The threshold
chosen in our proposed solution has a value of 75. Thus, if the three anchors at the beginning of the list
have a ∆ between zero and 75, then they can be used in the position calculation, otherwise, we evaluate
other sets. This threshold was obtained empirically, as will be shown in our performance evaluation in
Section 4.

3.4. Dynamic Model Estimation

As shown in Section 3.2, the only environment-dependent variable of the log-distance model is
the path loss exponent (η). As mentioned, in most model-based IPSs [10,11,13,15] this parameter is
fixed for the whole scenario. This approach is not recommended for large-scale scenarios since the
path loss exponent changes from place to place depending on the obstacles and other environment
variables. In our PoDME solution, we propose the use of a dynamically computed path loss exponent,
in such a way that this value corresponds more closely to the characteristics of the region the packet
we want to localize was sent from.

In the last section, we chose the best three anchors to be used to locate that specific packet sent
by the mobile node. These anchors are closer to the mobile node and, thus, their information can be
used to estimate the local path loss exponent to be used in the position computation. The goal is to
use the average value of the path loss exponent among the neighbors anchors to represent the region
where the mobile device is located. For this, we use the Path Loss Estimations, computed in Section 3.2.
There, we computed the path loss exponent among all pairs of anchors. Since in the next section,
we will need three distance estimations, one for each anchor, we will compute three different path
loss exponents. Thus, the final path loss exponent, for a given anchor, will be the average exponent
between this anchor and the other two:

ηma = (ηab + ηac)/2 (8)

ηmb = (ηba + ηbc)/2 (9)

ηmc = (ηca + ηcb)/2 (10)
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where ηma is the path loss exponent that will be used to compute the distance between the mobile node
and Anchora, and so on.

As we can see, the model parameters estimated in this part of PoDME depend mainly on the
anchors that heard the packet from the mobile node. Thus, this parameter can change for each packet
sent by the mobile node, depending on its location. In the next section, we will use these parameters
to, finally, compute the node’s position.

3.5. Position Computation

Now that we have the path loss model for the three best anchor nodes, we can convert the RSSI
value of the packet sent by the mobile node and received by the anchors through an adaptation of
Equation (2):

dma = 10

(
R0 − Rma
10 × ηma

)
; dmb = 10

(
R0 − Rmb
10 × ηmb

)
; dmc = 10

(
R0 − Rmc
10 × ηmc

)
(11)

where dma is the estimated distance between the mobile node and the Anchora, and so on.
Since the real positions of the anchors are known in advance and the distances are estimated

using the previous equations, we can finally compute the mobile node position. For this, each anchor
will have a circle of radius equal to the estimated distance, and the final target position will correspond
to the intersection of the three circles. However, since we will have inaccuracies in our distance
estimations, due to the RSSI variation [9], the formed circles often do not have a single intersection.
To minimize this problem, we use the least-squares method [9,37] to optimize the position computation,
as follow:

fi(x, y) = dmi −
√
(xm − xi)

2 + (ym − yi)
2 (12)

min(x, y) = min
m

∑
i=1

[ fi(x, y)]2, m ≥ 3 (13)

However, it is difficult to resolve directly. To simplify, we can define the Equation (12) as
f i(xm, ym) = 0 and squared both sides to obtain:

xm
2 + ym

2 − 2xmxi − 2ymyi = dmi
2 − xi

2 − yi
2 (14)

Given the three anchors (Anchora, Anchorb, Anchorc), their coordinates (xa, ya), (xb, yb),
and (xc, yc), and the coordinate of mobile device (xm, ym). Then, if we set w = xm

2 + ym
2, we can

organize as follows: 
w − 2xmxa − 2ymya = dma

2 − xa
2 − ya

2

w − 2xmxb − 2ymyb = dmb
2 − xb

2 − yb
2

w − 2xmxc − 2ymyc = dmc
2 − xc

2 − yc
2

(15)

Then we can obtain an equation of the form AX = b:

A =

1 −2xa −2ya

1 −2xb −2yb
1 −2xc −2yc

; X =

 w
xm

ym

; b =

dma
2−xa

2 − ya
2

dmb
2−xb

2 − yb
2

dmc
2−xc

2 − yc
2

 (16)

Finally, the equation can be solved as a least-squares problem:
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X = (AT A)
−1

ATb (17)

The result of the least-squares equation is the mobile node estimated position.

