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Abstract: Non-invasive prediction of isocitrate dehydrogenase (IDH) genotype plays an important
role in tumor glioma diagnosis and prognosis. Recently, research has shown that radiology
images can be a potential tool for genotype prediction, and fusion of multi-modality data by deep
learning methods can further provide complementary information to enhance prediction accuracy.
However, it still does not have an effective deep learning architecture to predict IDH genotype with
three-dimensional (3D) multimodal medical images. In this paper, we proposed a novel multimodal
3D DenseNet (M3D-DenseNet) model to predict IDH genotypes with multimodal magnetic resonance
imaging (MRI) data. To evaluate its performance, we conducted experiments on the BRATS-2017 and
The Cancer Genome Atlas breast invasive carcinoma (TCGA-BRCA) dataset to get image data as
input and gene mutation information as the target, respectively. We achieved 84.6% accuracy (area
under the curve (AUC) = 85.7%) on the validation dataset. To evaluate its generalizability, we applied
transfer learning techniques to predict World Health Organization (WHO) grade status, which also
achieved a high accuracy of 91.4% (AUC = 94.8%) on validation dataset. With the properties of
automatic feature extraction, and effective and high generalizability, M3D-DenseNet can serve as a
useful method for other multimodal radiogenomics problems and has the potential to be applied in
clinical decision making.

Keywords: multimodal deep learning; three-dimensional DenseNet model; isocitrate dehydrogenase
genotype; magnetic resonance imaging; gliomas; World Health Organization grade

1. Introduction

Gliomas are the most frequent malignant primary brain tumors in adults, and screening and
diagnosing for them is still a big challenge. It can be classified into four grade levels from I to IV
according to the World Health Organization (WHO) [1]. More than half of glioma patients are in
low-grade status (grade II and III, known as low-grade gliomas, LGG), and a fraction of patients are
in high-grade status (grade IV, known as glioblastoma multiform, GBM). Glioblastoma multiforms
have also been classified as primary or secondary glioblastomas clinically. In 2008, a multi-group
collaboration found that IDHI mutations occurred in 12% of glioblastomas [2], and subsequent
researchers observed IDH1 mutations in 50-80% of LGGs and secondary GBM [3]. Before these
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observations, the isocitrate dehydrogenase (IDH) genotype had never been linked to cancer [4].
Isocitrate dehydrogenase is a general term for IDH1 and IDH2 gene, which encode cytosolic IDH1
and mitochondrial IDH?2, respectively. These are major enzymes in citric acid cycle processing that
play a key role in the defense against oxidative stress [5]. Normally, these gene products convert
isocitrate into a-ketoglutarate [6]. However, when IDH is mutated, the isocitrate will be converted to
2-hydroxyglutarate, which can inhibit the activity of man x-ketoglutarate-dependent dioxygenases,
including, but are not limited, to histone demethylases [7]. Several lines of research however, have
shown that IDH1 mutations were early events in the development of gliomas [8] and had a different
impact on gliomas. Previous studies demonstrated that IDHI mutations frequently occurred in grade
IT and III gliomas and secondary GBM glioblastoma, but rarely in primary GBM [9]; whereas IDH2
mutations occur in fewer than 3% of glial tumors. Hartmann et al. provided evidence that patients with
IDH1 wild-type anaplastic astrocytomas exhibit a worse prognosis than IDH1 mutated [10]. Nobusawa
et al. pointed out that IDH1 mutation could be a molecular signature and predictive factor of secondary
glioblastomas [11], which may serve as biomarkers for assessing tumor progression and treatment.
Among all molecular alteration types in gliomas, IDH genotype is the most important, as patients with
the IDH gene mutation have significantly longer survival time than patients of IDH wild-type, which
is independent of WHO grade [12,13].

The IDH genotype is often identified by immunohistochemistry and DNA sequencing
techniques [14,15]. These methods rely on biopsies and invasive surgeries and assess genotype
information derived from small portions of tumor tissues, which may provide a fractional and
sometimes biased reading of the whole tumor. In clinical practice, pre-treatment identification of
IDH genotype can help guide a clinical decision. However, it is still a challenging problem to predict
IDH genotype non-invasively. Previous studies have reported an association between radiology
imaging features and IDH genotype within gliomas. Qi et al. conducted a retrospective study on
193 patients and found that IDH-mutated gliomas were more frequently confined to a single lobe
and more likely exhibit a unilateral pattern of growth, sharp tumor margins, homogenous signal
intensity, and less contrast enhancement on magnetic resonance imaging (MRI) images [16]. In a
study on 202 patients [17], imaging features like larger tumor size, frontal lobe localization, and
presence of cysts and satellite lesions, were reported to be better recognized IDH mutations from
IDH wild-type. Zhou et al. conduct a radiomics model using texture features and visually accessible
Rembrandt images (VASARI) annotations features to predict IDH1 mutations and found that the
texture feature achieved a higher accuracy than with the VASARI features [18].

