¹**Structural basis of the excitatory amino acid transporter 3 substrate recognition.**

- 2 Biao Qiu^{1,2}, Olga Boudker^{1,2, *}
3 ¹ Department of Physiology &
- ¹ Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York,
- 4 NY 10021, USA
5 ² Howard Hughes
- 2^2 Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY
- 6 10021, USA
7 * Correspond
- * ⁷Correspondence: olb2003@med.cornell.edu
- 7
- ⁹**Abstract:**
-

11 Excitatory amino acid transporters (EAATs) reside on cell surfaces and uptake substrates,
12 including L-glutamate, L-aspartate, and D-aspartate, using ion gradients. Among five EAATs, 12 including L-glutamate, L-aspartate, and D-aspartate, using ion gradients. Among five EAATs,
13 EAAT3 is the only isoform that can efficiently transport L-cysteine, a substrate for glutathione 13 EAAT3 is the only isoform that can efficiently transport L-cysteine, a substrate for glutathione
14 synthesis. Recent work suggests that EAAT3 also transports the oncometabolite R-2-14 synthesis. Recent work suggests that EAAT3 also transports the oncometabolite R-2-
15 hydroxyglutarate (R-2HG). Here, we examined the structural basis of substrate promiscuity by 15 hydroxyglutarate (R-2HG). Here, we examined the structural basis of substrate promiscuity by
16 determining the cryo-EM structures of EAAT3 bound to different substrates. We found that L-16 determining the cryo-EM structures of EAAT3 bound to different substrates. We found that L-
17 cysteine binds to EAAT3 in thiolate form, and EAAT3 recognizes different substrates by fine-17 cysteine binds to EAAT3 in thiolate form, and EAAT3 recognizes different substrates by fine-18 tuning local conformations of the coordinating residues. However, using purified human EAAT3,
19 we could not observe R-2HG binding or transport. Imaging of EAAT3 bound to L-cysteine 19 we could not observe R-2HG binding or transport. Imaging of EAAT3 bound to L-cysteine
20 revealed several conformational states, including an outward-facing state with a semi-open gate 20 revealed several conformational states, including an outward-facing state with a semi-open gate
21 and a disrupted sodium-binding site. These structures illustrate that the full gate closure, coupled 21 and a disrupted sodium-binding site. These structures illustrate that the full gate closure, coupled
22 with the binding of the last sodium ion. occurs after substrate binding. Furthermore, we observed 22 with the binding of the last sodium ion, occurs after substrate binding. Furthermore, we observed
23 that different substrates affect how the transporter distributes between a fully outward-facing 23 that different substrates affect how the transporter distributes between a fully outward-facing
24 conformation and intermediate occluded states on a path to the inward-facing conformation. 24 conformation and intermediate occluded states on a path to the inward-facing conformation,
25 suggesting that translocation rates are substrate-dependent. 25 suggesting that translocation rates are substrate-dependent.
26

26

²⁷**Introduction:**

29 EAATs belong to the Solute Carrier 1 (SLC1) family uptake substrates into cells against their
30 concentration gradients by symporting them with three sodium ions (Na⁺) and a proton (H⁺) and 30 concentration gradients by symporting them with three sodium ions (Na^+) and a proton (H^+) and 31 counter-transporting a potassium ion $(K^+)^{1-3}$. There are 5 EAAT subtypes in humans, sharing

similar molecular mechanisms but expressed in different tissues and cell types⁴. EAAT1 and
33. EAAT2 are the principal glial glutamate transporters, with EAAT2 responsible for the uptake of EAAT2 are the principal glial glutamate transporters, with EAAT2 responsible for the uptake of
34 up to 80-90% of the neurotransmitter into astrocytes following rounds of synaptic transmission⁵. up to 80-90% of the neurotransmitter into astrocytes following rounds of synaptic transmission⁵.
35. EAAT4 and EAAT5 are expressed in Purkinje cells of the cerebellum and retina; they display EAAT4 and EAAT5 are expressed in Purkinje cells of the cerebellum and retina; they display
36 lower glutamate transport but higher chloride conductance ability^{6,7}. By contrast, EAAT3 is lower glutamate transport but higher chloride conductance ability^{6,7}. By contrast, EAAT3 is
37. expressed in neurons throughout the brain and peripheral tissues, such as epithelial cells of the 37 expressed in neurons throughout the brain and peripheral tissues, such as epithelial cells of the
38 intestine and kidney and endothelial cells of capillaries⁸. All EAATs can uptake L-Glu, L-Asp, intestine and kidney and endothelial cells of capillaries⁸. All EAATs can uptake L-Glu, L-Asp, 39 and D-Asp. L-Glu is the brain's most abundant free amino acid; it mediates transmission at most
40 fast excitatory synapses and is a metabolic hub linking energy metabolism and amino acid 40 fast excitatory synapses and is a metabolic hub linking energy metabolism and amino acid
41 biosynthesis in neurons⁹. Under normal conditions, most L-Glu is sequestered inside brain cells, biosynthesis in neurons⁹. Under normal conditions, most L-Glu is sequestered inside brain cells,
42 and its excess in the extracellular space can lead to excitotoxicity. L-Asp also fits the criteria of 42 and its excess in the extracellular space can lead to excitotoxicity. L-Asp also fits the criteria of an excitatory neurotransmitter because it excites the NMDA subtype of ionotropic glutamate 43 an excitatory neurotransmitter because it excites the NMDA subtype of ionotropic glutamate
44 receptors¹⁰, but its role in neurotransmission has been questioned¹¹. D-Asp, found in the brain receptors¹⁰, but its role in neurotransmission has been questioned¹¹. D-Asp, found in the brain
45 and neuroendocrine tissues, shows neuromodulatory activity and may also be a 45 and neuroendocrine tissues, shows neuromodulatory activity and may also be a
46 neurotransmitter^{12,13}. It is present in high concentrations in the mammalian brain during neurotransmitter^{12,13}. It is present in high concentrations in the mammalian brain during development but drops sharply postnatally. 47 development but drops sharply postnatally.
48

EAAT3 is the only EAAT subtype able to transport L-Cys efficiently^{14,15}. Neutral SLC1 amino
50. acid transporters (Alanine, Serine, Cysteine Transporters, or ASCTs) can also transport L-50 acid transporters (Alanine, Serine, Cysteine Transporters, or ASCTs) can also transport L-
51 Cys^{16,17}, while system xc- transporter from the SLC7 family exchanges oxidized L-cystine for $Cys^{16,17}$, while system xc- transporter from the SLC7 family exchanges oxidized L-cystine for glutamate¹⁸. These transporters are enriched in astrocytes¹⁹⁻²¹, whereas EAAT3 mediates about 52 glutamate¹⁸. These transporters are enriched in astrocytes¹⁹⁻²¹, whereas EAAT3 mediates about
53 90% of L-Cvs uptake into neurons^{22,23}. In so doing, EAAT3 protects them from oxidative stress 90% of L-Cys uptake into neurons^{22,23}. In so doing, EAAT3 protects them from oxidative stress
54. because L-Cys is a rate-limiting precursor for antioxidant glutathione (GSH) synthesis. Cysteine 54 because L-Cys is a rate-limiting precursor for antioxidant glutathione (GSH) synthesis. Cysteine
55 is also a substrate for producing the gaseous signaling molecule hydrogen sulfide (H₂S), a is also a substrate for producing the gaseous signaling molecule hydrogen sulfide (H_2S) , a 56 substrate for the post-translational persulfidation of cysteine residues. This evolutionarily
57 conserved modification protects proteins from oxidative stress and can extend the organism's 57 conserved modification protects proteins from oxidative stress and can extend the organism's
58 life^{24,25}. EAAT3 deficiency may contribute to a plethora of neurologic pathologies, including 158. life^{24,25}. EAAT3 deficiency may contribute to a plethora of neurologic pathologies, including ischemic stroke, epilepsy, Parkinson's, Huntington's, and Alzheimer's diseases²⁶. Indeed, ischemic stroke, epilepsy, Parkinson's, Huntington's, and Alzheimer's diseases²⁶. Indeed, decreased levels of GSH, present in 2-3 mM concentration in the healthy brain, are an early 60 decreased levels of GSH, present in 2-3 mM concentration in the healthy brain, are an early
61 biomarker of brain aging and Parkinson's disease²⁷. Furthermore, inhibition of EAAT3 by biomarker of brain aging and Parkinson's disease²⁷. Furthermore, inhibition of EAAT3 by 62 morphine decreases the cell methylation potential and DNA methylation, leading to epigenetic changes implicated in morphine addiction²⁸. 63 changes implicated in morphine addiction²⁸.
64 EAAT3-mediated L-Glu and L-Asp upta

