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Connecting viral with cellular interactomes
SM Bailer1 and J Haas1,2
Genome-scale screens for intraviral and virus–host protein

interactions and the analysis of literature-curated datasets are

able to provide a novel, comprehensive perspective of viruses,

and virus-infected cells. Until now, large-scale interaction

screens were predominantly performed with the yeast-two-

hybrid (Y2H) system; however, alternative high-throughput

technologies detecting binary protein interactions or protein

complexes have been developed. Although many of the

previous studies suffer from a rather poor validation of the

results and few biological implications, these technologies

potentially lead to a plethora of novel hypotheses. Here, we will

give an overview of current approaches and their technical

limitations, present recent examples and novel developments.
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The Y2H system as the standard assay for the
evaluation of interactomes
Essentially all high-throughput approaches to identify

binary protein interactions on a genome-scale currently

rely on the Gal4-based yeast-two-hybrid (Y2H) system

(Figure 1) developed in 1989 [1]. In principle, two

proteins are fused to separately expressed and nonfunc-

tional domains of the Gal4 transcription factor, either the

Gal4 DNA binding domain (bait) or the Gal4 activation

domain (prey). Upon interaction of the two proteins of

interest, the transcription factor activity is reconstituted

in the yeast nucleus leading to the activation of one or

several reporter genes. A major improvement was the

introduction of a mating protocol in which pretrans-

formed haploid yeast cells form diploids that carry both

the bait and prey vector [2]. Compared to the previously

used transformation protocol, this novel strategy is easier

to perform and allows automated screening and the
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crosscombination of a large number of pretransformed

bait and prey pairs. Another major improvement that

further boosted genome-scale Y2H approaches was the

combination with the highly efficient Gateway recom-

binational cloning system for the generation of larger

clone collections [3]. Over the last 10 years, the inter-

actomes of several previously sequenced organisms like

H. pylori [4], C. jejuni [5], M. tuberculosis [6], P. falciparum
[7], T. pallidum [8], S. cerevisiae [9,10], C. elegans [11],

D. melanogaster [12], and humans [13,14] could be gener-

ated using the Y2H system. In most cases arrays were

generated to test either individual or defined pools of

open reading frames (ORFs) for interaction with each

other (matrix screens). Alternatively, a number of indi-

vidual baits were used to screen cDNA libraries.

More recently, several viral interactomes with the her-

pesvirus family being by far the largest group analyzed

have been generated (refs. [15��,16��,17�,18��,19��] and

(E Fossum et al., in revision).

Limitations of the Y2H system
The reliability and the biological relevance of the Y2H

system in general have been challenged repeatedly.

Despite certain limitations the Y2H system is used by

the majority of groups because of its enormous efficacy

and the data discussed in this review are all based on Y2H

screens as all currently published large-scale studies on

intraviral or virus–host protein interactions are based on

them. Clearly, since based on the nuclear localization of a

transcriptional reporter system, it is limited in the analysis

of transcriptional activators and proteins localized to

membrane compartments. However, although the

proteins to be tested are forced into the yeast nucleus

for interaction, no bias between nuclear or non-nuclear

proteins was observed [20��]. Interestingly, while the

yeast system is not expected to provide translational

modifications comparable to the mammalian cell, it is

nonetheless able to introduce and report modification-

dependent interactions up to a certain extent. Thus, the

yeast cell offers an environment sufficiently natural for

the analysis of protein interactions of other species [20��].

A major concern of the Y2H system particularly in

its high-throughput application is the small overlap of

identified interactions in comparative studies. This is

exemplified by two S. cerevisiae proteome-wide Y2H

approaches in which the screening of 6000 gene products

identified 682 (Uetz-screen) and 843 (Ito-core) binary

interactions [9,10]. However, only 19% of the Uetz-screen

and 15% of the Ito-core interactions were found in the

respective other screen [9,10]. A similarly small overlap

was observed in several independently performed
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Figure 1

High-throughput technologies to detect protein interactions. Graphic depiction of several approaches for the detection of binary protein interaction

including the yeast-two-hybrid (Y2H) system, the nucleic acid programmable protein array (NAPPA), the LUMIER (luminescence-based mammalian

interactome mapping), the protein fragment complementation assay (PCA), and the MAPPIT (mammalian protein–protein interaction trap).