Recently, radiogenomics is becoming a fast-developing research area [19,20], combining radiology
imaging with genomics data to help improve clinical diagnosis. Genomics data, such as gene expression
profiling and genotyping, play an important role in precision medicine, especially in cancer screening
and therapy [21-23]. Radiology imaging techniques like computed tomography (CT), X-ray, and MRI,
on the other hand, can provide a more thorough view of the entire tumor and be used to monitor the
progression of a tumor. Furthermore, compared to genomics methods such as mass spectrometry-based
mutation genotyping, radiology imaging is noninvasive and cost-effective, and is readily available
in clinical procedures. Therefore, it will be valuable to utilize radiology imaging to predict genotype
status. Previous literature has shown that radiology imaging can be a potential tool for the prediction
of genotypes, and the fusion of multi-modality data can provide complementary information to further
enhance prediction accuracy [24-27].

In clinical practice, when diagnosing a disease, doctors often consult data from multiple modalities
such as X-ray images, CT/MRI scans, clinical data and so on. For instance, radiologists often
read both CT and MRI scans to evaluate acute stroke [28,29]. Multiple sequences of MRI images
(native (T1), and post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 fluid attenuated
inversion recovery (FLAIR)) are often produced to assess and diagnose glioma tumors [26,30,31].
Recently, many researchers have proposed methods to predict genotypes from multimodal image data.
Zhang et al. [26] manually extracted features from multimodal MRI images with traditional radiomics
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methods, and then employed a random forest algorithm to predict IDH genotype based on handcrafted
image features and clinical data. Although this method has better interpretability, as authors used
radiomics features to perform genotype classification, its handcrafted features are not comprehensive.
Chang et al. [25] first trained a residual convolutional neural network for each MRI image modality
(T1, T1Gd, T2, FLAIR) and then built a logistics regression model to integrate outputs from each of
the four neural networks and make predictions. Chang et al.’s technique promoted feature extraction
with deep learning; nevertheless, their two-stage modeling procedure can be improved by fusing
multimodal information at the training stage and modifying the model to better fit three-dimensional
(3D) volume data.

In the same time, with rapid advancement in computer vision, the convolutional neural network
(CNN) is becoming an important tool in medical imaging analysis [32]. In 1998, LeCun et al.
proposed the LeNet-5 neural network [33] to recognize hand-written numbers. A dozen years
later, Krizhevsky et al. conducted AlexNet [34] to win the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) in 2012, when graphics processing unit (GPU) was first implemented to parallelize
neural networks with cross-connections. GoogLeNet [35] was inspired by LeNet but proposed a novel
inception module, which was based on several small convolution networks to reduce the number of
parameters. Simonyan et al.’s VGGNet [36] has very uniform architecture, which is often used for
extracting features from images, but its large numbers of parameters can be challenging to manage.
In 2015, a novel architecture network with a characteristic of residual connections called residual
neural network (ResNet) was introduced by He et al. [37]. ResNet was able to train a 152 layers
network with lower complexity. Followed this connectivity pattern benefit and further reducing the
number of model parameters, Huang et al. proposed the densely connected convolutional networks
(DenseNet) [38] with multiple dense block elements that connect each layer to every other layer in a
feed-forward fashion. DenseNet requires less computation and less model complexity, and achieves
significant improvements over the state-of-the-art CNN on most benchmark tasks. However, we need
to make some improvements for it if we apply DenseNet in 3D multimodal medical images, like
multiple sequence MRI data, as it is suited for two-dimensional (2D) images and single modality input.

In this paper, we developed a multimodal 3D deep learning model based on 3D DenseNet
framework, called multimodal 3D DenseNet (M3D-DenseNet), to predict IDH genotypes with multiple
sequences of MRI images. Specifically, we used DenseNet as the building block to reduce overfitting
and model complexity. In addition, a multi-channel technique was employed to integrate multimodal
information by sharing parameters. The rest of the paper was organized as follows: Section 2
introduced our experiments data description and its preprocessing and described M3D-DenseNet
architecture and its implements in detail. In Section 3, we first conducted an experiment to predict IDH
genotype with multimodal MRI data and then applied transfer learning to tumor grade prediction to
further evaluate the generalizability of our model. In Section 4, we discussed our experimental results
and the implication of the current methodology for future radiogenomics research. In the last section,
we gave a conclusion for this manuscript.