64 EAAT3-mediated L-Glu and L-Asp uptake outside the central nervous system promotes
65 metabolic activity, and the amino acids serve as nucleotide precursors²⁹. EAAT3 is also required metabolic activity, and the amino acids serve as nucleotide precursors²⁹. EAAT3 is also required
66 for rapid metabolic reprogramming in activated B cells³⁰ and cancer cells³¹. Recently, EAAT3 for rapid metabolic reprogramming in activated B cells³⁰ and cancer cells³¹. Recently, EAAT3
67 has been identified as the "oncometabolite" R-2-hydroxyglutarate (R-2HG) transporter³². Tumor has been identified as the "oncometabolite" R-2-hydroxyglutarate (R-2HG) transporter³². Tumor cells produce and secrete R-2HG, which acts as a signaling molecule on the surrounding cells, cells produce and secrete R-2HG, which acts as a signaling molecule on the surrounding cells, modulating the tumor microenvironment³³ and might enter endothelial cells via EAAT3,
70 stimulating angiogenesis. 70 stimulating angiogenesis.
71

71

72 EAAT3 is a homotrimer, with each protomer comprised of the central trimeric scaffold and
73 peripheral transport domains. During uptake, the transport domain undergoes \sim 15 Å 73 peripheral transport domains. During uptake, the transport domain undergoes ~15 Å
74 transmembrane movement combined with a rotation alternating between the outward- and 74 transmembrane movement combined with a rotation alternating between the outward- and
75 inward-facing states (OFS and IFS): the scaffold domain remains mostly immobile^{34,35}. All inward-facing states (OFS and IFS); the scaffold domain remains mostly immobile^{34,35}. All
76 SLC1 family proteins³⁶⁻⁴⁵ and its archaeal homologues⁴⁶⁻⁵² share this elevator mechanism. A SLC1 family proteins³⁶⁻⁴⁵ and its archaeal homologues⁴⁶⁻⁵² share this elevator mechanism. A
77 substrate molecule, three Na⁺ ions, and a proton bind to the transport domain in the OFS and substrate molecule, three Na⁺ ions, and a proton bind to the transport domain in the OFS and
78 dissociate in the IFS; a K⁺ ion binds instead to the IFS and dissociates from the OFS to complete dissociate in the IFS; a K^+ ion binds instead to the IFS and dissociates from the OFS to complete
79 the cycle. The first cryo-EM study on the glycosylation mutant of human EAAT3, hEAAT3g, 79 the cycle. The first cryo-EM study on the glycosylation mutant of human EAAT3, hEAAT3g,
80 revealed that the transporter preferentially resided in the IFS in the presence of saturating $Na⁺$ revealed that the transporter preferentially resided in the IFS in the presence of saturating $Na⁺$ concentrations³⁵. L-Asp showed a very low affinity for the IFS and a greater affinity for the OFS; concentrations³⁵. L-Asp showed a very low affinity for the IFS and a greater affinity for the OFS;
82. therefore, we observed growing populations of L-Asp-bound OFS in increasing L-Asp 82 therefore, we observed growing populations of L-Asp-bound OFS in increasing L-Asp
83 concentrations. In contrast, IFS remained substrate-free. To increase the population of the OFS 83 concentrations. In contrast, IFS remained substrate-free. To increase the population of the OFS
84 and observe a lower affinity L-Glu binding, we developed a crosslinking protocol constraining a 84 and observe a lower affinity L-Glu binding, we developed a crosslinking protocol constraining a
85 double cysteine K269C/W441C mutant of EAAT3g in the OFS (hEAAT3-X). The crosslinked double cysteine K269C/W441C mutant of EAAT3g in the OFS (hEAAT3-X). The crosslinked 86 protein showed a mixture of the OFS and an atypical intermediate outward-facing state (iOFS*),
87 in which the transport domain moves closer to IFS. The intermediate state exhibited a higher 87 in which the transport domain moves closer to IFS. The intermediate state exhibited a higher
88 substrate affinity, with L-Glu favoring iOFS* over OFS³⁴. substrate affinity, with L-Glu favoring i OFS^{*} over OFS³⁴.

89
90 90 Here, we used hEAAT3-X to examine the structural basis of how EAAT3 recognizes diverse
91 substrates. We combined these studies with ligand-mediated thermal stabilization experiments on 91 substrates. We combined these studies with ligand-mediated thermal stabilization experiments on
92 bEAAT3g to probe substrate binding in solution and solid-supported membrane (SSM) hEAAT3g to probe substrate binding in solution and solid-supported membrane (SSM)

93 electrophysiology to test substrate transport. The substrates showed thermal stabilization of the transporters in the order L-Asp > D-Asp > L-Glu > L-Cys, which likely reflects how tightly they 94 transporters in the order L-Asp > D-Asp > L-Glu >L-Cys, which likely reflects how tightly they
95 bind. Notably, L-Cys showed thermal stabilization only at elevated pH, suggesting it binds in the 95 bind. Notably, L-Cys showed thermal stabilization only at elevated pH, suggesting it binds in the
96 thiolate form. We observed no hEAAT3 stabilization by R-2HG. SSM electrophysiology showed 96 thiolate form. We observed no hEAAT3 stabilization by R-2HG. SSM electrophysiology showed
97 transport currents for Asp. Glu. and L-Cvs. while R-2HG produced no currents. CrvoEM 97 transport currents for Asp, Glu, and L-Cys, while R-2HG produced no currents. CryoEM
98 imaging of hEAAT3-X in the presence of L-Asp and D-Asp showed transporters predominantly 98 imaging of hEAAT3-X in the presence of L-Asp and D-Asp showed transporters predominantly
99 in iOFS^{*} and bound to the amino acids. In contrast, hEAAT3-X, in the presence of R-2HG, in iOFS^{*} and bound to the amino acids. In contrast, hEAAT3-X, in the presence of R-2HG,
100 pictured the transporter in OFS with an empty and open substrate-binding site, consistent with 100 pictured the transporter in OFS with an empty and open substrate-binding site, consistent with
101 the biophysical results suggesting that R-2HG is not a transported substrate. Imaging hEAAT3-X 101 the biophysical results suggesting that R-2HG is not a transported substrate. Imaging hEAAT3-X
102 in the presence of L-Cys revealed an ensemble of OFS, iOFS^{*}, and a slightly shifted iOFS. The in the presence of L-Cys revealed an ensemble of OFS, iOFS^{*}, and a slightly shifted iOFS. The
103, iOFS and iOFS^{*} featured the full complement of bound L-Cys and symported ions. In contrast, iOFS and iOFS^{*} featured the full complement of bound L-Cys and symported ions. In contrast,
104 OFS, while bound to L-Cys and two Na⁺ ions (at Na1 and Na3 sites), featured a semi-open OFS, while bound to L-Cys and two Na⁺ ions (at Na1 and Na3 sites), featured a semi-open
105 extracellular gate (helical hairpin 2, HP2) and a disrupted Na2 site. Our work provides the 105 extracellular gate (helical hairpin 2, HP2) and a disrupted Na2 site. Our work provides the
106 structural basis of promiscuous substrate recognition by EAAT3 and suggests that the substrate 106 structural basis of promiscuous substrate recognition by EAAT3 and suggests that the substrate
107 binding occurs before the last $Na⁺$ bounding at the Na2 site and the coupled gate closure. 107 binding occurs before the last $Na⁺$ bounding at the Na2 site and the coupled gate closure.
108

¹⁰⁹**Results:**

110 Purified hEAAT3g binds and transports diverse substrates.
111 To compare the binding of different substrates to hEAAT3,

