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Abstract

This study considered the problem of predicting survival, based on three alternative models: a single Weibull, a
mixture of Weibulls and a cure model. Instead of the common procedure of choosing a single “best” model, where
“best” is defined in terms of goodness of fit to the data, a Bayesian model averaging (BMA) approach was adopted to
account for model uncertainty. This was illustrated using a case study in which the aim was the description of
lymphoma cancer survival with covariates given by phenotypes and gene expression. The results of this study indicate
that if the sample size is sufficiently large, one of the three models emerge as having highest probability given the
data, as indicated by the goodness of fit measure; the Bayesian information criterion (BIC). However, when the sample
size was reduced, no single model was revealed as “best”, suggesting that a BMA approach would be appropriate.
Although a BMA approach can compromise on goodness of fit to the data (when compared to the true model), it can
provide robust predictions and facilitate more detailed investigation of the relationships between gene expression
and patient survival.

Keywords: Bayesian modelling; Bayesian model averaging; Cure model; Markov Chain Monte Carlo; Mixture model;
Survival analysis; Weibull distribution

Introduction
Modelling survival data plays an important role in the
application of statistics in medicine and health science.
In addition to a nonparametric formulation, there are
many parametric models available for describing survival,
including models based on a single distribution such as
the Exponential and Weibull, mixture models based for
example on mixtures of distributions and a mixture of
susceptible and insusceptible individuals or so-called cure
models which account for a fraction of the patients being
cured from the disease. Given the wealth of models, the
dilemma that is faced by many practitioners is the choice
of a survival model.
The problem of model selection is abundant throughout

the literature. This includes both covariate selection and
choice of the model itself. Some of the methods are based
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on a series of significance tests while others fit more com-
prehensive models; some include prior information; some
use analytic or approximate methods of estimation while
others use Markov Chain Monte Carlo (MCMC) meth-
ods; different approaches use different optimisation or
model comparison criteria such as Bayes factors (Raftery
1996). For example, McGrory and Titterington (2007)
showed how variational techniques can be used to extend
the deviance information criterion (DIC) to include the
comparison of mixture models, while Basu and Tiwari
(2010) used Bayes factors to compare the various model
structures in breast cancer survival data.
Recently, Bonato et al. (2011) proposed Bayesian ensem-

ble methods to obtain better survival prediction in high-
dimensional gene expression data. Regardless of the
method, the most common approach is to choose a sin-
gle model based on the adapted optimisation or model
choice criterion. However, if a single model is selected,
then inferences are conditional on the selected model,
and model uncertainty is ignored which often leads to
excessively narrow or misleading inferences (Hjort and
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Claeskens 2003; Raftery et al. 1997). This difficulty can be
overcome by combining the information provided by all
suitable models into the analysis. The most common way
of achieving this is to use a form of model averaging. From
a Bayesian point of view, this averaging is applied such
that the posterior distribution of the quantity of interest is
obtained over the set of suitable models, weighted by the
respective posterior model probabilities (Raftery 1996).
Draper (1995) and Raftery (1995) reviewed Bayesian

model averaging (BMA) and the cost of ignoring model
uncertainty. Madigan and Raftery (1994) also consid-
ered BMA by using Occam’s razor and Occam’s window
approaches to reduce the number of candidate models.
Yuan and Yin (2011) used model averaging procedures to
make more robust inferences regarding the dose-finding
design for phase I clinical trials. Pramana et al. (2012)
focused on the case in which several parametric models
are fitted to gene expression data and discussed model
averaging techniques for the estimation of dose-response
models.
In this paper, we consider the problem of predicting sur-

vival, based on three alternatives models; a single Weibull,
a mixture of Weibulls and a cure model. The Weibull dis-
tribution is a popular parametric distribution for describ-
ing survival times (Dodson 1994). Given the variety of
shapes that can be described by the probability density
function (pdf) and the simple representation of the sur-
vival function, theWeibull distribution has been used very
effectively for analysing lifetime data, particularly when
the data are censored, which is very common in most life
testing experiments (Collet 1994; Kundu 2008).
Given the nature of microarray data to describe biolog-

ical systems and outcomes of patients, and the potential
of these covariates to produce more precise inferences
about survival, the use of a single parametric distribution
to describe survival time may not be adequate. Microar-
ray data may enable the description of several homoge-
neous subgroups of patients with respect to survival time.
This paper therefore also considered a mixture of Weibull
models for precise estimation and prediction of survival.
Mixture models can be used to describe a population con-
sisting of several disjoint groups, where each group is
assigned its own distribution, weighted by the probabil-
ity of an individual from the overall population belonging
to that group. This model thus provides a convenient and
flexible mechanism for identification and estimation of
distributions which are not well modelled by any standard
parametric family (Stephens 1997). In the study consid-
ered here, the mixture is assumed to comprise a known
number of Weibull distributions, with potentially differ-
ent parameters. Most approaches to the analysis of time to
event data implicitly assume all individuals will experience
the event of interest. However, there are situations when
a proportion of individuals are not expected to experience

the event of interest; that is, those individuals are often
referred to as immune, cured or nonsusceptible (Ibrahim
et al. 2001). To address this issue, cure rate models are
considered, which are survival models incorporating a
cure fraction. These models, which can be considered as
a form of mixture model with one component degener-
ating to a point mass, extend the understanding of time
to event data by allowing the formulation of more accu-
rate and informative conclusions about the two groups of
subjects.
Finally, instead of adopting the usual practice of choos-

ing a single “best” model, where “best” is defined in terms
of the probability of the model given the data, a BMA
approach was adopted to account for model uncertainty in
the prediction of the response. We illustrate the approach
using a microarray dataset.
The paper is organised as follows. In Section “Methods”,

we define BMA. The three competing models are
described in a Bayesian framework in Section “Models”.
The computational approach for estimation is also pre-
sented in this section. In the Section “Application to
gene expression data”, we illustrate the model using a
case study. The results are discussed further in Section
“Discussion”.