2. Materials and Methods
2.1. Data Description

2.1.1. BRATS-2017 Dataset

The dataset of multimodal brain tumor segmentation challenge 2017 (BRATS-2017) [30,39]
comprises of clinically-acquired 3 Tesla (T) multimodal MRI scans of GBM and LGG, and all
ground truth labels were manually-reviewed by expert board-certified neurobiologists. Glioblastoma
multiform and LGG refer to the same brain tumors called gliomas, with high- and low-grades
respectively. Each patient’s data included: (i) IDH genotype, acquired from The Cancer Genome
Atlas breast invasive carcinoma (TCGA-BRCA) dataset; (ii) tumor grade status, where we labeled all
LGG tumors as low grade and GBM as high grade; (iii) four MRI scans including T1, T1Gd, T2, and
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T2-FLAIR volumes; (iv) tumor ground truth labels (called mask data); (v) clinical data such as age and
sex, which can be fused into model to improve model prediction ability. A total of 167 glioma patients
(102 GBM patients and 65 LGG patients) were collected and five-fold cross-validation is conducted to
evaluate model performance. The clinical characteristics of all patients are shown in Table 1.

Table 1. Clinical characteristics of the patients.

Clinical Features Value

No. of patients 167
Age, mean + SD 524+ 155

<30 18 (10.8%)

30-60 90 (53.9%)

60-80 55 (32.9%)

>80 3 (1.8%)
Sex

Male 90 (54.2%)

Female 74 (45.8%)

Tumor Grade
Low-grade (grade II, III) 65 (38.9%)

High-grade (grade IV) 102 (61.1%)
IDH genotype

Mutant 53 (31.7%)

Wild-type 114 (68.3%)

IDH: isocitrate dehydrogenase; SD: standard deviation.

2.1.2. The Cancer Genome Atlas Breast Invasive Carcinoma Dataset

The cancer genome atlas (TCGA) [40] is a project funded by the US government to catalog the
genetic mutations responsible for cancer, using genome sequencing and bioinformatics techniques.
This dataset contains 33 cancers with various data types, including gene expression profiling,
copy number variation profiling, single nucleotide polymorphism (SNP) genotyping [41], and so
on. Since the GBM and LGG tumor datasets of TCGA came from the same group of patients in
BRATS-2017, we could acquire patients” multimodal MRI image data from BRATS-2017 and obtain
patients’ corresponding IDH mutation status data from the TCGA dataset. To determine whether one
gene is mutated or not, the TCGA dataset uses four methods in parallel: MuSE [42], MuTect2 [43],
SomaticSniper [44], and VarScan2 [45]. In this paper, we considered a gene to be in mutation status
when two or more of these four methods indicate that a gene is mutated.

2.2. Data Preprocessing

Our data preprocessing procedure followed the diagram showed in Figure 1. Each modality of T1,
T2Gd, T2, and FLAIR MRI volume data, which had the shape of 155 x 240 x 240 pixels, was processed
through the following four steps. (i) We derived tumor lesion volume data (155 x 240 x 240 pixels)
by doing a matrix multiplication between MRI image volume and mask data so that only pixels of
tumor lesions were kept, and all other pixels were set to zero. (ii) Then we cropped out the 3D tumor
lesions to their actual sizes. (iii) As the sizes of tumors were different and our deep learning model
required uniform input size, we patched zeroes outside of cropped tumor lesions to produce data
patches of the same size of 112 x 112 x 142 pixels. The data patch shape was determined by the largest
dimension values of all lesions in the dataset because radiomics literature has shown that tumor size is
a key factor for the prediction of tumor genotype [46]. (iv) Since the dataset was small, we used a data
augmentation technique to expand our training data.
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Augment 1 Augment 2 Augment 3 Augment 648

Figure 1. Data preprocessing flow diagram. (i) We first masked data with a magnetic resonance
imaging (MRI) image volume data and ground truth label, (ii) and then cropped the lesion to a small
cube, (iii) followed by filling into a uniform shape to produce our input data called patched data.
(iv) At last, considering small data quantity and model overfitting, we did data augmentation for each
patched data 648 times by flipping and shifting.

2.3. Multimodal Three-Dimensional DenseNet

In this section, we describe the structure of M3D-DenseNet, which is proposed for genotype
prediction based on multiple MRI sequences. Our M3D-DenseNet took four single-modality MRI
sequences (T1, T2, T1Gd, FLAIR) as input and then concatenated these modalities as a four-dimensional
matrix (4, 1, w, h), where “4” represented four channels and (1, w, h) represented the shape size
(length, weight, height) of each single-modality MRI sequence data. To fit the 3D natural instinct
of MRI images, we applied a 3D deep learning framework to our model, which was modified from
DenseNet. In Figure 2, we illustrated our neural network architecture through a schematic diagram.
In addition, Table 2 shows the M3D-DenseNet network architecture information with different depth
of 121, 161, 169, and 201 layers.
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Figure 2. A schematic illustration of multimodal three-dimensional DenseNet (M3D-DenseNet).
Our M3D-DenseNet takes four MRI sequences (I, w, h) as input and then concatenates the four
modalities as a four-dimensional matrix (4, I, w, h). All convolutions and poolings in the network are
3D operations, and are the same in the four dense blocks. T1: native; T1Gd: post-contrast T1-weighted ;
T2: T2-weighted; FLAIR: T2 fluid attenuated inversion recovery.