111 To compare the binding of different substrates to hEAAT3, we purified the transporter and
112 measured its temperature-induced denaturation in the absence and presence of substrates (Fig. 112 measured its temperature-induced denaturation in the absence and presence of substrates (**Fig.** 113 **1a-c**). hEAAT3g in 200 mM NaCl at pH 7.4 denatured at 69.2 ± 0.2 °C. Additions of 10 mM L-113 **1a-c**). hEAAT3g in 200 mM NaCl at pH 7.4 denatured at 69.2 ± 0.2 °C. Additions of 10 mM L-
114 Asp, D-Asp, and L-Glu increased the denaturation temperature by 3.8 ± 0.1 , 2.4 ± 0.2 , and 114 Asp, D-Asp, and L-Glu increased the denaturation temperature by 3.8 ± 0.1 , 2.4 ± 0.2 , and 115 1.0 ± 0.1 °C, respectively. In contrast, 10 mM L-Cys, 10 mM D-Glu, or R-2HG did not 1.0 \pm 0.1 °C, respectively. In contrast, 10 mM L-Cys, 10 mM D-Glu, or R-2HG did not significantly stabilize the transporter, suggesting that they bind weaker or not at all (Fig. 1b, c). 116 significantly stabilize the transporter, suggesting that they bind weaker or not at all (**Fig. 1b, c**).
117 To test L-Cys and R-2HG further, we increased their concentrations to 100 mM at pH 7.4 and 117 To test L-Cys and R-2HG further, we increased their concentrations to 100 mM at pH 7.4 and
118 8.8 for L-Cys. We observed no significant stabilization by either substrate at pH 7.4. However, at 118 8.8 for L-Cys. We observed no significant stabilization by either substrate at pH 7.4. However, at pH 8.8. L-Cys stabilized the transporter by $4.2 \pm 0.6^{\circ}$ C (Fig. 1c). These data suggest that L-Cys 119 pH 8.8, L-Cys stabilized the transporter by $4.2 \pm 0.6^{\circ}$ C (**Fig. 1c**). These data suggest that L-Cys
120 binds to the transporter as thiolate. Surprised by the apparent lack of R-2HG binding, we tested 120 binds to the transporter as thiolate. Surprised by the apparent lack of R-2HG binding, we tested
121 whether hEAAT3g reconstituted into liposomes transported R-2HG in solid-supported 121 whether hEAAT3g reconstituted into liposomes transported R-2HG in solid-supported
122 membrane electrophysiology (SSME). R-2HG carries one less positive charge than L-Glu and D-122 membrane electrophysiology (SSME). R-2HG carries one less positive charge than L-Glu and D-
123 Glu, but its transport should result in a net uptake of one positive charge and be electrogenic. ¹²³Glu, but its transport should result in a net uptake of one positive charge and be electrogenic.

- 124 Nevertheless, we observed no capacitance peaks upon perfusion of R-2HG. In contrast, perfusion of L- and D-Asp, L-Glu, and L-Cys over the same SSM chip produced robust peaks, and
- 125 of L- and D-Asp, L-Glu, and L-Cys over the same SSM chip produced robust peaks, and perfusion of D-Glu produced a small but reproducible capacitance current (**Fig. 1d**).
- perfusion of D-Glu produced a small but reproducible capacitance current (**Fig. 1d**).

129
130

130 ¹³¹**Figure 1. Ligand-dependent thermal stability and transport activity of hEAAT3g.** (**a**), 132 Chemical structures of EAAT3 amino acid substrates and R-2HG. (**b**), Representative melting
133 curves of hEAAT3g in 200 mM NaCl (dotted line) and the presence of amino acids, as indicated 133 curves of hEAAT3g in 200 mM NaCl (dotted line) and the presence of amino acids, as indicated next to the graph. Shown are the first derivatives of the fluorescence emission intensity ratio at 134 next to the graph. Shown are the first derivatives of the fluorescence emission intensity ratio at 350 and 330 nm (A_{350}/A_{330}) , with peaks corresponding to the inflections of the sigmoidal melting 135 350 and 330 nm (A₃₅₀/A₃₃₀), with peaks corresponding to the inflections of the sigmoidal melting
136 curves and termed melting temperatures (Tm) (c). Tm increases (ΔT m) in the presence of 136 curves and termed melting temperatures (Tm) (**c**), Tm increases (ΔTm) in the presence of potential substrates compared to NaCl alone. The results for two independent protein 137 potential substrates compared to NaCl alone. The results for two independent protein
138 preparations (except for D-Glu, which was prepared once), each with multiple technical repeats, 138 preparations (except for D-Glu, which was prepared once), each with multiple technical repeats, are shown; the error bars are the standard deviations. (d), Examples of SSME-measured transient 139 are shown; the error bars are the standard deviations. (**d**), Examples of SSME-measured transient
140 currents when immobilized hEAAT3g proteoliposomes were perfused with 3 mM of potential 140 currents when immobilized hEAAT3g proteoliposomes were perfused with 3 mM of potential
141 substrates. All experiments were performed using two independent protein purification and 141 substrates. All experiments were performed using two independent protein purification and
142 reconstitutions, and at least three sensors were used to measure each reconstitution. The color 142 reconstitutions, and at least three sensors were used to measure each reconstitution. The color scheme is the same in (b-d): L-Asp, blue; D-Asp, red; L-Glu, green; D-Glu, cyan; L-Cys, brown; 143 scheme is the same in (**b-d**): L-Asp, blue; D-Asp, red; L-Glu, green; D-Glu, cyan; L-Cys, brown; R-2HG, purple. R-2HG, purple. 145

146 **Structures of hEAAT3-X bound to substrates.**
147 To examine substrate binding structurally, we in 147 To examine substrate binding structurally, we introduced K269C/W441C into Cysmini EAAT3
148 as previously described^{34,53,54}. Hg²⁺-mediated cross-linking traps the transporter in iOFS*, iOFS, as previously described^{34,53,54}. Hg²⁺-mediated cross-linking traps the transporter in iOFS*, iOFS,
and OFS (hEAAT3-X), which show high-affinity L-Asp and L-Glu binding and are ideal for 149 and OFS (hEAAT3-X), which show high-affinity L-Asp and L-Glu binding and are ideal for
150 examining varying potential substrates. Following cross-linking, we purified hEAAT3-X by SEC 150 examining varying potential substrates. Following cross-linking, we purified hEAAT3-X by SEC
151 in 100 mM NMDG-Cl (Apo condition), split the eluted protein into two samples, and 151 in 100 mM NMDG-Cl (Apo condition), split the eluted protein into two samples, and
152 supplemented them with 200 mM NaCl and 10 mM L-Asp or R-2HG before freezing cryo-EM 152 supplemented them with 200 mM NaCl and 10 mM L-Asp or R-2HG before freezing cryo-EM
153 grids. Data processing on the L-Asp sample yielded a well-resolved map at 2.87 Å resolution. 153 grids. Data processing on the L-Asp sample yielded a well-resolved map at 2.87 Å resolution.
154 The map revealed iOFS* conformation with a closed substrate gate (helical hairpin 2, HP2) and a 154 The map revealed iOFS* conformation with a closed substrate gate (helical hairpin 2, HP2) and a
155 well-resolved density corresponding to the bound L-Asp (Fig. 2a, c, Supplementary Fig. 1, 155 well-resolved density corresponding to the bound L-Asp (**Fig. 2a, c, Supplementary Fig. 1, Supplementary Table 1**); we found no additional minor conformations in 3D classifications. In **Supplementary Table 1**); we found no additional minor conformations in 3D classifications. In contrast, the R-2HG dataset yielded a 3.07 Å resolution OFS map featuring a wide-open HP2 157 contrast, the R-2HG dataset yielded a 3.07 Å resolution OFS map featuring a wide-open HP2
158 gate, nearly identical to the OFS observed in $Na⁺$ buffers without substrates (**Fig. 2b. d.**) gate, nearly identical to the OFS observed in Na^+ buffers without substrates (**Fig. 2b, d, 359 Supplementary Fig. 2. Supplementary Table 1**). We found 8 % protomers in iOFS with no **Supplementary Fig. 2, Supplementary Table 1**). We found 8 % protomers in iOFS with no
160 density corresponding to R-2HG (**Supplementary Fig. 2c**); this conformation is nearly identical 160 density corresponding to R-2HG (**Supplementary Fig. 2c**); this conformation is nearly identical
161 to the minor state observed in Na⁺ buffer without substrate³⁴. 161 to the minor state observed in Na⁺ buffer without substrate³⁴.