Methods
The key elements of BMA were discussed by Raftery
(1995). He suggested weighting each model by the poste-
rior model probabilities derived from a Bayesian analysis.
Assume that there are S models being considered, for
s = 1, 2, . . . , S, each with parameter set θs based on dataD.
Let � be the quantity of interest; this could represent, for
example, the posterior predictive distribution of y. Hence,
the posterior distribution of� given dataD (Hoeting et al.
1999) is

p(� | D) =
S∑

s=1
p(� | S = s,D)p(S = s | D),

where p(S = s | D) is the posterior probability of a
particular model being true, defined as

p(S = s | D) = p(D |S = s)p(S = s)∑S
s=1 p(D |S = s)p(S = s)

, s = 1, 2, . . . , S,

where p(D | S = s) = ∫
p(D | θs, S = s)p(θs | S = s)dθs.

Here, p(D | S = s) is the marginal likelihood of the data
D given model S = s and p(θs | S = s) is the prior density
of θs given model S = s. p(S = s) is the prior probability
that model s is the true model (Hoeting et al. 1999).
Given a model selection problem in which we have to

choose between two models, the plausibility of the two
different models S1 and S2 is assessed by the Bayes factor
as the ratio of posterior model probabilities.
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The main detractor from using Bayes factors is that
they are, in general, difficult to compute. Raftery (1995)
proposed using the Bayesian information criterion (BIC)
(Schwarz 1978) as an approximation. Buckland et al.
(1997) and Claeskens and Hjort (2008) discussed the
utilization of BIC in BMA. Buckland et al. (1997) pro-
posed simpler methods in which weights are based upon
the penalised likelihood functions formed from the AIC
(Akaike 1973).
The starting point for Burnham and Anderson’s model

selection theory is the Kullback-Leibler (KL) information
given by Burnham and Anderson (2002) and Claeskens
and Hjort (2008):

I(f | q) =
∫

f (x) log
f (x)

q(x | θs)
dx,

where f represents the density function of the true and
unknown model, q represents the density function of the
model that is used to approximate f, and θs is a vector of
the unknown parameters to be estimated. The notation
I(f | q) denotes the information lost when q is used to
approximate f or the distance from q to f. For a given set
of models, one can compare the KL information for each
model and select the model that minimises the informa-
tion loss across the considered set of models (Burnham
and Anderson 2002; 2004). However, in practice I(f | q)
cannot be computed since the true model f is unknown.
Schwarz (1978) and Burnham and Anderson (2002) made
the link between the KL information and likelihood the-
ory, and showed that the expected KL information can be
expressed as

E(KL) = − log p(D | θ̂s, S = s) + ds log(n),

where p(D | θs) is the likelihood, ds is the number of
parameters in the model and n is the number of uncen-
sored observations in a survival context (Volinsky and
Raftery 2000). A Laplace approximation, typically the BIC
(Schwarz 1978), can be used to approximate p(D | S = s)
(Clyde 2000; Hoeting et al. 1999; Jackson et al. 2009; Yuan
and Yin 2011):

log (p(D | S = s)) ≈ log p(D | θ̂s, S = s) − ds log(n),
BIC = −2 log p(D | θ̂s, S = s) + ds log(n).

(1)

Here log p(D | θ̂s, S = s) is the maximised log-likelihood
of model s, which estimates goodness of fit of the data.
Schwarz (1978) and Burnham and Anderson (2002) pro-

posed the likelihood of the model given the data, using θ̂s
defined by

p(D | θ̂s, S = s) ∝ e0.5×BIC . (2)

The BMA weight for the sth model (Jackson et al. 2009;
Yuan and Yin 2011) is therefore given by

p(S = s | D) = exp(− 1
2BICs)p(S = s)∑S

s=1 exp(− 1
2BICs)p(S = s)

.

The BMAweight can be interpreted as the weight of the
evidence thatmodel s is truemodel given a set of Smodels.
For the case in which there is no information about prior
probabilities, we can let p(S = s) be equal for all candidate
models (1/S), indicating no prior preference for any of the
models (Jackson et al. 2009; Pramana et al. 2012). The
model with the largest BMA weight will be considered as
the best model. Therefore, p(S = s | D) is also an approx-
imation to the posterior probability of the model s being
correct (Schwarz 1978). A smaller BIC value indicates a
better model fit, accounting for model complexity.
Let f̃sj be the jth simulated observation from the sth

model. Then the mean of f from the BMA model, ( f̄ MA),
can be calculated as follows

f̄MA =
⎛
⎝ N∑

j=1

S∑
s=1

ws f̃sj

⎞
⎠ /N ,

where N is the number of simulated observations and
ws = p(S = s | D) is the BMA weight, defined previously.