Table 2. Multimodal three-dimensional DenseNet architecture.

Layers Output Size M3D-DenseNet-121 M3D-DenseNet-161 M3D-DenseNet-169 M3D-DenseNet-201

Convolution 56 x 56 x 72 7 x 7 x 7 conv, stride 2

Pooling 28 x 28 x 36 3 x 3 x 3 max pool, stride 2

3D Dense 1x1x1conv

Block (1) * 28 x 28 % 36 [3><3><3c0r1v]><6

Transition 14 x 14 x 18 1x1x1conv

*

Layer (1) 14 x14 x 18 2 x 2 x 2 average pool, stride 2

3D Dense 1 x 1 conv

Block (2)+  14x14x18 [ 3 x 3 conv ] 12

Transition 14 x 14 x 18 1x1x1conv

Layer (2) 7XxX7x9 2 x 2 x 2 average pool, stride 2

3D Dense 1x1x1conv 1x1x1conv 1x1x1conv 1x1x1conv
Block (3) * 7X7x9 [3><3><3conv] 2 {3><3><3conv] 36 [3x3><3conv} 2 [3><3><3conv} 48
Transition 7x7x%x9 1x1x1conv

*

Layer (3) 3x3x4 2 x 2 x 2 average pool, stride 2

3D Dense 1x1x1conv 1x1x1conv 1x1x1conv 1x1x1conv
Block (4) * 3x3xd [3><3x3conv]><16 {3><3><3c0nv]X24 [3><3><3conv}X32 [3><3><3conv}><32
Classification ~ 1x1x1 3 x 3 x 4 global average pool

Layer 2D fully-connected, softmax

Note: The growth rate parameter of 3D DenseNet is set to 32. Each conv layer shows in the table represents
the layer sequence BN-ReLU-Conv (BN: batch normalization layer, ReLU: rectified linear unit activation layer,
Conv: convolutional layer). * Numbers refer to Figure 2, 3D Dense Block 1, 2, 3 and 4, respectively.

2.3.1. Three-Dimensional Deep Learning Framework

Radiology imaging often produces 3D volume data. For example, CT and MRI images usually
contain multiple sequences, and each sequence has three representative orthogonal views of axial,
coronal, and sagittal planes. The CNN deep learning frameworks, however, is usually constructed
to solve computer vision problems within 2D images, like classification [34], detection [47], and
segmentation [48]. With this intention, we modified the deep learning framework so that it directly
takes volume data as input and can better fit 3D radiology imaging. Although a 3D deep learning
framework makes it more straightforward to train volume data, it brings an intrinsic problem of a
much larger set of parameters, and thus a higher propensity of overfitting when the dataset is small.
To overcome this potential problem, we selected DenseNet, which is known for its advantage of
reducing model complexity, as our backbone network.

2.3.2. DenseNet

DenseNet is a convolutional neural network that connects each layer to every other layer in a
feed-forward fashion. For each layer, the feature-maps of all preceding layers are used as inputs, and
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its own feature-maps are used as inputs into all subsequent layers [38]. DenseNet introducesa 1 x 1
convolution as a bottleneck layer before each convolution layer to eliminate the number of feature maps.
Each dense block contains the bottleneck structure and dimension reduction in transition layers, which
makes parameters more efficiently, and furthermore reduces model complexity. The computational
efficiency of DenseNet has been proven by works such as He et al. [37] and Szegedy et al. [49]. In our
M3D-DenseNet model, we modified the original 2D DenseNet to a 3D DenseNet by converting all 2D
convolution and pooling operators to their 3D versions. Since our dataset had 167 samples which are
not large enough, using DenseNet as building blocks could reduce the risk of overfitting and speed
up training.

2.3.3. Multi-Channel Technique

In this paper, we focused on homogeneous multimodal data, which were obtained from the same
imaging method but with different parameters. Take MRI scans as an example, sequences including
T1, T2, T1Gd, and FLAIR can be produced from a patient’s single brain scan. Unlike heterogeneous
multimodal data that are usually different in data structure such as image, text and audio, each
modality of homogeneous multimodal data has almost the same data structure. With this property of
homogeneous multimodal data, we used a multi-channel technique that stacks different modalities
as different channels. This method can facilitate different modalities to share parameters during the
training stage and fuse multi-modality information at all model depths.