4. Performance Evaluation

In this section, we evaluate the performance of our proposed PoDME solution compared to the
traditional fixed, model-based approaches found in the literature. We also evaluate other aspects of
our solution such as the variation of the path loss exponent in a real-world scenario and the behavior
of the data used for choosing the best anchors.

4.1. Testbed and Methodology

The main goal of our proposed IPS is to provide location information for small, battery-powered
devices to be worn by people inside buildings, such as the elderly in retirement homes. These mobile
devices are required to be operated by a single, small battery while also having other sensors.
Thus, in our IPS, we decided to use the Bluetooth Low Energy (BLE) technology.

Furthermore, one of the premises of the hardware architecture was not to rely on the WiFi
infrastructure of the building. Thus, to be able to send all of the gathered RSSI data to a central
monitoring server, we developed a Bluetooth-based anchor. The testbed architecture works by
mobile devices sending Bluetooth advertising packets every second and several anchors receive
these packets. In our experiments, the longest communication distance between Bluetooth devices
was 25 m. These anchor nodes compute the RSSI of the received packets by Bluetooth and send them
to a central device using long-range, 900 Mhz communication. The central device is connected to a
server, which will locate the mobile nodes. Figure 4 shows our developed hardware that was used in
the testbed.

Figure 4. Testbed hardware: (a) mobile devices with Bluetooth communication; and (b) anchor nodes
with Bluetooth and 900 Mhz communication (front, opened, back, and installed on the ceiling).

To evaluate the performance of our proposed IPS solution, we carried out a large-scale experiment
in a 43 × 15 m² area composed of 15 spaces (11 rooms and 3 halls), as shown in Figure 5. To cover the
whole area, we deployed 15 anchor nodes fixed on the ceiling of the rooms in locations where it was
somewhat convenient to connect them to the mains supply. It is important to note that to perform
our Model Data Gathering, explained in Section 3.1, we used 8 different mobile devices and collected
samples at 15 different locations. This was done to estimate the path loss exponents among anchors
with a variety of signals from different devices.

However, to understand and evaluate our system results for the whole scenario, we gathered
100 packet samples from evenly spaced, 2 m apart locations, to a total of 150 different test points,
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which are the gray dots in Figure 5. For this, we used another three mobile devices that were different
from the ones used in the Model Data Gathering. Thus, our testing was done with samples from a set
of mobile devices that were not part of the Model Data Gathering. This step is important to ensure
that the proposed system would work on new, never seen, mobile devices. Finally, it is important to
note that these 150 test points data are not required for our PoDME solution, and were only used for
performance evaluation purposes.

15

10

14

03 04

01

13

11

12

02

09 08

05

06

07

Room 01 Room 02 Room 03 Room 04 Room 05 Room 06

Room 07Room 08Room 09Room 10

Room 11

Toilets

Figure 5. Testbed map: 11 rooms, 3 halls, and 15 anchor nodes. 100 packet samples collected from
150 test points.

4.2. Signal Strength Analysis

To better understand the signal propagation behavior in our testbed environment, Figure 6 shows,
for each test point, which anchor nodes received the packets from that point and at which signal
strengths. For this, each anchor was given a different color. The stronger the color, the higher the
signal strength. This map shows which points are covered by which anchors, and also gives us some
insights into the behavior of the IPS. As we will see in the next sections, the lightest points did result in
higher errors.
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Figure 6. Signal characterization of the scenario based on the measurements made empirically.

We then used these RSSI data to estimate the path loss exponent parameter of a fixed, log-distance
propagation model. Our main goal is to allow the visualization of how a propagation model would
compare to our real-world data. Thus, we implemented a simple signal propagation simulator. Figure 7
show the result of our simulation. It is interesting to see that, comparing both maps, we can notice
that, in most parts, the colors seem to match. Even though this result is not scientific, it will help us to
understand some of our obtained results in the next sections.
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Figure 7. Signal characterization of the environment using the signal propagation model.

4.3. Path Loss Exponent Analysis

One of the key points of our PoDME solution is that the path loss model parameters change
throughout the environment and, thus, using a fixed model would result in higher positioning errors.
To depict these changes, Figure 8 shows some of the path loss exponents among the anchor nodes,
as explained in Section 3.2, and based on the anchors of the map in Figure 5. It is important to note that
the lines in this figure are just a small subset of the connectivity among anchors and does not represent
the full connectivity.