Models
Weibull model
In this section, we define the Weibull model for analysing
survival of patients in the context of human health. We
confine ourselves to survival times that are the difference
between a nominated start time and a declared failure
(uncensored data) or a nominated end time (censored
time). Let T be a nonnegative random variable for a per-
son’s survival time and t be a realisation of the random
variable T. Kleinbaum and Klein (2005) give some rea-
sons for the occurrence of right censoring in survival
studies, including termination of the study, drop outs,
or loss to follow-up. For the censored observations, one
could impute the missing survival times or assume that
they are event-free. The former is often difficult, espe-
cially if the censoring proportion is large, and extreme
imputation assumptions (such as all censored cases fail
right after the time of censoring) may distort inferences
(Leung et al. 1997; Stajduhar et al. 2009). In this study,
we treat all censored cases as event-free regardless of
observation time.
Initially, we assume that we observe survival times t of

patients possibly from a heterogeneous population. The
two-parameter Weibull density function for survival time
is given by

W (t | α, γ ) = αγ tα−1 exp
(−γ tα

)
,
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for α > 0 and γ > 0, where α is a shape parameter and γ

is a scale parameter (Ibrahim et al. 2001).
Since the logarithm of the Weibull hazard is a linear

function of the logarithm of time, it is more convenient
to write the model in terms of the parameterisation λ =
log(γ ) (Ibrahim et al. 2001), so that:

f (t | α, λ) = αtα−1 exp(λ − exp(λ)tα),

where t > 0, α > 0 and γ > 0.
The corresponding survival function and the hazard

function, using the λ parameterisation, are as follows:

S(t | α, λ) = exp(− exp(λ)tα),
h(t | α, λ) = f (t | α, λ)/S(t | α, λ) = α exp(λ)tα−1.

We now assume that we observe possibly right-censored
data for n subjects; y = (y1, . . . , yn) where yi = (ti, δi) and
δi is an indicator function such that (Marin et al. 2005a):

δi =
{
1, if the lifetime is uncensored, i.e., Ti = ti.
0, if the lifetime is censored, i.e., Ti > ti.

(3)

Let xij be the j th covariate associated with ti for
j = 1, 2, . . . , p + 1. In our case study, xij indicates the p
gene expressions fromDNAmicroarray data, and xi0 indi-
cates the multi-category phenotype covariate. The data
structure is as follows:⎡

⎢⎢⎢⎢⎢⎣

Survival time
t1
t2
...
tn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

Category Gene 1 . . . Gene p
x10 x11 . . . x1p
x20 x21 . . . x2p
...

...
...

...
xn0 xn1 . . . xnp

⎤
⎥⎥⎥⎥⎥⎦ .

The gene expression data can be included in the model
through λ (Thamrin et al. 2013). Given that λ must be
positive, one option is to include the covariates as follows:

γi = exp(x′
iβ), so that

λi = log(γi) = x′
iβ .

(4)

Thus, the log-likelihood function becomes:

log L(α,β | D) =
n∑

i=1
δi

(
log(α) + (α − 1) log(ti) + x′

iβ
)

− exp(x′
iβ)tαi .

We assume that (α, λ) are independent a priori (Marin
et al. 2005a), and assign Gamma distributions. Thus, the
priors are now given by:

α ∼ Gamma(uα , vα)

λi ∼ Normal(x′
iβ , σ 2)

β ∼ Normal(0,�),

and we allow � to be diagonal with elements σ 2
j , j =

1, 2, . . . , p.

Diffuse priors are represented by large positive values
for σ 2, and small positive values for uα and vα .
The joint posterior distribution of (α,β) is given by:

p(α,β | D) ∝ L(α,β | D)p(α)p(β)

∝ αα0+d−1 exp
{ n∑

i=1

(
δix′

iβ + δi (α − 1) log (ti)

− tαi exp
(
x′
iβ

))
− b0α − 1

2
(β − μ0)	−1

0 (β − μ0)

}
,

d =
n∑
i

δi.

MCMC analysis is performed by sampling from the con-
ditional distributions of the parameters. The conditional
distribution of α does not have an explicit form but can
be sampled from MCMC algorithms such as Metropolis
Hastings or slice sampling (Gilks et al. 1996).

Weibull mixture model
We define the Weibull mixture model for analysing sur-
vival data. A mixture of K Weibull densities (Marin et al.
2005a) is defined by

f (t | K ,w,α, γ ) =
K∑

m=1
wmW (t | αm, γm), (5)

where α = (α1, . . . ,αK ), γ = (γ1, . . . , γK ) are the parame-
ters of each Weibull distribution and w = (w1, . . . ,wK ) is
a vector of nonnegative weights which sum to one.
The corresponding survival function S(t | K ,w,α, γ )

and hazard function h(t | K ,w,α, γ ) are as follows:

S(t | K ,w,α, γ ) =
K∑

m=1
wm exp

(−γmtαm
)
,

h(t | K ,w,α, γ ) = f (t | K ,w,α, γ )/S(t | K ,w,α, γ ).