163 Next, we prepared another batch of apo hEAAT3-X, which we supplemented with 200 mM NaCl
164 and 10 mM L-Cys or D-Asp. Because L-Cys can break Hg^{2+} -mediated cysteine crosslink, we and 10 mM L-Cys or D-Asp. Because L-Cys can break Hg^{2+} -mediated cysteine crosslink, we rapidly mixed ice-cold EAAT3-X with L-Cys and froze grids immediately, in less than 10 165 rapidly mixed ice-cold EAAT3-X with L-Cys and froze grids immediately, in less than 10
166 seconds. Processing of the D-Asp dataset produced a 2.73 Å resolution density map with 166 seconds. Processing of the D-Asp dataset produced a 2.73 Å resolution density map with
167 resolved scaffold and transport domains corresponding to iOFS* (Fig. 2e, Supplementary Fig. 3, 167 resolved scaffold and transport domains corresponding to iOFS* (**Fig. 2e, Supplementary Fig. 3, Supplementary Table. 1**), and 3D classification did not reveal the presence of any other states. **Supplementary Table. 1**), and 3D classification did not reveal the presence of any other states.
169 Interestingly, we previously found that for hEAAT3-X bound to L-Glu, about 14% of protomers 169 Interestingly, we previously found that for hEAAT3-X bound to L-Glu, about 14% of protomers
170 were in the OFS conformation, with the remainder in iOFS*. In contrast, we found no OFS 170 were in the OFS conformation, with the remainder in iOFS*. In contrast, we found no OFS
171 structural classes in the current L-Asp or D-Asp datasets. Thus, we hypothesize that ligands can 171 structural classes in the current L-Asp or D-Asp datasets. Thus, we hypothesize that ligands can
172 affect the transport domain distribution of the EAAT3-X. 172 affect the transport domain distribution of the EAAT3-X.
173

174
175 **Figure 2. The structures of hEAAT3-X with 10 mM substrates.** The overall structure of hEAAT3-X with 10 mM L-Asp (a), R-2HG (b), D-Asp (e), or L-Cys (f); The orange dashed 176 hEAAT3-X with 10 mM L-Asp (**a**), R-2HG (**b**), D-Asp (**e**), or L-Cys (**f**); The orange dashed ovals highlight the transport domain density of iOFS*-D-Asp and iOFS*-L-Cys. The scaffold 177 ovals highlight the transport domain density of iOFS*-D-Asp and iOFS*-L-Cys. The scaffold
178 domains are colored in wheat, the lipid densities are gray, and the transport domains are 178 domains are colored in wheat, the lipid densities are gray, and the transport domains are
179 multicolored with L-Asp, light blue; R-2HG, green; D-Asp, pink; and L-Cys, dark blue. (c, d), 179 multicolored with L-Asp, light blue; R-2HG, green; D-Asp, pink; and L-Cys, dark blue. (**c, d**), 180 The structures of iOFS*-L-Asp (**c**) and OFS-R2HG (**d**) transport domains. Helical hairpin 1 180 The structures of iOFS^{*}-L-Asp (**c**) and OFS-R2HG (**d**) transport domains. Helical hairpin 1
181 (HP1) and HP2, which define the location of the substrate-binding site, are colored vellow-181 (HP1) and HP2, which define the location of the substrate-binding site, are colored yellow-
182 orange and red, respectively. HP2 of iOFS*-L-Asp is closed, with the bound L-Asp colored in 182 orange and red, respectively. HP2 of iOFS*-L-Asp is closed, with the bound L-Asp colored in teal (c); The HP2 of OFS-R2HG is wide open, and the ligand-binding cavity, emphasized by the 183 teal (c); The HP2 of OFS-R2HG is wide open, and the ligand-binding cavity, emphasized by the black dotted oval, is empty (d). The contour levels of the iOFS^{*}-L-Asp, OFS-R-2HG, iOFS^{*}-D-184 black dotted oval, is empty (**d**). The contour levels of the iOFS^{*}-L-Asp, OFS-R-2HG, iOFS^{*}-D-
185 Asp, and iOFS^{*}-L-Cys trimer maps are 0.614, 0.34, 0.614, and 0.62, respectively; the gray 185 Asp, and iOFS*-L-Cys trimer maps are 0.614, 0.34, 0.614, and 0.62, respectively; the gray dashed lines represent an approximate position of the lipid bilayer. 186 dashed lines represent an approximate position of the lipid bilayer.
187

188

188 189 **Conformational ensemble of L-Cys-bound hEAAT3-X.**
190 Processing the L-Cys dataset yielded a density map at

190 Processing the L-Cys dataset yielded a density map at 2.36 Å resolution with applied C3
191 symmetry. The map showed a well-resolved scaffold domain density but a blurred transport 191 symmetry. The map showed a well-resolved scaffold domain density but a blurred transport
192 domain density (Fig. 2f. Supplementary Fig. 4). Because we observed no such blurring in the 192 domain density (**Fig. 2f, Supplementary Fig. 4**). Because we observed no such blurring in the
193 D-Asp dataset, which was prepared simultaneously, we reasoned that it was not due to damaged 193 D-Asp dataset, which was prepared simultaneously, we reasoned that it was not due to damaged
194 protein and might reflect protein dynamics. To uncover the complete conformational ensemble 194 protein and might reflect protein dynamics. To uncover the complete conformational ensemble
195 of L-Cys-bound EAAT3-X, we performed symmetry expansion and optimized the parameters of 195 of L-Cys-bound EAAT3-X, we performed symmetry expansion and optimized the parameters of the local 3D classification in Relion⁵⁵. When the class number, K , and the regularization the local 3D classification in Relion⁵⁵. When the class number, K , and the regularization parameter, T , were set to 20 and 40, we identified 4 distinct structural classes. Further local 197 parameter, *T*, were set to 20 and 40, we identified 4 distinct structural classes. Further local
198 refinement produced EM maps corresponding to OFS, iOFS, iOFS^{*}, and IFS with resolutions of 198 refinement produced EM maps corresponding to OFS, iOFS, iOFS*, and IFS with resolutions of
199 2.58, 2.99, 2.60, and 2.94 Å. (Fig. 3, Supplementary Figs. 5, 6, Supplementary Table 1). The ¹⁹⁹2.58, 2.99, 2.60, and 2.94 Å. (**Fig. 3, Supplementary Figs. 5, 6, Supplementary Table 1**). The IFS presence indicates that the Hg^{2+} crosslink is disrupted in a fraction of EAAT3-X molecules
201 during grid preparation. Aided by the substantial number of expanded particles (3.3 million), the 201 during grid preparation. Aided by the substantial number of expanded particles (3.3 million), the
202 EM map of the lowly populated iOFS class, comprising 1.8% of particles, is well-resolved. We 202 EM map of the lowly populated iOFS class, comprising 1.8% of particles, is well-resolved. We
203 could not sort out iOFS with smaller K values, such as 5 and 10. 203 could not sort out iOFS with smaller *K* values, such as 5 and 10.
204

205 205 We observed strong non-protein density in the substrate-binding pocket of OFS, iOFS, and iOFS* maps, which we modeled as L-Cys (**Fig. 3a-c**). In contrast, there was no ligand density in 206 iOFS^{*} maps, which we modeled as L-Cys (**Fig. 3a-c**). In contrast, there was no ligand density in
207 the IFS map (**Fig. 3d**). Furthermore, the HP2 gate in the IFS map is wide open, suggesting that it 207 the IFS map (**Fig. 3d**). Furthermore, the HP2 gate in the IFS map is wide open, suggesting that it
208 is bound to Na⁺ ions only, consistent with the low substrate affinity of the IFS we previously 208 is bound to Na⁺ ions only, consistent with the low substrate affinity of the IFS we previously
209 reported for hEAAT3g³⁵. The overall structure of L-Cys-bound iOFS* (iOFS*-L-Cys) is reported for $hEAAT3g^{35}$. The overall structure of L-Cys-bound iOFS* (iOFS*-L-Cys) is
210 remarkably similar to iOFS*-L-Glu; the RMSD calculated by the whole structure alignment is 210 remarkably similar to iOFS*-L-Glu; the RMSD calculated by the whole structure alignment is
211 0.628 Å. The superposition of iOFS-L-Cys and iOFS*-L-Cys aligned on the scaffold domain 211 0.628 Å. The superposition of iOFS-L-Cys and iOFS*-L-Cys aligned on the scaffold domain
212 shows that the iOFS-L-Cys transport domain is positioned more outward than in iOFS*. It 212 shows that the iOFS-L-Cys transport domain is positioned more outward than in iOFS*. It
213 corresponds more closely to the iOFS observed in potassium-bound EAAT3-X, iOFS- K^{+34} corresponds more closely to the iOFS observed in potassium-bound EAAT3-X, iOFS- K^{+34}
214 (**Supplementary Fig. 7**). ²¹⁴(**Supplementary Fig. 7**).