2.4. Implementation Details

Our model implementation was performed under the MXNet (version 1.0, Apache Software
Foundation, Forest Hill, MD, USA) deep learning framework [50]. During training, the IDH mutation
probability of each sample was calculated by a softmax alogorithm classifier, and binary cross-entropy
was chosen as the objective function of our network. We used the rectified linear unit (ReLU) activation
function in each layer and applied a batch normalization technique before each ReLU layer. The weights
of our network were optimized by the stochastic gradient descent (SGD) method with a mini-batch
size of eight. The learning rate was set to 0.01 with a momentum coefficient of 0.9, and a decay rate of
0.1 every 50 epochs. We trained our model on four NVIDIA Titan X GPUs (NVIDIA, Beijing, China).

2.4.1. Data Augmentation

In order to avoid overfitting, for each data patch with the shape of 112 x 112 x 142 pixels, we used
the following two data augmentation methods: (i) We flipped the data patch along three orthogonal
dimensions (coronal, sagittal, and axial position), a combination of eight transformations. (ii) For each
data patch, we shifted the tumor along the three orthogonal dimensions. On each dimension, the shift
operation took one of the three options (move in the positive direction, move in the negative direction,
and stay at the same place), and each shift movement took one of three lengths (1/3,2/3, or 3/3 % of
the distance between the margin of tumor lesion and margin of the data patch). In total, each data
patch could be augmented to a maximum of 8 x 3 x 3 x 3 time = 648 times.

2.4.2. Parameter Initialization

As the pixel distribution of tumor and non-tumor tissues can vary across regions even in the same
brain, we trained our model from scratch with the Xavier initialization method [51]. Xavier initializes
the model weights from a distribution with zero mean and Var(W) variance:

2

Var(W) = ——
117’( ) i + Nout”

)

where n;, and n,,; represent the number of input and output hidden nodes of each layer.
Xavier initialization assumes that activations are linear; however, our model used the nonlinear
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ReLU as the activation function. Considering this weakness, we added a batch normalization [52]
layer before each ReLU layer to normalize each training batch.

2.4.3. Transfer Learning

In practice, researchers often apply transfer learning technique to fine-tune their new model with
pertain model [53,54]. However, no pre-trained model was available for our dataset (3D medical
MRI data) and model (multimodal deep learning framework). Although transfer learning was not
applicable in our first prediction task, we were able to transfer parameters pre-trained in IDH prediction
experiment (Section 3.1) to our second task (Section 3.3) and fine-tune the model.

2.4.4. Training Tricks

During model training, we used two tricks to prevent overfitting and to improve training speed.
(i) We applied online stochastic data augmentation. This was because we knew that each modality
of the data patch could have 648 kinds of augmentation, which would result in a huge input and
output (IO load during training if we generated all data augmentations offline. In the following actual
experiments, we conducted data augmentation online, and stochastically selected one augmentation
type out of the 648 forms for each data patch during each mini-batch training. This trick helped us to
expedite our model training speed in each epoch, and effectively avoided overfitting. (ii) We shuffled
the training dataset sample list in each training epoch because the model may learn to remember the
order of prediction labels when the dataset is small.

2.5. Evaluation Criteria and Measurement

In this section, we introduced four metrics to evaluate the prediction performance of our model,
which were: overall accuracy (ACC), specificity (SP), sensitivity (SN), and area under the curve
(AUCQ), respectively. In our prediction experiments, we defined TP (true positive) as the quantity
of the given label that is positive, and the predicted result is also a positive; we defined TN (true
negative) as the quantity of the given label that is negative, and the predicted result is also a negative;
we defined false positive (FP) as the quantity of the given label that is negative, but the predicted result
is positive; and defined false negative (FN) as the quantity of the given label that is positive, but the
predicted result is negative. Specificity was the true negative rate that is correctly identified, as in
Equation (3). Sensitivity was the positive predictions that were actually positive, as in Equation (4).
Overal accuracy was the fraction of total samples that were correctly identified, as in Equation (2).
Area under the curve calculated the area under the receiver operating characteristic (ROC) curve,
which equaled the probability that a randomly chosen positive example ranked above a randomly

chosen negative example.
TN+TP

ACC= TN T TP P EN )
TN

SP= TN Fp ®)
TP

SN = 757N @

Above all, we described our experiment materials and its preprocessing steps, and described our
proposal for the M3D-DenseNet network architecture. In this article, we conducted three experiments
to predict IDH genotype, compare the performance of single-modality and M3D-DenseNet, and
evaluate our model’s generalizability by predicting WHO grade status, respectively. In addition, some
implementation details and evaluation measurements were also represented. In the next section, we
will show the results of these experiments.
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3. Results