We now assume that we observe possibly right-censored
data for n patients; y = (y1, . . . , yn) where yi = (ti, δi) and
δi is an indicator function as described in Section “Weibull
model”.
Let xij be the jth covariate associated with patient i,

for j = 1, 2, . . . , p. In our application, xij could indicate,
for example, the gene expressions. The covariates can be
included in the model as follows (Farmomeni and Nardi
2010)

log(γm) = x′
iβm = λm, (6)

where xi = (xi1, . . . , xip), γm = (γ1m, . . . , γpm) and βm =
(β1m, . . . ,βpm), for i = 1, 2, . . . , n andm = 1, 2, . . . ,K .
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Thus, the likelihood function becomes:

L (w,α, γ | K , ti, δi, x) ∝
n∏

i=1

[
f (ti | K ,w,α, γ , x)δi

× S (ti | K ,w,α, γ , x)1−δi
]

Here, the incomplete information is modelled via the
survivor function, which reflects the probability that the
patient was alive for duration greater than ti.
The following prior distributions are placed on the

parameters w and α:

w | K ∼ Dirichlet(φ1, . . . ,φK ),φm = φ,∀m = 1, 2, . . . ,K .
αm ∼ Gamma(uα , vα),m = 1, 2, . . . ,K .

For a model without covariates, we employ the following
prior for γm.

γm ∼ Gamma(uγ , vγ ),m = 1, 2, . . . ,K .

We chose small positive values for uα , vα ,uγ , vγ to
express vague prior knowledge about these parameters
and we set φ = 1 (Marin et al. 2005a). For a model with
covariates, we employ a multivariate normal prior on βm,
so that

βm | K ∼ N(0,�),

and we allow � to be diagonal with elements σ 2
j , j =

1, 2, . . . , p. Again, we express a vaguely informative prior
by setting a large positive value for σ 2

j . The diagonal matri-
ces were used here but this changed recently (Bhadra
and Mallick 2013), so one may argue that a non-diagonal
variace-covariance matrix may be more appropriate.
The model described in this section can be fitted using

MCMC sampling with latent values Zi to indicate com-
ponent membership of the ith observation (Diebolt and
Robert 1994; Robert and Casella 2000). Since wm =
Pr(Zi = m), we can write Zi ∼ M(w1, . . . ,wK ). In
this scheme, the Zi are sampled by computing poste-
rior probabilities of membership, and the other parame-
ters are sampled from their full conditional distributions.
This was implemented in theWinBUGS software package
(Spiegelhalter et al. 2002).
The WinBUGS software (Lunn et al. 2000; Ntzoufras

2009; Spiegelhalter et al. 2002) is an interactive Windows
version of the BUGS program for Bayesian analysis of
complex statistical models using MCMC techniques.
Label switching, caused by non-identifiability of the

mixture components, was dealt with post-MCMC using
the reordering algorithm of Marin et al. (2005b). The
algorithm proceeded by selecting the permutation of com-
ponents at each iteration that minimised the vector dot
product with the so-called “pivot”, a high density point
from the posterior distribution. The MCMC output was
then reordered according to each selected permutation.
In this paper, the approximate maximum a posteriori

(MAP) (i.e. the realization of parameters corresponding
to the MCMC iterate that maximised the unnormalised
posterior) was chosen as the pivot.

Cure model
As in Section “Weibull model”, we observe time to the
event of interest for n independent subjects, and we let
(ti, δi) denote the observed time and the event indicator
for the i-th observation. Let S1(t) be the survivor function
for the entire population, S∗(t) be the survivor function
for the non-cured group in the population, and π be the
cure rate function. Then the standard cure rate model is
given by:

S1(t) = π + (1 − π)S∗(t). (7)

The commonly used parametric distributions include
Exponential and Weibull for S∗(t).
As in Yakovlev and Tsodikov (1996), Chen et al. (1999)

and Ibrahim et al. (2001), for an individual in a popula-
tion, let N denote the number of latent variables. Assume
that N has a Poisson distribution with mean θ . Let Zi, i =
1, . . . ,N denote the random time, where Zi are indepen-
dently and identically distributed (i.i.d.) with a common
distribution function F(t) = 1 − S(t). Also, assume that
Zi are independent of N. The time to event can be defined
by the random variable Y = min(Zi, 0 ≤ i ≤ N), where
P(Z0 = ∞) = 1. Hence, the survival function for the
population is given by

Spop(t) = P(N = 0) + P(Z1 > t, . . . ,ZN > t,N ≥ 1)

= exp(−θ) +
∞∑
k=1

[S(t)]k
θk

k!
exp(−θ)

= exp(−θF(t)).
(8)

A corresponding cure fraction in model (8) is
limt→∞ Spop(t) = exp(−θ) > 0. We also know from
(8) that the cure fraction is given by Spop(∞) = P(N =
0) = exp(−θ). As θ → ∞, the cure fraction tends
to 0, whereas as θ → 0, the cure fraction tends to 1.
Corresponding population density and hazard func-
tions are fpop(t) = − d

dt Spop(t) = θ f (t) exp(−θF(t)) and
hpop(t) = θ f (t), respectively.
The proportional hazards structure with the covariates

is modelled through θ (Chen et al. 1999; Ibrahim et al.
2001). The population survival function (8) can be written
as