216
217 **Figure 3. Conformational ensemble of hEAAT3-X with 10 mM L-Cys. (a), The overall structure of OFS-L-Cys. The scaffold domain is colored in gray and shown as a cartoon; the** 218 structure of OFS-L-Cys. The scaffold domain is colored in gray and shown as a cartoon; the transport domain is colored in light gray, with the HP1 and HP2 colored in yellow-orange and 219 transport domain is colored in light gray, with the HP1 and HP2 colored in yellow-orange and red, respectively; the density of L-Cys is colored in teal. The transport domains of iOFS-L-Cys 220 red, respectively; the density of L-Cys is colored in teal. The transport domains of iOFS-L-Cys (c), and IFS-Na⁺ (d) are colored as in (a). For clarity, their scaffold domains, (**b**), iOFS*-L-Cys (**c**), and IFS-Na⁺ (**d**) are colored as in (**a**). For clarity, their scaffold domains, which were aligned to OFS-L-Cys, are not shown. The contour levels of these maps are 0.65, 222 which were aligned to OFS-L-Cys, are not shown. The contour levels of these maps are 0.65, 0.54, 0.61, and 0.43, respectively.

0.54, 0.61, and 0.43, respectively.

224 **Structural basis of ligands recognition by EAAT3.**
225 The iOFS^{*}-Cys structure shows that L-Cys is coording

225 The iOFS*-Cys structure shows that L-Cys is coordinated identically to L-Glu. Its main chain
226 carboxylate interacts with the sidechain of N451 in TM8 and the main chain and sidechain 226 carboxylate interacts with the sidechain of N451 in TM8 and the main chain and sidechain
227 oxygens of S333 in HP1, and its amino group interacts with the sidechain of D444 in TM8. The 227 oxygens of S333 in HP1, and its amino group interacts with the sidechain of D444 in TM8. The
228 L-Cys sidechain sulfur atom is 2.9 Å away from the guanidinium group of R447 (**Fig. 4b, d**), 228 L-Cys sidechain sulfur atom is 2.9 Å away from the guanidinium group of R447 (**Fig. 4b, d**),
229 which typically coordinates the sidechain carboxylate of L-Glu, consistent with the bound L-Cys 229 which typically coordinates the sidechain carboxylate of L-Glu, consistent with the bound L-Cys
230 being in thiolate form. Further comparison between EAAT3-X bound to L- and D-Asp, L-Glu, 230 being in thiolate form. Further comparison between EAAT3-X bound to L- and D-Asp, L-Glu,
231 and L-Cys shows that the R447 sidechain moves slightly outward and assumes a different 231 and L-Cys shows that the R447 sidechain moves slightly outward and assumes a different
232 rotamer in the L-Glu- and L-Cys-bound structures compared with the L-Asp- and D-Asp-bound 232 rotamer in the L-Glu- and L-Cys-bound structures compared with the L-Asp- and D-Asp-bound
233 conformations (**Fig. 4**). The superposition of EAAT3-X substrate-binding pockets shows that L-233 conformations (**Fig. 4**). The superposition of EAAT3-X substrate-binding pockets shows that L-
234 Glu, L-Cys, and L-Asp bind to EAAT3 in similar poses with their amino groups pointing toward 234 Glu, L-Cys, and L-Asp bind to EAAT3 in similar poses with their amino groups pointing toward
235 HP2 and interacting with D444. In contrast, the D-Asp's amino group points toward TM8 while 235 HP2 and interacting with D444. In contrast, the D-Asp's amino group points toward TM8 while
236 still interacting with D444 (Fig. 4). The subtle binding pose difference between L- and D-Asp is 236 still interacting with D444 (**Fig. 4**). The subtle binding pose difference between L- and D-Asp is
237 consistent with the previous structural study on $Gltr_v⁵⁶$. Thus, EAAT3 recognizes diverse consistent with the previous structural study on Glt_{Tk}^{56} . Thus, EAAT3 recognizes diverse 238 substrates by fine-turning sidechain conformations in the binding pocket and subtle changes in
239 the substrate poses. 239 the substrate poses.
240

242
243

243 244 **Figure 4. The substrate-binding pocket of hEAAT3-X with different substrates.** Binding pockets with L-Asp (a), L-Glu (b, PDB: 8CTC), D-Asp (c), and L-Cys (d). The substrates and 245 pockets with L-Asp (**a**), L-Glu (**b**, PDB: 8CTC), D-Asp (**c**), and L-Cys (**d**). The substrates and interacting residues are shown as sticks. Dashed black lines show the interactions between the 246 interacting residues are shown as sticks. Dashed black lines show the interactions between the residues and the substrates. The transport domains are superposed on their cytoplasmic halves 247 residues and the substrates. The transport domains are superposed on their cytoplasmic halves
248 (residues 314-372 and 442-465). (residues 314-372 and 442-465).

250 **Partially open gate in the outward-facing L-Cys-bound state.**
251 HP2 gate occludes substrates in the binding site of EAATs befo

251 HP2 gate occludes substrates in the binding site of EAATs before their translocation across the membrane. The superposition of the transport domains (residues 80-120 and 280-470) of L-Cys-252 membrane. The superposition of the transport domains (residues 80-120 and 280-470) of L-Cys-
253 bound iOFS* and iOFS with OFS produced RMSDs of 0.607 Å and 0.692 Å, suggesting that 253 bound iOFS* and iOFS with OFS produced RMSDs of 0.607 Å and 0.692 Å, suggesting that overall transport domains are almost identical in the three states. We found well-defined density 254 overall transport domains are almost identical in the three states. We found well-defined density
255 at the three sodium sites in iOFS^{*}, and the surrounding residues feature appropriate geometry to 255 at the three sodium sites in iOFS*, and the surrounding residues feature appropriate geometry to
256 coordinate Na⁺ (**Supplementary Fig. 8a**). Thus, iOFS*-L-Cys is in the fully-bound occluded coordinate Na⁺ (**Supplementary Fig. 8a**). Thus, iOFS*-L-Cys is in the fully-bound occluded
257 state with L-Cys, three Na⁺ ions, and a closed HP2. iOFS shows nearly identical geometry of the state with L-Cys, three Na⁺ ions, and a closed HP2. iOFS shows nearly identical geometry of the sodium-binding sites, an excess density corresponding to L-Cys, and a closed HP2, suggesting it 258 sodium-binding sites, an excess density corresponding to L-Cys, and a closed HP2, suggesting it
259 is also a fully-bound occluded state, even if the resolution is insufficient to visualize $Na⁺$ ions is also a fully-bound occluded state, even if the resolution is insufficient to visualize $Na⁺$ ions
260 unambiguously. By contrast, in OFS, we could find extra densities at the substrate-binding site, 260 unambiguously. By contrast, in OFS, we could find extra densities at the substrate-binding site,
261 the Na1 and Na3 sites, but not the Na2 site. The HP2 tip (i.e., the GVPN₄₁₀₋₄₁₃ loop between the 261 the Na1 and Na3 sites, but not the Na2 site. The HP2 tip (i.e., the GVPN₄₁₀₋₄₁₃ loop between the two helical arms of HP2) is positioned roughly in the middle between the wide-open OFS-Na⁺ two helical arms of HP2) is positioned roughly in the middle between the wide-open OFS-Na⁺
263 state and the fully-bound, closed iOFS*-L-Cys state: it moves away from the substrate-binding 263 state and the fully-bound, closed iOFS*-L-Cys state; it moves away from the substrate-binding
264 pocket by about 4.5 Å compared to the iOFS* structure (**Fig. 5a**). Thus, the substrate-binding 264 pocket by about 4.5 Å compared to the iOFS^{*} structure (**Fig. 5a**). Thus, the substrate-binding
265 pocket is exposed to solvent (**Fig. 5b, c**), and we found two extra densities assigned to water 265 pocket is exposed to solvent (**Fig. 5b, c**), and we found two extra densities assigned to water
266 molecules in the pocket. While OFS-L-Cys lacks interactions between L-Cys and HP2, which 266 molecules in the pocket. While OFS-L-Cys lacks interactions between L-Cys and HP2, which
267 are present in iOFS*-L-Cys (**Supplementary Fig. 8c, d**), the remainder of L-Cys coordination is 267 are present in iOFS^{*}-L-Cys (**Supplementary Fig. 8c, d**), the remainder of L-Cys coordination is
268 preserved (**Supplementary Fig. 8e, f**). In the iOFS^{*}-L-Cys structure, residues SASIGA₄₀₃₋₄₀₈ 268 preserved (**Supplementary Fig. 8e, f**). In the iOFS*-L-Cys structure, residues SASIGA₄₀₃₋₄₀₈ form the last 2 helical turns of the HP2a arm, and the main chain oxygen atoms of S405, I406, 269 form the last 2 helical turns of the HP2a arm, and the main chain oxygen atoms of S405, I406, 270 and A408 coordinate the Na⁺ at the Na2 site with the sulfur of M367 and main chain oxygen of 270 and A408 coordinate the Na⁺ at the Na2 site with the sulfur of M367 and main chain oxygen of 271 T364 in TM7a (**Fig. 5d, e**). The side chain of the conserved S405 residue points toward TM7a, 271 T364 in TM7a (**Fig. 5d, e**). The sidechain of the conserved S405 residue points toward TM7a,
272 forming a water-mediated hydrogen bond and stabilizing the closed HP2 configuration. In 272 forming a water-mediated hydrogen bond and stabilizing the closed HP2 configuration. In contrast, the SASIGA₄₀₃₋₄₀₈ region is unwound in the OFS-L-Cys structure; the S405 side chain 273 contrast, the SASIGA₄₀₃₋₄₀₈ region is unwound in the OFS-L-Cys structure; the S405 side chain
274 weakly interacts with the L-Cys thiolate group (**Supplementary Fig. 8c, d**). The geometry of the 274 weakly interacts with the L-Cys thiolate group (**Supplementary Fig. 8c, d**). The geometry of the
275 Na2 site is disrupted with distances to the main chain oxygen atoms of S405, I406, and A408 275 Na2 site is disrupted with distances to the main chain oxygen atoms of S405, I406, and A408
276 being 1.3, 3.8, and 5.5 Å, respectively (Fig. 5f. supplementary Fig. 8a. b). These features 276 being 1.3, 3.8, and 5.5 Å, respectively (**Fig. 5f, supplementary Fig. 8a, b**). These features suggest the OFS-L-Cys structure captures an intermediate before the last sodium binds at the 277 suggest the OFS-L-Cys structure captures an intermediate before the last sodium binds at the Na2 site and the HP2 gate closes (Supplementary Movie 1). Na2 site and the HP2 gate closes (**Supplementary Movie 1**).