3.1. Isocitrate Dehydrogenase Genotype Prediction Experiment

In this experiment, we applied our proposed M3D-DenseNet model to predict IDH genotype on
the BRATS-2017 dataset with 167 glioma patients, whose genotype information was obtained from
the TCGA-BRCA dataset. To compare the effectiveness using various network depths, four models
(121, 161, 169, and 201 layers M3D-DenseNet, as Table 1) were performed in this experiment. We also
conducted five-fold cross-validations to evaluate each of our models. The final result was the average
of the five cross-validations. Table 3 shows the IDH genotype prediction performance between different
layer models. Figure 3 shows the comparative ROC curve of the four models.

Table 3. Isocitrate dehydrogenase genotype prediction performance.

Training Dataset Validation Dataset
ACC SN SpP AUC ACC SN SpP AUC
MNet-121  88.9% 92.6% 87.2% 97.1% 84.6% 78.5% 88.0% 85.7%
MNet-161  91.3% 82.9% 95.3% 97.5% 82.1% 57.1% 96.0% 85.0%
MNet-169  85.0% 85.3% 84.9% 94.2% 82.1% 64.3% 92.0% 82.8%
MNet-201  87.4% 63.4% 98.8% 94.6% 76.9% 42.8% 96.0% 85.7%

ACC: overall accuracy; SN: sensitivity; SP:

specificity; AUC: area under curve; MNet-121/161/169/201:

M3D-DenseNet with 121/161/169/201 layers.

ROC Curve with Different Depth models

1.0 1 ‘/)(7_#71
e '
r I o
0.8 1 | 7
] //
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Figure 3. Comparing receiver operating characteristic (ROC) curve of different depth layer models on
IDH genotype prediction experiments. AUC: area under the curve.

The experimental results showed that our proposed method had great prediction performance on
IDH genotype prediction, and also showed robust performances on different layer depths. The best
performance was achieved with accuracy 84.6%, sensitivity 78.5%, specificity 88.0%, and AUC 85.7% on
the training dataset when M3D-DenseNet depth was set to 161 layers, and with an accuracy of 84.6%,
sensitivity 78.5%, specificity 88.0%, and AUC 85.7% on the validation dataset when M3D-DenseNet
depth was set to 121 layers.

3.2. Comparing Single-Modality and Multi-Modality Model Experiment

Although recent research has shown that the fusion of multi-modality data can provide
complementary information to enhance prediction accuracy, there have not been systematic studies
that examine the performance differences between single-modality and multi-modality models. In this
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experiment, we conducted four single-modality models, which are 3D DenseNet. Each single-modality
model was similar to M3D-DenseNet, but the input portion, which was replaced by only one modality
data from T1, T2, T1Gd, and FLAIR. In this comparative experiment, the depth of all the model was
set to 121 layers. Table 4 shows the performance between single-modality and multi-modality model.
Figure 4 shows the comparative ROC curve of the above five models. For the statistical comparison of
single-modality model and multi-modality model, we grouped results of five-fold cross-validation
from all single-modality models as Grouped-SNet, and grouped results of five-fold cross-validation
from all multi-modality models as Grouped-MNet. Then, we conducted a student {-test to compare the
difference between Grouped-SNet and Grouped-MNet with the null hypothesis that the two groups’
distributions were the same. Figure 5 shows the statistical test result.

The experimental result shown that multi-modality model was better than single-modality model,
as the best accuracy of single-modality model on the validation dataset was 74.4% (AUC = 81.6%),
nevertheless, the accuracy of multi-modality model on the validation dataset was 84.6% (AUC = 85.7%).
By conducting a student t-test between the two kinds of models with the result of p-value = 2.264 x 10>
(<0.05), we could conclude that multi-modality models were significantly better than single-modality
models. On the other hand, among in the four single modalities of T1, T2, T1Gd, and FLAIR, the
prediction ability of each modality model was discriminatory. With this result, we could know that the
T2 modality MRI had the best IDH genotype prediction ability and conversely, T1 was the worst.

Table 4. Comparing the performance between single-modality and multi-modality model.

Training Dataset Validation Dataset

ACC SN SpP AUC ACC SN Sp AUC
SNet-T1 67.7% 56.6% 92.4% 67.6% 64.1% 43.2% 80.2% 47.4%
SNet-T2 77.9% 82.9% 75.6% 87.5% 74.4% 78.6% 72.0% 81.6%
SNet-T1Gd 74.8% 65.9% 79.0% 81.0% 74.3% 50.0% 88.0% 74.6%
SNet-FLAIR 76.3% 31.7% 97.7% 81.0% 71.8% 35.7% 92.0% 72.6%
MNet-121  88.9% 92.6% 87.2% 97.1% 84.6% 78.5% 88.0% 85.7%

Single-modality 3D DenseNet with 121 layers; MNet: M3D-DenseNet with 121 layers.