As we can see, these values change considerably even among the neighbors of the same anchor.
Even though this is a small set of the path loss exponents, we can see some cases in which the scenario
affects the model parameters. For instance, focusing on Anchor3, we can see that its path loss exponent
to Anchor14 is 3.9, while the exponent between Anchor3 and Anchor13 is higher, at 4.3. Both Anchor14

and Anchor13 are at similar distances from Anchor3, the main difference being that Anchor13 is
shadowed by a corner and also by an extra wall, resulting in a higher path loss exponent.
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Figure 8. Path loss exponents among anchors computed from a real-world experiment. The lines are
just a small subset of the connectivity among anchors and does not represent the full connectivity.

4.4. Choosing the Best Anchors Parameters

Our main parameter for choosing the best anchor nodes is the RSSI values, as explained in
Section 3.3. anchors with higher RSSI values are closer to the mobile device, which leads to lower
distance estimation errors due to the model inaccuracies. To better understand the impact of the choice
based on this criterion, for each sample to be located in our experiment, we computed the device’s
position using all possible combinations of 3 anchors. For each computed position, we saved the
positioning error and the average RSSI value among the three used anchors.

Figure 9 shows our results from the experiment. As expected, anchors with the highest RSSI
values have the lowest average positioning error. However, one interesting aspect that we noticed
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after analyzing the graph, is that the difference between the first and the second bars are higher than
expected. It means that getting slightly farther anchors can increase the positioning error by almost
1 m. It does show that our priority should be using the closest anchors.
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Figure 9. Positioning error by average RSSI. The farther the anchor nodes, the higher the positioning
error. Even slightly farther anchor nodes can increase the positioning error by almost 1 m.

Another key aspect of Choosing the Best Anchors is the equilateral triangle similarity checker,
the ∆ shown in Equation (7). As mentioned, we noticed that even for closer anchors, when their
positions were somewhat collinear, it resulted in considerably higher errors. Again, to better
understand the impact of the anchors choice based on this criterion, for each sample to be located
in our experiment, we computed the device’s position using all possible combinations of 3 anchors.
For each computed position, we saved the positioning error and our equilateral triangle similarity (∆).

As shown in Figure 10, we can see that for ∆ between 0 and 75, we have an average error that does
not change significantly, always below 4 m. However, after this value, the greater the ∆, the greater the
average error. After analyzing these experiments and conduct some tests, we observed that combining
these two criteria (RSSI and ∆) would not yield the best results, since they have different behaviors.
Thus, we decided to use the ∆ value as a filter and established a threshold of 75 for allowing a set of
three anchors to be used in the positioning while prioritizing the closest anchors.
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Figure 10. Positioning error by equilateral triangle similarity. The closer ∆ is from zero, the closer the anchor
nodes are to form an equilateral triangle. For ∆ between 0 and 75, the error does not change significantly.
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4.5. Positioning Error Analysis

As mentioned, for our experiment, we captured RSSI samples in all of the points of the scenario
to allow a fair comparison of the evaluated methods. For all measurements, we saved their correct
positions on the map where the measurement was made, thus allowing us to compare the position
estimated by the models and the actual point position.

We compared our PoDME solution to three variations of a fixed model-based IPS. These variations
use the log-distance path loss propagation model, the same used in our solution, but instead of using a
dynamic path loss exponent (η), they use a fixed value for all scenarios. It is important to note that
the exponent value was computed based on the collected RSSI samples and we confirmed that it was
the best possible fixed exponent, i.e., the one that resulted in the smallest errors. Finally, the main
difference between these three variations and our solution is the choice of the anchors used for the
position computation. While in our solution we used our method explained in Section 3.3, in the fixed
model variations we used other possible solutions found in the literature:

1. Using 3 anchors with the highest RSSI values
2. Using 4 anchors with the highest RSSI values
3. Using all anchors

Using 3 [3,12,33] or all anchor nodes [15,38,39] in the position computation is a solution commonly
found in the literature. However, the main reason we also experimented using the 4 anchors with the
highest RSSIs, is that it could be a simple solution for the problem of anchors with collinear positions.
Thus, as we will see, it resulted in considerably better performance when compared to using 3 anchors.