Multicomponent protein interactions can be analyzed by the TAP (tandem affinity purification) of ProtA-tagged bait proteins followed by mass

spectrometry of associated proteins. Bait (x) and prey (y) proteins are indicated, fusion tags are shown in orange (AD: activation domain; DBD: DNA

binding protein; ATG: start codon).
genome-wide herpesviral protein interaction screens

[15��,16��,19��,21,22] (E Fossum et al., in revision).

Recent large-scale efforts demonstrated by reinvestigat-

ing a set of random protein interactions of the S. cerevisiae
and human interactomes that the low coverage is the

result of low sensitivity rather than low specificity

[20��,23��,24��]. Several validation protocols performed

in parallel (see below) confirmed 25–30% of the Y2H

interactions suggesting that the Y2H approach does not

yield more false positives than other assays that detect

binary interactions and is comparable in quality to litera-

ture-curated data [25��].

Several reasons are likely to account for the low sensitivity

of Y2H approaches [23��]. First, only a fraction of all

possible pairwise combinations are actually tested in a

given screening situation. Second, depending on the

assay or screening protocol applied different spaces are

screened. This is demonstrated by studies on Hepatitis C

virus (HCV) where the same set of proteins was screened
Current Opinion in Microbiology 2009, 12:453–459
by a yeast mating (IMAPI) as well as a transformation

protocol (IMAPII) using two different human cDNA

libraries [18��]. Although performed in the same labora-

tory, IMAPI and IMAPII shared only 22 interactions

indicating that different screening protocols, vectors,

and yeast strains as well as the quality and composition

of cDNA libraries have a greater impact on the screening

success than generally assumed. Third, high-throughput

approaches are often hampered by technical limitations

that can be improved for example by multiple screenings

of the same set of proteins. Multiple sampling of the same

search space allowed the identification of 80–90% while a

single round revealed only 60% of all possible Y2H

interactions [23��]. The ORFeomes of five evolutionarily

related herpesviruses were used to systematically address

the low coverage of Y2H screens by comparing the

interactions identified in individual species followed by

secondary methods [15��] (E Fossum et al., in revision). In

the initial Y2H screens 283 interactions of the 41 core

orthologous proteins were observed and 113 interactions
www.sciencedirect.com
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Figure 2

Scheme of HSV-1 virus particle with protein interactions detected in a

genome-wide Y2H screen. Capsid, tegument, and glycoproteins are

indicated depending on their localization in the virus particle. Proteins

are colored according to their conservation, purple: conserved in all

herpesviruses, red: in alpha herpesviruses, grey: in Herpes simplex virus,

pink: in alpha and gamma herpesviruses.
were found in more than one species (E Fossum et al., in

revision). On the basis of 55 Y2H interactions detected in

KSHV, 59 of 92 interactions predicted for the correspond-

ing orthologs in HSV-1, mCMV, and EBV could be

identified by coprecipitation. In conclusion, the low cov-

erage of the Y2H system — currently its major draw-

back — can be addressed either by technical

improvements or the combination with other assays.

Alternative technologies
To address the biological significance of an interaction

identified by Y2H, validation by one or more biochemical

methods is required (Figure 1). Technologies similar to

the Y2H, for example an assay based on closeness of two

proteins if not their direct interaction likely leads to high

confirmation rates, however be little complementary

[20��]. Coexpression in mammalian cells of two proteins

fused to distinct tags followed by immuno-coprecipitation

or affinity-coprecipitation (CoP) was successfully applied

to validate several Y2H studies [15��,17�] (E Fossum et al.,
in revision). This method, however, is time consuming

and thus not applicable to analyze large sets of inter-

actions. Recently, a tool-box for high-throughput vali-

dation of Y2H interactions was developed (Figure 1;

[20��]). Expression of proteins on array-printed template

DNA using a coupled in vitro transcription–translation

reaction (nucleic acid programmable protein array,

NAPPA, [26]) follows a principle similar to the CoP.

However, since performed in vitro under a defined but

artificial environment it is technically challenging. A

second method used on a rather large scale is the

LUMIER (luminescence-based mammalian interactome

mapping) pull-down assay where two proteins are

expressed in mammalian cells. While the bait protein

is expressed as a fusion to the protein A-tag or Flag-tag to

immobilize the complex, the prey protein is expressed as

a fusion with luciferase allowing the detection of the

coisolated prey [27]. Protein fragment complementation

assays (PCA), for example the split-YFP system in which

interacting bait and prey proteins are fused to YFP

domains, reconstitute an enzyme or a fluorescent protein

and generally do not require an enrichment of the inter-

actors. Thus, they might be more easily performed in an

automated large-scale fashion [28]. Finally, the MAPPIT

(mammalian protein–protein interaction trap) uses a bait

protein fused to a hybrid erythropoietin–leptin receptor

located to the plasmamembrane and a prey protein fused

to gp130, which drives a signaling cascade resulting in the

read-out of an endogenous transcriptional reporter [29].