ROC Curves with Single-modality and Multi-modality Models
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Figure 4. Comparing ROC curve between single-modality and multi-modality models.
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Comparing AUC between Single-modality and Multi-modality models
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T T
Grouped-SNet Grouped-MNet

Models

Figure 5. Comparing AUCs between single-modality and multi-modality models. Grouped-SNet:
grouped single-modality models, Grouped-MNet: grouped multi-modality models. We grouped
the results of five-fold cross-validation from all single-modality models as Grouped-SNet, and also
grouped the results of five-fold cross-validation from all multi-modality models as Grouped-MNet.
The student’s t-test result comparing Grouped-SNet and Grouped-MNet is statistically significant.

3.3. Evaluating the Generalizability of M3D-DenseNet

For the purpose of evaluating our model’s generalizability, we applied our model to predict WHO
grade status, which was low-grade or high-grade. Grade status is a measurement of how malignant
a tumor is. Its grading systems differ depending on the type of cancer, but it often has four degrees
from benign to malignant: grade I up to grade IV. In this experiment, we regarded grade Il and grade
III as low-grade and regarded grade IV as high-grade. We conducted this experiment on the same
BRATS-2017 and TCGA-BRCA datasets with the same experiment settings. During the model training
stage, we applied transfer learning techniques to decrease training time and enhance learning accuracy.
We firstly initialized our model with parameters obtained in the IDH genotype prediction experiment,
and then fine-tuned the model to predict low-grade versus high-grade. Table 5 shows the WHO grade
status prediction performance between different layer models. Figure 6 shows the comparing ROC
curves of the above models.

Table 5. World Health Organization (WHO) grade status prediction performance.

Training Dataset Validation Dataset
ACC SN SpP AUC ACC SN SpP AUC
MNet-121  75.2% 96.3% 42.3% 88.4% 80.0% 100% 46.1% 84.3%
MNet-161  75.9% 62.9% 96.2% 94.3% 77.1% 68.2% 92.3% 87.9%
MNet-169  91.7% 93.8% 88.5% 96.9% 85.7% 86.4% 84.6% 91.1%
MNet-201  90.2% 88.9% 92.3% 95.3% 91.4% 92.3% 92.3% 94.8%

MB3D-DenseNet with 121/161/169/201 layers.
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ROC Curve with Different Depth models
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Figure 6. Comparing ROC curve of different depth layer models on World Health Organization (WHO)
grade prediction experiments.

The experimental results showed that our proposed method had great prediction performance
on WHO grade prediction, and also showed robust performances on different layer depth models.
The best performance was achieved when the depth was set to 201 layers; with this condition in
the validation dataset, the accuracy was 91.4%, sensitivity 92.3%, specificity 92.3%, and AUC 94.8%.
Comparing with the performance of four different depth models, we found that the deeper models
performed with greater accuracy. Above all, it was proven that our M3D-DenseNet model had high
generalizability on the prediction of WHO grade status.

4. Discussion

This study presents a multimodal 3D deep learning network architecture for prediction IDH
genotype in glioma patients. In future work, we will try to involve more modality data, including both
MRI and CT. Notably, we did not consider clinical information, like age and gender, since the goal of
this work was to explore the relationship between multimodal MRI imaging data and IDH genotype
through a deep learning architecture. As for integrating clinical information, Zhang et al. [26] used a
random forest algorithm based on two kinds of data: clinical variables and image features extracted
from multimodal MRI images by a traditional radiomics method. They used a dataset of 120 patients
and achieved 89% accuracy (AUC = 0.92) on the validation data. Chang et al. [25] first trained a
residual convolutional neural network on each MRI modality data and then built a logistics regression
which combined outputs of each single modality network to predict IDH genotype. They used a
dataset including 496 patients from three different sources. One point needed to be highlighted is that
the performances of these two methodologies without involving clinical information were inferior to
our models. Our future works also will focus on studying what kind of clinical information should be
included to further boost the performance of our model.