We first evaluate the average positioning error for each of the methods. As shown in Figure 11a,
PoDME resulted in an average error of 3 m, being the smallest error when compared to the other
approaches. As mentioned, we used a fixed path loss exponent for the fixed model variations. In these
cases, the value was η = 4.2, obtained through the gathered data. Our solution used the dynamic path
loss exponents values chosen based on the region of the three anchors with the highest RSSI values.

The worst results were obtained by the fixed, model-based method using information from
3 anchors with the highest RSSI values. As mentioned, in some cases, the chosen anchors are located
in such a way that make their positions somewhat collinear, increasing considerably the error of the
position estimations. As we can also see in Figure 11a, when we consider just one more anchor in the
position computation we have a reduction of more than half of the error.

Figure 11b shows the average room accuracy. The room accuracy evaluation was done comparing
whether the position estimated by each method was within the room limits where the measurement
was performed. Since all of the models do not take into consideration the walls of the scenario, it is
common for test points near walls to be located outside their rooms. Furthermore, small regions such
as halls, also impact this metric, since the positioning error is greater than their width. However,
as shown in Figure 11b, our proposal resulted in a greater room accuracy of 74.8%. As we will discuss
in our conclusions, in our future work we intend to use a model that also takes into consideration the
walls of the area, aiming at improving this metric.

The results obtained by our solution show that contrary to what it may seem initially if we
continue using only 3 anchors, but considering better criteria for choosing these anchors, we can
considerably reduce the total average error of the system. In Figure 11c, the curve of our solution
(red line) grew the fastest. This means that our results contain the highest number of mobile devices
with the smallest positioning error when compared to the other approaches. In Figure 11d, we can see
that our approach contains most of the positioning errors between 0-4 m, although part of the samples
was still located with higher errors. This happens due to regions of the map that are covered by only
3 anchors, not allowing the choice of other sets that could help in reducing the positioning error.
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Figure 11. Positioning error analysis.

To evaluate the impact of the value used as the path loss exponent, in Figure 11e, we can see the
average positioning error in relation to the use of a fixed path loss exponent value or the use of our
proposed dynamic value. These results show that our proposed dynamic model was able to improve
the accuracy of all evaluated variations of anchor choice. We can also see that our proposed PoDME
solution takes advantage of not only the dynamic model but also the anchors choice, i.e., both aspects
are responsible for improving the accuracy of the solution.

To better understand the behavior of the errors throughout the evaluated scenario, Table 3 shows
the average error obtained by each approach for all rooms in the environment. We can see that the
smallest errors per room vary a lot according to the approach used, that is, each room has its smallest
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error with different approaches. When we use 3 anchors, most measurements in Room 04 have the
anchor nodes 3, 4, and 5 with the strongest signal power values. In this case, their organization on the
map results in a high positioning error, as can be seen in Table 3. When we add an additional anchor
node, the positioning error is drastically reduced. In our solution, even using only three anchors we
obtain a low error as we choose the best anchors that help in the positioning calculation.

In most cases, our PoDME solution resulted in positioning errors close enough to the smallest
error between all approaches. We use values in bold to facilitate comparison. The rooms with higher
errors were rooms 06 and 07, on the right side of the map. The main reason for this is the lack of
anchors coverage in some areas of these rooms, as depicted previously in Figure 7.

Table 3. Table with average error per room comparing the different approaches, highlighting the
smallest mistakes compared to our approach.

Room
3 anchors 4 anchors All anchors

PoDME
Fixed η Dynamic η Fixed η Dynamic η Fixed η Dynamic η

Room 01 3.96 3.10 3.70 3.10 3.72 3.10 3.12
Room 02 3.30 2.86 3.90 3.07 3.90 3.07 3.00
Room 03 2.54 2.64 3.46 2.77 4.02 3.01 2.64
Room 04 48.52 35.21 6.27 5.50 3.59 3.98 3.67
Room 05 3.47 3.06 3.26 2.97 3.54 3.37 3.00
Room 06 3.58 4.31 3.13 4.13 4.29 4.13 4.32
Room 07 3.86 4.63 3.34 4.42 2.75 4.21 4.29
Room 08 2.77 3.16 2.38 2.49 3.07 2.61 2.39
Room 09 5.88 6.21 3.87 3.82 2.60 2.63 2.60
Room 10 4.51 3.35 3.90 2.89 3.23 2.58 2.70
Room 11 2.76 2.37 3.20 2.86 3.20 3.56 2.24