Proteomic approaches that are able to detect indirect

interactions are complementary to the Y2H system rather

than confirmatory, and are therefore well suited to

increase the coverage of a Y2H interactome. In the

tandem affinity purification (TAP) approach individual

proteins are fused to a cleavable tandem tag composed for

example of protein A or G and a calmodulin binding
www.sciencedirect.com
peptide (CBP), and the isolated proteins present in the

pulled-down complex are subsequently identified by

mass spectrometry as done for yeast (Figure 1; [30–
32]). Similarly, smaller subsets of human proteins have

been analyzed in higher eukaryotic cells [33–35]. Since

the systematic tagging of chromosomal genes is currently

not feasible in these cells, tagged proteins have been

introduced in addition to the endogenous proteins and

thus compete with them in the pull-down analysis.

Genetic systems are now available for many viral gen-

omes (including large DNA viruses), and systematic

functional TAP-tagging of viral proteins might be

addressed in the near future. Proteomic analyses of pur-

ified virus particles have recently been performed for a

few virus species and may provide further evidence for

the interaction between viral proteins, particularly in

conjunction with Y2H data (Figure 2) [36,37].

Protein interaction networks in viruses
Initial ‘genome-wide’ studies concentrated on intraviral

protein interactions of small RNA and DNA viruses.

However, owing to the rather small number of proteins

and protein interactions identified (Figure 3), a detailed

network analysis could not be applied (reviewed by [38]).

More recent approaches on intraviral interactomes in-

clude several members of the herpesvirus family

[15��,16��,19��,21,22] (E Fossum et al., in revision) and

the human SARS coronavirus (SARS-CoV, [17�]). The
Current Opinion in Microbiology 2009, 12:453–459
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Figure 3

Global view of the interaction of two herpesviruses, VZV and KSHV, with the human proteome. Two experimental Y2H datasets were used to connect

the two viral interactomes of VZV (red) and KSHV (pink) into a predicted high-confidence human interaction network consisting of 10 636 edges

between 3169 nodes. Interactions between viral proteins are depicted in red or orange, interactions to cellular proteins in blue.
first combined virus–host interactomes were investigated

in HCV [18��], EBV [16��], VZV and KSHV (Haas and

collaborators). Virus–host protein interactions have been

included into several public databases, or novel databases

specific for virus–host interactions like VirHostNet have

been set up [39].

Hepatitis C virus (HCV)

In a systematic screen of 27 full-length proteins or

domains of HCV against two human cDNA libraries,

314 virus–host interactions were identified [18��]. Taking

published interactions into account, this is the first

analysis on RNA viruses producing a large enough dataset

to constitute a virus–human interaction network com-

posed of 481 interactions involving 11 HCV and 421

human proteins. The most highly connected proteins

were the NS3, NS5A, and core proteins with 214, 96,

76 interactors, respectively. Intriguingly, the insulin, Jak/

STAT, and TGFb signaling pathways were particularly

enriched, which might be consistent with the metabolic

disorders observed during chronic HCV infection. Focal
Current Opinion in Microbiology 2009, 12:453–459
adhesion complexes could represent a novel target of

HCV suggesting a role of several HCV proteins in viral

spreading, cell–cell interaction, and tissue reorganization.

This analysis may thus help to identify potential new

targets for HCV therapy.

Herpesviruses

The largest high-throughput approaches involving

viruses have been performed with herpesviruses.

Equipped with moderately large-sized genomes encoding

a manageable but complex set of genes these viruses

represent the ideal candidates for genome-wide Y2H

approaches followed by bioinformatical analysis. Intra-

viral interactomes have been generated for several her-

pesviruses including the a-herpesviruses Herpes simplex

virus type 1 (HSV-1, [21,22], E Fossum et al., in revision)

and Varicella zoster virus (VZV [15��]), the b-herpesvirus

mouse Cytomegalovirus (mCMV), and the g-herpes-

viruses Epstein–Barr virus (EBV [16��], E Fossum

et al., in revision) and Kaposi’s sarcoma herpesvirus

(KSHV [15��,19��]). In a comparison of the interactomes
www.sciencedirect.com
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Figure 4