282
283 **Figure 5. The partially open HP2 gate in OFS-L-Cys.** (a), The tip of HP2 of OFS-L-Cys
284 (pastel blue) is in between the wide-open HP2 observed in Na⁺-only bound OFS (white, PDB: (pastel blue) is in between the wide-open HP2 observed in Na^+ -only bound OFS (white, PDB: 285 $\,$ 8CV2) and the fully closed HP2 in iOFS*-L-Cys (slate blue). The distances between α carbons 285 8CV2) and the fully closed HP2 in iOFS*-L-Cys (slate blue). The distances between α carbons 286 of P412 in the HP2 tip of the three states are shown as dashed red lines. The transport domains 286 of P412 in the HP2 tip of the three states are shown as dashed red lines. The transport domains are superposed as in Figure 4. Only L-Cys in iOFS* is shown as sticks for clarity. (b, c), The 287 are superposed as in Figure 4. Only L-Cys in iOFS^{*} is shown as sticks for clarity. (**b, c**), The surface representation of iOFS^{*}-L-Cys (**b**) and OFS-L-Cys (**c**) binding sites. HP2 (red) occludes 288 surface representation of iOFS^{*}-L-Cys (**b**) and OFS-L-Cys (**c**) binding sites. HP2 (red) occludes the pocket in iOFS^{*} (**b**) but allows solvent access in OFS (**c**). (**d**), The Na2 site in the three states 289 the pocket in iOFS* (**b**) but allows solvent access in OFS (**c**). (**d**), The Na2 site in the three states with protein structures colored as in (**a**). The red box shows the part of the structure enlarged in **e** 290 with protein structures colored as in (**a**). The red box shows the part of the structure enlarged in **e** 291 and **f**. (**e**, **f**), The formed Na2 site with the bound Na⁺ ion in iOFS^{*}-L-Cys (**e**), and the distorted and **f**. (**e, f**), The formed Na2 site with the bound Na⁺ ion in iOFS*-L-Cys (**e**), and the distorted Na2 site in OFS-L-Cys (**f**). The dashed black lines represent the interactions between residues 292 Na2 site in OFS-L-Cys (**f**). The dashed black lines represent the interactions between residues and the ion (**e**) or the distance between the main chain oxygens of 1406 and A408 and the site of 293 and the ion (**e**) or the distance between the main chain oxygens of I406 and A408 and the site of Na2 binding, shown as a transparent purple sphere (**f**). Na2 binding, shown as a transparent purple sphere (**f**).

²⁹⁶**Discussion**

297
298 298 EAAT3, an electrogenic acidic amino acid and cysteine transporter, orchestrates amino acid
299 metabolism and protects cells from oxidative stress. Our structures visualize hEAAT3 299 metabolism and protects cells from oxidative stress. Our structures visualize hEAAT3
200 recognizing four substrates: L-Asp, D-Asp, L-Glu, and L-Cys. Supported by the binding assays. 300 recognizing four substrates: L-Asp, D-Asp, L-Glu, and L-Cys. Supported by the binding assays,
301 they suggest that EAAT3 transports L-Cys in thiolate form, consistent with previous studies¹⁴. they suggest that EAAT3 transports L-Cys in thiolate form, consistent with previous studies¹⁴.
302. The transporter coordinates acidic amino acids and L-Cys thiolate by fine-tuning the position of 302 The transporter coordinates acidic amino acids and L-Cys thiolate by fine-tuning the position of
303 the same residues, especially the pivotal R447, which coordinates the substrate side-chain acidic 303 the same residues, especially the pivotal R447, which coordinates the substrate side-chain acidic
304 moiety. R447 is replaced with threonine and cysteine in the neutral amino acid transporters 304 moiety. R447 is replaced with threonine and cysteine in the neutral amino acid transporters
305 ASCT1 and 2, respectively, and a recently reported structure of ASCT2 with L-alanine⁴⁵ ASCT1 and 2, respectively, and a recently reported structure of ASCT2 with L-alanine⁴⁵ suggests that ASCT2 transports L-Cys in the thiol form. (**Supplementary Fig. 9a, b**). The 306 suggests that ASCT2 transports L-Cys in the thiol form. (**Supplementary Fig. 9a, b**). The EAAT3 R447C mutant does not bind or transport acidic amino acids while it still transports L-307 EAAT3 R447C mutant does not bind or transport acidic amino acids while it still transports L-
308 Cys and neutral amino acids via the electroneutral exchange mechanism, similar to ASCT2⁵⁷. Cys and neutral amino acids via the electroneutral exchange mechanism, similar to ASCT2^{57} .
309. The main chain amino and carboxyl groups or the substrate are coordinated by the highly 309 The main chain amino and carboxyl groups or the substrate are coordinated by the highly
310 conserved D444 and N451, respectively. Together, D444, R447, and N451 are the critical 310 conserved D444 and N451, respectively. Together, D444, R447, and N451 are the critical
311 determinants of substrate specificity. 311 determinants of substrate specificity.
312