Spop(t) = exp(−θ) + [
1 − exp(−θ)

]
S∗(t),

where S∗(t) = exp(−θF(t))−exp(−θ)
1−exp(−θ)

, and f ∗(t) =
exp(−θF(t))
1−exp(−θ)

θ f (t).
Following Chen et al. (1999) and Ibrahim et al. (2001),

we construct the likelihood function. Suppose we have n
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subjects and we assume that the Ni are i.i.d with Poisson
distributions with means θi, i = 1, . . . , n. Let Zi1, . . . ,ZiN
denote the times for the Ni competing causes, which are
unobserved, and which have a cumulative distribution
function, F(.). In this section, we will specify a parametric
form for F(.) that is aWeibull distribution. Letψ = (α, λ)′,
where α is the shape parameter and λ is the scale param-
eter. We incorporate covariates for the cure rate model
through the cure parameter θ and we have a different cure
rate parameter, θi, for each subject.
Let x′

i = (xi1, . . . , xik) denote the k x 1 vector of covari-
ates for the ith subject, and let β = (β1, . . . ,βk) denote the
corresponding vector of regression coefficients. We relate
θ to the covariates by θi = exp(x′

iβ). Let ti denote the sur-
vival time for subject i, which is right censored, let Ci be
the censoring time, and let δi be the censoring indicator,
assuming 1 if Ti is a failure time and 0 if it is right cen-
sored. The observed data are D = (n, t, δ,X), where t =
(t1, . . . , tn)′, δ = (δ1, . . . , δn)′ and X = (x1, . . . , xn)′. The
complete data are given byDc = (n, t, δ,X,N), whereN =
(N1, . . . ,Nn)′. The complete-data likelihood function of
the parameter (ψ ,β) can be written as

L(ψ ,β | Dc) =
{ n∏
i=1

S(ti | ψ)Ni−δi(Nif (ti | ψ))δi

}

× exp
{ n∑

i=1
Ni log(θi) − log(Ni! ) − nθi

}
.

(9)

Again, we assume independent priors for β and ψ , where
α ∼ Gamma(aα , bα), λ ∼ N(μλ,�λ) and β ∼ N(μβ ,�β).
We also assume p(α, λ) = p(α | δ0, τ0)p(λ), p(α | δ0, τ0) ∝
αδ0−1 exp(−τ0α), and the hyperparameters (δ0, τ0) are
specified (Chen et al. 1999; Ibrahim et al. 2001).
Combining these specifications with the likelihood

function (9), the joint posterior distribution of (α, λ,β)

becomes

p(α, λ,β | D)∝
n∏

i=1
(θif (ti |α, λ))δi exp(−θi(1−S(ti | α, λ)))

× p(α | δ0, τ0)p(α, λ)p(β).
(10)

The joint posterior density of (α, λ,β) in equation (10) is
analytically intractable because the integration of the joint
posterior density is not easy to perform. Hence, inferences
are based on MCMC simulation methods. We can use,
for example, the Metropolis-Hastings algorithms or slice
sampling to simulate samples of α, λ and β . MCMC com-
putations were implemented using the WinBUGS system
(Spiegelhalter et al. 2002).

Application to gene expression data
DLBCL dataset
We applied the proposed method of model averaging
across the three candidate survival models to a dataset
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Figure 1 Kaplan-Meier estimates of overall survival according to the gene-expression subgroups.
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containing gene expression of Diffuse Large B-cell Lym-
phoma (DLBCL). The dataset comprises gene expression
measurements and survival times of patients with DLBCL
(Rosenwald et al. 2002). DLBCL (Lenz et al. 2008) is a
type of cancer of the lymphatic system in adults which can
be cured by anthracycline-based chemotherapy in only
35 to 40 percent of patients (Rosenwald et al. 2002). In
general, types of this disease are very diverse and their
biological properties are largely unknown, meaning that
this is a relatively difficult cancer to cure and prevent.
Rosenwald et al. (2002) proposed that there are three
phenotypes subgroups of patients of DLBCL: activated
B-like DLBCL, germinal centre (GC)-B like and type III
DLBCL. The GC B-like DLBCL is less dangerous than
the others in the progression of the tumour; the acti-
vated B-like DLBCL is more active than the others and
the type III DLBCL is the most dangerous in the pro-
gression of tumour (Alizadeh et al. 2000). These groups
were defined usingmicroarray experiments and hierarchi-
cal clustering. The authors showed that these phenotypes
subgroups were differentiated from each other by dis-
tinct gene expressions of hundreds of different genes and
had different survival time patterns. This dataset contains
219 patients with DLBCL, including 138 patient deaths
during follow-up. Patients withmissing values for a partic-
ular microarray element were excluded from all analyses
involving that element.
Based on patterns of gene expression in biopsy speci-

mens of the lymphoma, Rosenwald et al. (2002) analysed
this dataset to predict the likelihood of patients’ sur-
vival after chemotherapy for DLBCL. By using a Cox
proportional-hazardsmodel, Rosenwald et al. (2002) iden-
tified five individual gene expressions which correlated
with the survival after chemotherapy. These gene expres-
sions are germinal center B-cell (GC-B), lymphoma node,
proliferation, BMP6 and MHC. In this study, these five
gene expressions are used as covariates for estimating
survival times based on the three competing models in
Section “Models”.