Hallway 1 7.24 8.47 3.38 3.45 4.49 3.92 3.39
Hallway 2 3.25 2.73 2.22 2.02 3.34 2.18 2.23
Hallway 3 5.5 7.43 6.02 4.37 5.69 4.32 3.86

Average 8.43 m 7.22 m 3.73 m 3.48 m 3.57 m 3.35 m 3.00 m

Finally, in order to better visualize the data in Table 3, Figure 12 shows a heatmap of the errors
in the whole scenario. Darker red colors indicate the areas with the highest errors. In this heatmap,
we can notice another problematic region of the scenario, which is the hall near Anchor13. In this area,
especially towards the bottom of the map, the other anchors (besides 13), are far from the hall which,
combined with the walls in the area, resulted in a worse performance. This lack of anchors coverage
can also be noticed in Figure 7.
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Figure 12. Heatmap of the average errors for each test point in the scenario.
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5. Applicability of the Proposed Solution

It is known that fingerprint-based solutions [21–23,40] are among the most precise solutions
for IPSs. However, they require an extensive training phase, making them basically impractical for
medium to large-scale settings. One can argue that our proposed PoDME solution also has a training
phase, which would be the Model Data Gathering (explained in Section 3.1). However, in our solution,
we do not train all possible reference points of the environment but, rather, only a single point for
each anchor.

As a comparison, in the experiments explained in Section 4 and depicted in Figure 5, we only
needed to collect some samples from 15 different locations to generate our model. This can be done
in fewer than 15 minutes since it does not require many samples. For a fingerprint-based solution,
it would be required to train at least all of the 150 tested locations in our experiments. It took us
several days to have unimpeded access to the rooms and collect enough data from all of the points.
Also, the number of reference points increases drastically as the scenario increases.

In addition, our Model Data Gathering could be done automatically by the anchors, by modifying
them to send data packets among themselves, as done by some works in the literature [31,32]. However,
we do not think that this would be the best solution, since the signal strengths from packets exchanged
between the anchors, which are all located in the ceiling, would differ significantly from the packets
sent by the mobile nodes, which would be located in a mid-height. The main reason for this is the
interference caused by the ceiling itself. Thus, we argue that our proposed Model Data Gathering
would yield the best results, with little to no extra work when compared to other model-based IPSs.

Finally, as in most model-based IPSs [9,12,13,33], our solution also requires the prior knowledge
of the anchor nodes positions, which is an extra step not required by fingerprint-based solutions.
However, this information can be easily obtained through the site plan, since these positions do not
need to be GPS-based. Also, if we aim at showing the location of the mobile nodes in a map application,
this map would already be available.

6. Conclusions

In this paper, we propose and evaluate a new model-based IPS, in which the parameters of the
model are dynamically estimated using the RSSI information from the best anchor nodes that received
the packet sent by the mobile device we want to locate. Thus, for each packet sent by the mobile
device, depending on its location, we have a different propagation model that will be used to estimate
distances and, then, positions. The main goal of our proposed solution is to be implemented in medium
to large-scale scenarios, in which a fingerprint-based solution would be hard or unfeasible to train
and, also, a fixed, model-based solution would result in higher errors due to the fixed parameters of
the model for the whole scenario. We also aim at applications in which mobile devices are highly
energy-efficient such as small, battery-powered, sensor-based smartwatches, to be easily worn by
people inside buildings such as the elderly in retirement homes.

Thus, we implemented a complete large-scale, Bluetooth-based testbed using custom-made
hardware to evaluate the performance of our solution and compare it to traditional fixed, model-based
solutions used by the current literature. Our experiments show a significant contribution in two of
the main parts of our solution: the best anchors choice algorithm and the dynamic model estimation.
When combined, our final solution resulted in an average error of 3 m, a 17% decrease when compared
to the best experimented parameter of a fixed model-based IPS, that had an error of 3.6 m.

Even though we used the log-distance propagation model, our solution can also be applied to
any other propagation model. In future work, we intend to experiment mainly with models that take
into consideration the walls of the scenario. We also aim at proposing better algorithms for choosing
the best anchor nodes by also taking advantage of the walls’ information. Finally, we will perform
additional experiments to propose better solutions for the tested points located in small rooms, halls,
and areas with less anchors coverage, since these were the areas that resulted in greater positioning
errors and lower room accuracies.
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