Nuclear egress of HSV-1 capsids. Herpesviral capsids are formed in the host nucleus and released to the cytoplasm by budding through the nuclear

envelope. Primary envelopment at the inner nuclear membrane (INM) requires the membrane anchored UL34/UL31 family of proteins. The UL33

protein family interacts with this nuclear egress complex and may connect capsid packaging and nuclear egress (ER: endoplasmic reticulum; INM:

inner nuclear membrane; ONM: outer nuclear membrane; NPC: nuclear pore complex).
of five herpesviral species including 1007 intraviral inter-

actions a core set of highly conserved protein interactions

has been identified. Intriguingly, the interactions be-

tween the orthologous proteins were found to be con-

served independent of their sequence homology. The

topology of all herpesviral networks differed from cellular

networks; however, it is difficult to judge whether this

really reflects biological differences or artefacts caused by

different setups used to evaluate them. In EBV [16��],
HCV [18��], VZV and KSHV (Haas and collaborators),

and KSHV (Haas and collaborators) viral proteins tend to

interact with highly connected cellular proteins, which

could be a general hallmark of many pathogen–host

interactions [40��]. The datasets available to date are

hampered by the low coverage of the Y2H screens per-

formed, which makes it difficult to draw general biological

conclusions. To reveal significant differences how differ-

ent pathogens interact with the host proteome, protein

interaction data with a considerably higher coverage of

the screening space have to be generated.

To provide an example of the power of this approach, a

comparison of the five herpesviral core networks ident-

ified the highly connected HSV-1 UL33 ortholog (VZV

Orf25, mCMV M51, EBV BFRF4, and KSHV Orf67.5),

which interacted with 14 tegument proteins (Figure 2, E

Fossum et al., in revision). Interestingly, 11 out of 14

interactions were found in more than one species, a
www.sciencedirect.com
majority of which was confirmed by CoP. In addition,

the interaction between UL33 orthologs and the HSV-1

UL31 orthologs (VZV Orf27, mCMV M53, EBV BFLF2,

and KSHV Orf69) which in turn were found and pre-

viously published to interact with the HSV-1 UL34

orthologs (VZV Orf24, mCMV M50, EBV BFRF1, and

KSHV Orf67) was highly conserved [41–45]. Likely these

proteins form a large protein complex that mediates

budding of capsids at the inner nuclear membrane of

the host (Figure 4). The role of UL33 in DNA packaging

and cleavage could point to a role in connecting capsid

maturation with nuclear egress [46]. This is in line with

these proteins being crucial for capsid formation and

nuclear egress [41,46–49]. The identification of this

protein complex thus demonstrates the potential of sys-

tems virology to reveal targets for alternative herpesviral

therapies. This could be achieved by peptides or other

small molecules introduced to interfere with targeting or

assembly of the complex components.

SARS coronavirus (SARS-CoV)

Discovered in 2002, the SARS-CoV is thus far the largest

RNA virus analyzed for genome-wide intraviral protein

interactions [17�]. Its genome consists of approximately

29 700 nt and is predicted to encode 14 functional ORFs

leading to approximately 30 structural and nonstructural

protein products. Of the 900 pairwise interactions tested

by a Y2H matrix analysis, 65 were positive and 35% of
Current Opinion in Microbiology 2009, 12:453–459
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these could be confirmed by CoP. The intraviral inter-

action network revealed network parameters similar to

herpesviruses [15��] and the combined published and

experimental virus–host interactions suggest that SAR-

S-CoV targets host functions like apoptosis, cell com-

munication, and signaling.

Outlook
Large-scale protein interaction screens are able to provide

large amounts of novel and unbiased data, but the extrac-

tion of biological implications from these screens is diffi-

cult, particularly if they are based on a technology with a

rather low coverage as the Y2H system. In the near future,

however, improved ‘deep’ screening technologies will

lead to more comprehensive interaction maps of both

intraviral and virus–host protein interactions, which, in

combination with other genome-scale technologies like

siRNA knock-down screens, transcriptional profiling, and

spatial/temporal distribution studies may allow to setup

improved models of virus-infected cells. The comparison

of different viruses and, possibly, other pathogens may

allow the identification of common strategies for infection

and replication used by divergent pathogen groups, and

the identification of targets for novel broad-spectrum

antibiotics. On the other hand, it might reveal strategies

that are specific for individual pathogens and help explain

the characteristics of the infection with this particular

pathogen. In combination with a genetic profiling of the

infected host this approach will be even more powerful

and might potentially lead to a step change in our un-

derstanding of viral infections.
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