Results
As discussed in Section “Methods”, to account for model
uncertainty, the model averaging technique which com-
bines estimates from different survival models was carried
out. This was accomplished through a weighted average of
the survival considered in the analysis. First, we calculated
the Kaplan-Meier estimates of overall survival accord-
ing to the gene expression and the relation between the
gene expression score and the subgroups phenotype of
DLBCL. We confirmed that these phenotypes had differ-
ent survival time patterns (Figure 1). Following this, we
fitted the three models to all gene expression data and
to the three phenotype subgroups. We then applied the
BMA approach described in Section “Methods”. For each

model, we ran the corresponding MCMC algorithm for
100 000 iterations, discarding the first 10 000 iterations as
burn-in.
Table 1 shows the estimated posterior mean of the

parameters, the 95% credible intervals (CI), the BIC val-
ues and the BMA weights for each of the fitted models
for the whole dataset. The BMA weights reflect the rel-
ative posterior probability of the models. As can be seen
from Table 1, for the Weibull model, there are three genes
that substantially describe patients’ survival times, namely
GC-B (β1), lymphoma node (β2) and MHC (β5). These
three genes have a negative effect on the expected survival

Table 1 The estimated posterior mean of the parameters,
the 95% credible intervals (CI), the BIC values and the BMA
weights for each of the fittedmodels for the full DLBCL
dataset

Model Parameter Mean 95% CI BIC Weight

Weibull α 0.7305 (0.626,0.840) 687.0953 0.0009

β0 -1.578 (-1.84, -1.33)

β1 -0.3446 (-0.516, -0.172)

β2 -0.2844 (-0.454, -0.116)

β3 0.2097 (-0.049, 0.468)

β4 0.3292 (0.115, 0.537)

β5 -0.3019 (-0.488, -0.112)

Mixture α1 4.029 (2.411, 6.631) 734.0054 ≈ 0

α2 0.7707 (0.662, 0.885)

β01 6.857 (5.479, 8.205)

β02 -1.724 (-2.007, -1.457)

β11 -11.62 (-12.88, -10.35)

β12 -0.3956 (-0.575, -0.216)

β21 -2.087 (-3.54, -0.689)

β22 -0.3172 (-0.495, -0.143)

β31 -2.241 (-3.425, -1.059)

β32 0.1972 (-0.064, 0.461)

β41 -0.2849 (-1.434, 0.854)

β42 0.3594 (0.141, 0.574)

β51 -0.7928 (-2.107, 0.477)

β52 -0.3102 (-0.500, -0.115)

π1 0.01992 (0.002, 0.053)

π2 0.9801 (0.946, 0.997)

Cure α 0.9884 (0.828, 1.145) 673.1359 0.9991

β0 0.1611 (-0.124, 0.560)

β1 -0.3151 (-0.484, -0.144)

β2 -0.2821 (-0.451, -0.115)

β3 0.189 (-0.070, 0.442)

β4 0.3303 (0.118, 0.539)

β5 -0.3039 (-0.490, -0.112)



Thamrin et al. SpringerPlus 2013, 2:665 Page 8 of 13
http://www.springerplus.com/content/2/1/665

time. For the mixture model, GC-B (β1), lymphoma node
(β2) and proliferation (β3) accounted for patients’ survival
times in the first component. In the second component,
GC-B (β1), lymphoma node (β2) and MHC signature (β5)
substantially explained patients’ survival times. All these
genes have negative effects on the expected survival time
for their respective component. For the cure model, four
of these genes substantially describe patients’ survival
times, namely GC-B (β1), lymphoma node (β2), BMP6
(β4) and MHC (β5) signature. Three of these, namely GC-
B (β1), lymphoma node (β2) andMHC signature (β5), have
a negative effect on the expected survival time. Under the
cure model, approximately 33.8% of the patients are cured
of DLBCL (Figure 2).
This is clearly exhibited in Table 1, which shows that

the cure model has the largest posterior model probability
(or BMA weight). To evaluate the model fit, a comparison
of predicted values under the models and of the observed
data was carried out.
Table 2 shows the 95% credible intervals (CI), BIC val-

ues and the BMA weights for each of the models based
on phenotype for the DLBCL dataset. In general, for all
phenotypes, the mixture model is not favourable as its
weight is approximately equal to zero and it has the largest
BIC value. On the other hand, the BIC values of the other
two models are close to each other, suggesting a combi-
nation of these two models in order to account for the
uncertainty in the prediction of survival.
From Tables 1 and 2, we can see that the Weibull model

is better than a two-component Weibull mixture model.