312 313 R-2HG is an oncometabolite that rewires the metabolism of cancer cells by inhibiting α-KG-
314 dependent dioxygenases and changing epigenetic modification patterns⁵⁸. R-2HG might also dependent dioxygenases and changing epigenetic modification patterns⁵⁸. R-2HG might also
315. promote tumor growth through other mechanisms^{59,60}. Recently, it was proposed that R-2HG promote tumor growth through other mechanisms^{59,60}. Recently, it was proposed that R-2HG
316. enters cells and their mitochondria through EAAT3 localized to the plasma and mitochondrial 316 enters cells and their mitochondria through EAAT3 localized to the plasma and mitochondrial
317 membranes, respectively³². This proposal prompted us to examine R-2HG binding and transport membranes, respectively³². This proposal prompted us to examine R-2HG binding and transport
318. using purified protein. We found that up to 100 mM R-2HG did not significantly thermally 318 using purified protein. We found that up to 100 mM R-2HG did not significantly thermally
319 stabilize hEAAT3g in differential scanning fluorimetry experiments, suggesting that it binds 319 stabilize hEAAT3g in differential scanning fluorimetry experiments, suggesting that it binds
320 weakly or does not bind. The SSME assays performed with 3 mM substrates, a saturating 320 weakly or does not bind. The SSME assays performed with 3 mM substrates, a saturating
321 concentration for L-Asp, showed similar transport currents for L-Asp, D-Asp, and L-Glu and a 321 concentration for L-Asp, showed similar transport currents for L-Asp, D-Asp, and L-Glu and a
322 smaller current for L-Cys (Fig. 1c). The D-Glu transport current was shallow, persisting much 322 smaller current for L-Cys (**Fig. 1c**). The D-Glu transport current was shallow, persisting much
323 longer ligand perfusion time, suggesting that D-Glu transport is very slow. Indeed, D-Glu is a 323 longer ligand perfusion time, suggesting that D-Glu transport is very slow. Indeed, D-Glu is a
324 low-affinity EAAT3 substrate with Km of ~1.8 mM, approximately 60-fold higher than L-Glu⁶¹. 124 Iow-affinity EAAT3 substrate with Km of ~1.8 mM, approximately 60-fold higher than L-Glu⁶¹.
125. In contrast, R-2HG produced no current (Fig. 1c). Finally, R-2HG added at 10 mM did not bind 325 In contrast, R-2HG produced no current (**Fig. 1c**). Finally, R-2HG added at 10 mM did not bind
326 to EAAT3-X in cryo-EM imaging experiments. R-2HG is an analog of D-Glu, in which an to EAAT3-X in cryo-EM imaging experiments. R-2HG is an analog of D-Glu, in which an 327 alcohol moiety replaces the amino group. Compared to D-Glu, R-2HG loses a critical salt bridge
328 between the amino group and D444. Mutations of D444 in EAAT3 cause a dramatic reduction of 328 between the amino group and D444. Mutations of D444 in EAAT3 cause a dramatic reduction of affinity for amino acids^{62,63}, suggesting that EAAT3 would bind R-2HG even weaker than D-Glu. affinity for amino acids^{62,63}, suggesting that EAAT3 would bind R-2HG even weaker than D-Glu.
330 Thus, our results and structural considerations do not support the hypothesis that EAAT3 is the 330 Thus, our results and structural considerations do not support the hypothesis that EAAT3 is the
331 R-2HG transporter in cancer cells. However, it should be noted that R-2HG concentrations in $R-2HG$ transporter in cancer cells. However, it should be noted that R-2HG concentrations in
332 tumors can reach 30 mM⁶⁰, and it is, in principle, possible that EAAT3 transports R-2HG with tumors can reach 30 mM⁶⁰, and it is, in principle, possible that EAAT3 transports R-2HG with
333 very low affinity. very low affinity.

334
335 335 L-Cys is a rate-limiting substrate of GSH biosynthesis and, therefore, is an important metabolite
336 in maintaining the cell redox status, methylation potential, and protection against oxidative stress 336 in maintaining the cell redox status, methylation potential, and protection against oxidative stress
337 in all cell types. In the bloodstream, ~95 % of L-Cys is oxidized to cystine, which can be taken 337 in all cell types. In the bloodstream, ~95 % of L-Cys is oxidized to cystine, which can be taken
338 up by SLC7A11 transporter system xc- into glial cells and reduced to L-Cys. Interestingly, up by SLC7A11 transporter system xc- into glial cells and reduced to L-Cys. Interestingly, 339 ASCT2, which could also contribute to L-Cys uptake into glia, has a similar Km of ~20 μ M for
340 L-Cys and other neutral amino acids but a nearly 10-fold lower Vmax, suggesting L-Cys is not 340 L-Cys and other neutral amino acids but a nearly 10-fold lower Vmax, suggesting L-Cys is not
341 an efficient substrate¹⁷. EAAT2, highly expressed in glial cells, does not uptake L-Cys well an efficient substrate¹⁷. EAAT2, highly expressed in glial cells, does not uptake L-Cys well
342. because of its low affinity for the amino acid with Km of ~1-2 mM, much higher than ~250 µM 342 because of its low affinity for the amino acid with Km of ~1-2 mM, much higher than ~250 μ M
343 concentration of L-Cys and its derivatives in the plasma⁶⁴. EAAT3 is the main L-Cys transporter concentration of L-Cys and its derivatives in the plasma⁶⁴. EAAT3 is the main L-Cys transporter
344 in the neurons with a Km of ~100-200 μ M²³, about 10-fold above L-Glu, and a similar Vmax. 344 in the neurons with a Km of ~100-200 μ M²³, about 10-fold above L-Glu, and a similar Vmax.
345 Interestingly, the comparison between L-Glu-bound EAAT3 and EAAT2 and L-Cys-bound 345 Interestingly, the comparison between L-Glu-bound EAAT3 and EAAT2 and L-Cys-bound
346 EAAT3 does not reveal significant structural differences between EAAT2 and EAAT3 that 346 EAAT3 does not reveal significant structural differences between EAAT2 and EAAT3 that
347 would explain similar affinity for L-Glu and drastically different affinities for L-Cys. Thus, 347 would explain similar affinity for L-Glu and drastically different affinities for L-Cys. Thus,
348 allosteric effects outside of the binding site might contribute to different substrate specificities. 348 allosteric effects outside of the binding site might contribute to different substrate specificities.
349 Indeed, previous studies in an archaeal homolog Glt_{Ph} suggested that differences in protein 349 Indeed, previous studies in an archaeal homolog Glt_{Ph} suggested that differences in protein
350 packing and dynamics might contribute to substrate affinity and selectivity ^{65,66}. packing and dynamics might contribute to substrate affinity and selectivity $65,66$.

351

352 Kinetic studies on EAATs and their homologs suggest that substrate and ion binding proceeds
353 via partially bound intermediates, such as the transporter bound to the substrate and one or two 353 via partially bound intermediates, such as the transporter bound to the substrate and one or two
354 sodium ions, before forming the transport-component complex of the substrate and three sodium 354 sodium ions, before forming the transport-component complex of the substrate and three sodium
355 ions. EAATs bind substrates rapidly on the sub-millisecond time scale but transport them slower, 355 ions. EAATs bind substrates rapidly on the sub-millisecond time scale but transport them slower,
356 with turnover times estimates in milliseconds to tens of milliseconds, resulting in biphasic with turnover times estimates in milliseconds to tens of milliseconds, resulting in biphasic 357 electrical currents comprised of the binding peak currents and the lower steady-state currents^{67,68}.

358 The initial binding is weak, with Kd of ~140 μ M for EAAT2 significantly higher than the
359 transporter Km of 10-20 μ M⁶⁹. Our structure of EAAT3 in OFS with bound L-Cys and partially
360 open HP2 gate with cle transporter Km of 10-20 μ M⁶⁹ 359 transporter Km of 10-20 μ M^{o9}. Our structure of EAAT3 in OFS with bound L-Cys and partially
360 open HP2 gate with clear densities at the Na1 and Na3 sites but a distorted empty Na2 site might
361 directly visuali

360 open HP2 gate with clear densities at the Na1 and Na3 sites but a distorted empty Na2 site might
361 directly visualize the proposed low-affinity binding intermediate.
362 Interestingly, the transporter has demonstrate 361 directly visualize the proposed low-affinity binding intermediate.
362 Interestingly, the transporter has demonstrated different conform
364 on the substrate. Thus, in L- and D-Asp, we only observed the contrast, the t 362
363
364
365
366
367 363 Interestingly, the transporter has demonstrated different conformational preferences depending
364 on the substrate. Thus, in L- and D-Asp, we only observed the EAAT3-X in the iOFS*. In
365 contrast, the transporter bo 364 on the substrate. Thus, in L- and D-Asp, we only observed the EAAT3-X in the iOFS*. In contrast, the transporter bound to L-Glu populated iOFS* and OFS with closed HP2, while the transporter bound to L-Cys populated iO 365 contrast, the transporter bound to L-Glu populated iOFS* and OFS with closed HP2, while the
366 transporter bound to L-Cys populated iOFS*, iOFS, and OFS with the partially open HP2 gate.
367 These observations should transporter bound to L-Cys populated iOFS*, iOFS, and OFS with the partially open HP2 gate.
367 These observations should be taken cautiously because the grids were not prepared identically in
368 all cases: the L-Cys grid 367 These observations should be taken cautiously because the grids were not prepared identically in
368 all cases: the L-Cys grids were prepared by rapidly freezing the protein seconds after adding the
369 substrate, whil 368 all cases: the L-Cys grids were prepared by rapidly freezing the protein seconds after adding the
369 substrate, while others were prepared using protein equilibrated with substrates. Nevertheless,
370 the observed di 369 substrate, while others were prepared using protein equilibrated with substrates. Nevertheless,
370 the observed differences suggest that to the relative energies of transporter states along the
371 transport cycle de 370 the observed differences suggest that to the relative energies of transporter states along the
371 transport cycle depend on the substrates. If so, we would speculate that the transporters might
372 show substrate-dep 371 transport cycle depend on the substrates. If so, we would speculate that the transporters might
372 show substrate-dependent transport rates, as was shown for $EmrE^{70}$.
373 **Methods** show substrate-dependent transport rates, as was shown for $EmrE^{70}$. show substrate-dependent transport rates, as was shown for EmrE⁷⁰.
373
374 **Methods**
375 **Protein expression and purification.**