Deep learning researchers tend to believe that deeper networks have a higher prediction
power [35,38]. In experiments of Sections 3.1 and 3.3, we made predictions with different network
depths to prove them on our M3D-DenseNet model. Table 1 shows the detail network architectures
with different network depths. In the IDH genotype prediction experiment, the accuracies on the
validation data were 84.6% (AUC = 85.7%), 82.1% (AUC = 85.0%), 82.1% (AUC = 82.8%), and 76.9%
(AUC = 85.7%) when the network depth was 121, 161, 169, and 201 layers, respectively. The ACC
scores of four depth models showed differently, where the largest accuracy score was 84.6% when the
network depth was 121 layers. Nevertheless, the AUC scores were not so different, so that we can
know that the depth of our model did not affect the IDH genotype prediction result severely. However,
in the WHO grade status prediction experiment, the deepest (201 layers) M3D-DenseNet produced
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the highest accuracy, followed by the 169-layers model, which indicates that our models with deeper
networks perform significantly better. Comparing the performance of the above two experiments,
it shown that the deeper networks did not always perform better. To compare the performance
between multi-modality and single-modality model, we also conducted four experiments for each MRI
modality data. Except for the model input portion, each single modality model was the same with
M3D-DenseNet architecture. It catches one MRI volume data (1 x 112 x 112 x 142 pixels) as input,
whereas the multimodal model concatenates four MRI volume data (4 x 112 x 112 x 142 pixels) as
input. With the result on both prediction experiments, we found that single modality models have
different performances however, and significantly inferior performance to multimodal models.

In Section 3.3, we applied the classification of WHO grade status to evaluate the ability of our
model’s generalizability, as it has valuable insight in cancer diagnosis and prognosis. High-grade
gliomas are highly vascular tumors and are easier to infiltrate. They have a worse median overall
survival time of 15 months [55]. For low-grade gliomas, they grow slowly and can be followed without
treatment until they cause symptoms. Their ten-year relative survival rate is 47% [56] and their median
survival time is 11.6 years [55]. Some research has been reported on the correlation between grade
and medical image features within gliomas [56]. Wiestler et al. performed a machine learning model
on 37 glioma patients to predict WHO grade with multiple MRI modalities including relative oxygen
extraction fraction (rOEF) and perfusion imaging [57]. They achieved a high AUC with 0.944 and
found the three most important imaging features within WHO grades prediction: standard deviation of
T1-weighted contrast enhanced signal, maximum regional oxygen extraction fraction (rOEF) value, and
cerebral blood volume standard deviation. Garzin et al. predicted tumor grade by acquired 74 gliomas
patients with multiple MRI images [58]. Their experiments showed that the presence/absence of
enhancement paired with kurtosis of the FM (first moment of the first-pass curve) have high predictive
value for WHO grade.

Methodologically speaking, our M3D-DenseNet has three explicit advantages. Firstly, compared
to Zhang et al.’s radiomics method of extracting handcrafted features, our model can automatically
extract a much larger number of features, which is more efficient [26]. Secondly, in contrast with
Chang et al.’s two-stage training, our method adopts an end-to-end training scheme, and this simple
procedure produced better results than Chang et al. (their results when clinical data were not
incorporated) [25]. Thirdly, we applied transfer learning and fine-tuned the IDH genotype prediction
model to predict tumor grade status, whose high prediction accuracy shows the generalizability of our
methodology. Despite its satisfactory outcomes in the two prediction experiments, our model also has
three limitations that can be improved in future work. Firstly, we only have data from 167 patients
and a total of 668 MRI sequences. Although we used data augmentation methods to expand the
training set, the actual samples model learned were still quite small. Secondly, our multimodality
model fused all four sequences of MRI scans without considering the correlations among sequences.
A more careful comparison of multimodality data versus single modality would help us find the
most optimal combination of multiple modalities. Such study would provide us a more qualified
understanding of the benefit of multimodality data. We can borrow some of the latest ideas such as
non-local neural networks [59] and deep canonical correlation analysis (DCCA) networks [60], as our
primary focus was on the demonstration of M3D-DenseNet rather than methods to improve neural
network’s prediction power. Thirdly, we only considered homogenous multimodality data in the
current paper. In the future, researchers can fuse the modalities of heterogeneous data sources such as
CT images, blood exam results, and other clinical data to build a more comprehensive multimodal
prediction model that can better support clinical decisions.

5. Conclusions

In this study, we proposed a novel network architecture to predict IDH genotype based
on multimodal MRI imaging data, which called M3D-DenseNet. It applied a 3D deep learning
framework using DenseNet as the building block, and utilized a multi-channel technique to integrate



Genes 2018, 9, 382 14 of 17

multimodal data information. To evaluate its generalizability, we fine-tuned the same model to predict
WHO grade status. Both experiments achieved high prediction accuracy. Our M3D-DenseNet can
train by end-to-end, automatically extract features from multi-modality images, and have greater
generalizability. With further validation on more data, our models for IDH genotype prediction and
WHO grade status prediction may have the potential to be a useful methodology that can be extended
to other multi-modal radiogenomics problems and serve as a decision-making tool to help doctors
make better treatment plans.
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