As can be seen in Figure 3, in the full DLBCL dataset,
the predicted curve for the cure model is quite close
to the observed data, suggesting a good fit of the data.
Specifically, in this model, 94.3% of observed survival
times in the dataset fall in the corresponding 95% poste-
rior prediction intervals. As expected, this is quite simi-
lar to the result obtained from model averaging (91.9%)
(Table 3).
Furthermore, in the GCB phenotype, the genes corre-

sponding to the BMP6 (β4) andMHC signature (β5) in the
Weibull model and MHC signature (β5) in the cure model
substantially affect patients’ survival time. In the ABC
phenotype, in the Weibull model, with the exception of
proliferation (β3), all genes were involved substantially in
the description of patients’ survival and lymphoma node
(β2), BMP6 (β4) and MHC signature (β5) are potentially
important prognostic factors for predicting survival in the
cure model. For the type III phenotype, the GC-B gene
(β1) in both models and only the BMP6 gene (β4) in the
cure model are substantial in explaining the survival times
of the patients.
Under the cure model, in the GCB phenotype, approx-

imately 33.2% of the patients are estimated to be cured
of DLBCL. In the ABC and type III phenotypes, the
respective cure rates are approximately 26.6% and 18.7%
(Figure 2).
The results of the posterior densities prediction for

the individual models and the model averaged predic-
tion based on these three phenotypes are presented in
Figure 3. In comparison to other models, the mixture

abc all gcb type3
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Figure 2 Box-plots of the cure rates (posterior distribution of π ) for the full DLBCL dataset, and to each of the three phenotypes (ABC,
GCB and Type III).
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Table 2 The estimated posterior mean of parameters, the 95% CI, BIC values and the BMAweights for each of themodels
based on phenotype for the DLBCL dataset

Phenotype Model Variable Parameter Mean 95% CI BIC Weight

GCB Weibull α 0.692 (0.5365, 0.8595) 341.212 0.497

Intercept β0 -1.649 (-2.185, -1.17)

GCB β1 -0.179 (-0.5859, 0.239)

Lymphoma β2 -0.118 (-0.3958, 0.1607)

Proliferation β3 0.459 (-0.0306, 0.934)

BMP6 β4 0.414 (0.01773, 0.809)

MHC β5 -0.325 (-0.6389, -0.01228)

Mixture α1 4.252 (2.591, 7.175) 377.759 ≈ 0

α2 0.816 (0.6209, 1.032)

Intercept β01 6.491 (5.246, 7.781 )

β02 -2.152 (-2.798, -1.567)

GCB β11 -11.81 (-13.05, -10.53)

β12 -0.030 (-0.5104, 0.4592)

Lymphoma β21 -1.839 (-3.082, -0.6744)

β22 -0.134 (-0.48, 0.2254)

Proliferation β31 -2.165 (-3.313, -0.9932)

β32 0.588 (-0.07796, 1.407)

BMP6 β41 -0.242 (-1.357, 0.8482)

β42 0.654 (0.17, 1.161)

MHC β51 -0.629 (-1.993, 0.5117)

β52 -0.382 (-0.7687, -0.002227)

φ1 0.090 (0.02007, 0.1863)

φ2 0.91 (0.8137, 0.9799)

Cure α 0.845 (0.6075, 1.1) 341.188 0.503

Intercept β0 0.604 (-0.3556, 3.394)

GCB β1 -0.173 (-0.5754, 0.2402)

Lymphoma β2 -0.116 (-0.3891, 0.1579)

Proliferation β3 0.433 (-0.0522, 0.9041)

BMP6 β4 0.396 (-0.0007, 0.788)

MHC β5 -0.330 (-0.6422, -0.0209)

ABC Weibull α 0.894 (0.695, 1.115) 215.564 0.013

Intercept β0 -1.86 (-2.562, -1.217)

GCB β1 -0.509 (-0.9948, -0.03871)

Lymphoma β2 -0.626 (-0.9568, -0.3099)

Proliferation β3 -0.487 (-1.118, 0.1422)

BMP6 β4 0.645 (0.2725, 1.021)

MHC β5 -0.479 (-0.7955, -0.1598)

Mixture α1 2.427 (1.083, 4.152) 256.552 ‘ ≈ 0

α2 0.960 (0.7525, 1.189)

Intercept β01 6.636 (5.301, 7.959)

β02 -2.572 (-3.346, -1.865)

GCB β11 -12.11 (-13.36, -10.86)

β12 -0.925 (-1.438, -0.4356)

Lymphoma β21 -3.155 (-4.578, -1.75)

β22 -0.768 (-1.114, -0.4341)
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Table 2 The estimated posterior mean of parameters, the 95% CI, BIC values and the BMAweights for each of themodels
based on phenotype for the DLBCL dataset (Continued)

Proliferation β31 -2.377 (-3.561, -1.188)

β32 -0.480 (-1.099, 0.1353)

BMP6 β41 0.079 (-1.064, 1.232)

β42 0.690 (0.3249, 1.061)

MHC β51 -0.644 (-1.919, 0.6499)

β52 -0.515 (-0.8176, -0.2047)

φ1 0.037 (0.0046, 0.09883)

φ2 0.963 (0.9012, 0.9953)

Cure α 1.189 (0.8906, 1.483) 206.961 0.987

Intercept β0 0.019 (-0.6417, 0.7362)

GCB β1 -0.432 (-0.8874, 0.01376)

Lymphoma β2 -0.587 (-0.905, -0.2867)

Proliferation β3 -0.484 (-1.076, 0.1012)

BMP6 β4 0.607 (0.2557, 0.9631)

MHC β5 -0.446 (-0.7481, -0.1346)

Type III Weibull α 0.834 (0.5958, 1.101) 162.27 0.538

Intercept β0 -1.75 (-2.736, -0.9093)

GCB β1 -0.404 (-1.028, -0.19)

Lymphoma β2 -0.274 (-0.7404, 0.1644)

Proliferation β3 0.506 (-0.0897, 1.084)

BMP6 β4 0.017 (-0.5301, 0.5206)

MHC β5 -0.199 (-0.6839, 0.3098)

Mixture α1 11.82 (8.609, 15.14) 196.271 ≈ 0

α2 0.596 (0.43, 0.7757)

Intercept β01 6.002 (3.682, 8.336)

β02 -5.005 (-7.19, -2.812)

GCB β11 -9.32 (-12.02, -6.611)

β12 0.564 (0.1829, 1.004)

Lymphoma β21 -2.913 (-5.716, -0.02716)

β22 -0.558 (-1.015, -0.1525)

Proliferation β31 -2.021 (-4.547, 0.455)

β32 0.893 (0.3455, 1.515)

BMP6 β41 0.320 (-2.466, 3.373)

β42 0.140 (-0.2735, 0.5384)

MHC β51 -0.336 (-2.733, 2.323)

β52 -0.293 (-0.7741, 0.1504)

φ1 0.072 (0.0108, 0.1805)

φ2 0.928 (0.8195, 0.9891)

Cure α 0.969 (0.6534, 1.339) 162.578 0.462

Intercept β0 0.989 (-0.5077, 4.153)

GCB β1 -0.349 (-0.973, -0.25)

Lymphoma β2 -0.269 (-0.7375, 0.1687)

Proliferation β3 0.502 (-0.0955, 1.084)

BMP6 β4 0.046 (-0.4801, -0.1801)

MHC β5 -0.183 (-0.6625, 0.3207)
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Figure 3 The posterior densities of the three models and the model averaged density for the full DLBCL dataset and each of the three
phenotypes. For comparison, the observed data is also represented as a histogram.

model fitted the data poorly for each phenotype. In detail,
using model averaging, for the GCB phenotype, 94% of
the observed survival times in the dataset lie in the
respective 95% prediction intervals. For the other two
phenotypes, namely the ABC and the type III, 93.4% and
92.8% of the observed survival times in the dataset are in
the corresponding 95% prediction intervals, respectively
(Table 3).

Discussion
This study has adopted a Bayesian model averaging
approach to account for model uncertainty in the pre-
diction of survival. The case study that we considered

involved lymphoma cancer survival, with covariates given
by phenotypes and gene expressions. Here, we proposed
three competing models and used BMA to combine these
models to account for model uncertainty.
Overall, the results of this study indicate that if using

the full dataset without further grouping, selecting a single
model that best fits the data was adequate. The reason
is that there is clear support for one model (i.e. only one
model has a relatively larger BIC value and dominates
based on this criterion). However, the results were differ-
ent when the model selection process took into account
the phenotype subgroups of the patients. A single model
appeared to be inadequate. This was due to the fact that
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Table 3 The percentage of observed values that lay in the
corresponding 95% posterior prediction interval for the
individual models and BMAmodel based on the full DLBCL
dataset and each of the three phenotypes

Model All DLBCL GCB ABC Type III

Weibull 87.5 90 89.1 89.3

Mixture 85.9 88 86.9 82.1

Cure 94.3 92 91.3 85.7

BMA 91.9 94 93.4 92.8

the values of BIC for the Weibull and the cure had nearly
equal weight, indicating the absence of a dominant model
based on this criterion and the presence of uncertainty
issues in the model selection. As suggested and shown in
this study, BMA was used to address this problem. The
applicability of BMA was also associated with the smaller
sample size in each phenotype subgroup (Annest et al.
2009; Volinsky et al. 1997; Yeung et al. 2005).
This study also revealed that in each phenotype, the

expression and number of predictor genes substantially
describing the survival times of the patients varied across
models. Overall, in both of the favourable models, none
of the genes were identified consistently as substantial
predictors for the patients’ survival. For example, in the
Weibull model, the MHC and BMP genes in the GCB
and ABC phenotypes and the GCB genes in the ABC
and Type III phenotypes were important predictors of
survival. In contrast, in the cure model, BMPwas substan-
tially associated with predicted survival in the ABC and
Type III phenotypes. For bothmodels, only three genes i.e.
lymphoma node, BMP6 and MHC signature in the ABC
phenotype were highly associated with the survival times
of the patients.
This study has indicated that the application of BMA

to combine competing models overcomes the problem of
model uncertainty. Comparison of different survival mod-
els has allowed the identification and analysis of more
detailed relationships between gene expressions in given
phenotypes and the survival times of the patients. An
advantage of BMA is more accurate and precise predic-
tion of patient survival. However, this study only involved
three candidate models. More models can be obviously
included in the analysis. This study has also focused on the
marginal likelihood p(D | Qs) estimation methods based
on the Laplace approximation. However, other approaches
are also possible. Indeed marginal likelihood estimation
is possible using nested sampling (Skilling 2006), where
the marginal likelihood is viewed as the expectation, with
respect to the prior, of the likelihood. Another generic
approach is Chib’s method (Chib 1995), which can be
applied to output from the Gibbs sampler. Applying BMA

to other datasets or other applications is desired to obtain
robust predictions.
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