373
374
375
376
377
378 374 **Methods**
375 **Protein e**
377 The hEA
378 described. 376
377
378
379
380 **Protein expression and purification.**

377 The hEAAT3g and Cysmini K269C.

378 described. In brief, hEAAT3 construc

379 Isolated membrane pellets were solub

380 10mM L-Asp, 10mM EDTA, 10mM 377 The hEAAT3g and Cysmini K269C/W441C EAAT3g proteins were purified as previously
378 described. In brief, hEAAT3 constructs were expressed in suspension FreeStyleTM 293-F cells.
379 Isolated membrane pellets were sol described. In brief, hEAAT3 constructs were expressed in suspension FreeStyleTM 378 described. In brief, hEAAT3 constructs were expressed in suspension FreeStyle^{1M} 293-F cells.
379 Isolated membrane pellets were solubilized in a buffer containing 50 \Box mM Tris-Cl at pH \Box 8.0,
380 1 \Box mM L-Asp, 1379 Isolated membrane pellets were solubilized in a buffer containing 50 \Box mM Tris-Cl at pH \Box 8.0,
380 1 \Box mM L-Asp, 1 \Box mM EDTA, 1 \Box mM tris(2-carboxyethyl) phosphine (TCEP), 10% glycerol,
381 1:200 dilution of pro 380 1 \Box mM L-Asp, 1 \Box mM EDTA, 1 \Box mM tris(2-carboxyethyl) phosphine (TCEP), 10% glycerol, 1:200 dilution of protease inhibitor cocktail (catalog no. P8340, Sigma-Aldrich), 1 \Box mM phenylmethylsulfonyl fluoride (PMSF), 381 1:200 dilution of protease inhibitor cocktail (catalog no. P8340, Sigma-Aldrich), $1 \square mM$
382 phenylmethylsulfonyl fluoride (PMSF), 1% dodecyl-β-D-maltopyranoside (DDM, Anatrace) and
383 0.2% cholesteryl hemisuccinate 382 phenylmethylsulfonyl fluoride (PMSF), 1% dodecyl-β-D-maltopyranoside (DDM, Anatrace) and
383 0.2% cholesteryl hemisuccinate (CHS; Sigma-Aldrich) at 4⁰°C, overnight. The insoluble
384 material was removed by centrif 383 0.2% cholesteryl hemisuccinate (CHS; Sigma-Aldrich) at $4\degree$ C, overnight. The insoluble material was removed by centrifugation, and the supernatant was incubated with Strep-Tactin Sepharose resin (GE Healthcare) for 384 material was removed by centrifugation, and the supernatant was incubated with Strep-Tactin
385 Sepharose resin (GE Healthcare) for $1 \Box h$ at $4 \Box^{\circ}C$. The resin was washed with a buffer
386 containing 50 \Box mM Tris 385 Sepharose resin (GE Healthcare) for $1 \Box h$ at $4 \Box^{\circ}C$. The resin was washed with a buffer containing 50 \Box mM Tris-HCl at pH \Box 8.0, 200 \Box mM NaCl, 0.06% glyco-diosgenin (GDN, Anatrace), $1 \Box$ mM TCEP, 5% glycerol 386 containing 50 \Box mM Tris-HCl at pH \Box 8.0, 200 \Box mM NaCl, 0.06% glyco-diosgenin (GDN, Anatrace), 1 \Box mM TCEP, 5% glycerol and 1 \Box mM L-Asp (wash buffer). The protein was eluted with a wash buffer supplemented with 387 Anatrace), $1 \Box$ mM TCEP, 5% glycerol and $1 \Box$ mM L-Asp (wash buffer). The protein was eluted
388 with a wash buffer supplemented with $2.5 \Box$ mM D-desthiobiotin (elution buffer). The N-terminal 388 with a wash buffer supplemented with $2.5 \square$ mM D-desthiobiotin (elution buffer). The N-terminal variable supplemented with $2.5 \square$ mM D-desthiobiotin (elution buffer). The N-terminal variable supplemented with $2.5 \square$

389 Strep II and GFP tag was cleaved by overnight PreScission protease digestion at $4\degree$ C.
390 hEAAT3g and Cysmini K269C/W441C EAAT3g were purified by size-exclusion
391 chromatography (SEC) in a buffer containing 20 mM 390 hEAAT3g and Cysmini K269C/W441C EAAT3g were purified by size-exclusion
391 chromatography (SEC) in a buffer containing 20 mM HEPES-Tris at pH \Box 7.4, 1 mM L-Asp,
392 and 0.01% GDN with/without 1mM TCEP. The Cysmini K2 391 chromatography (SEC) in a buffer containing $20 \Box \text{m}$ M HEPES-Tris at pH \Box 7.4, $1 \Box \text{m}$ M L-Asp,
392 and 0.01% GDN with/without 1mM TCEP. The Cysmini K269C/W441C EAAT3g protein was
393 concentrated to ~0.5 mg/ml a 392 and 0.01% GDN with/without 1mM TCEP. The Cysmini K269C/W441C EAAT3g protein was
393 concentrated to ~0.5 mg/ml and incubated with a 20-fold molar excess of HgCl₂ for 15 min at
394 room temperature. Then, crosslinked 393 concentrated to ~0.5 mg/ml and incubated with a 20-fold molar excess of HgCl₂ for 15 min at
394 room temperature. Then, crosslinked hEAAT3-X was purified by SEC in a buffer containing 20
395 mM Hepes-Tris pH 7.4, 10 394 room temperature. Then, crosslinked hEAAT3-X was purified by SEC in a buffer containing 20 mM Hepes-Tris pH 7.4, 100 mM N-methyl-D-glucamine (NMDG) chloride, and 0.01% GDN to remove sodium and L-Asp. The eluted protei 395 mM Hepes-Tris pH 7.4, 100 mM N-methyl-D-glucamine (NMDG) chloride, and 0.01% GDN to
396 remove sodium and L-Asp. The eluted protein was diluted ~1,000-fold into a buffer containing
397 20 mM Hepes-Tris pH 7.4, 200 mM 396 remove sodium and L-Asp. The eluted protein was diluted ~1,000-fold into a buffer containing
397 20 mM Hepes-Tris pH 7.4, 200 mM NaCl, and 0.01% GDN and concentrated to ~5 mg/ml using
398 100 kD MWCO concentrators (Am 397 20 mM Hepes-Tris pH 7.4, 200 mM NaCl, and 0.01% GDN and concentrated to ~5 mg/ml using
398 100 kD MWCO concentrators (Amicon). EAAT3-X in 200 mM NaCl was incubated with the
599 final concentration of 10 mM L-Lap, D-As 398 100 kD MWCO concentrators (Amicon). EAAT3-X in 200 mM NaCl was incubated with the
599 final concentration of 10 mM L-Lap, D-Asp, or R2-HG for about 1 hour on ice before making
590 grids. EAAT3-X in 200 mM NaCl was mixe 399 final concentration of 10 mM L-Lap, D-Asp, or R2-HG for about 1 hour on ice before making
300 grids. EAAT3-X in 200 mM NaCl was mixed with L-Cys at a final concentration of 10 mM and
301 put on grids immediately.
302 T

quared action and the U-Cys at a final concentration of 10 mM and

401 put on grids immediately.

402 **Thermostability assays.**

403 Purified hEAAT3g was diluted ~4000-fold in a buffer containing 50 mM Hepes-Tris pH 7.4, 401 put on grids immediately.
402 **Thermostability assays.**
403 Purified hEAAT3g was di
404 mM NMDG, and 0.01%
405 concentrator. The concent 402 **Thermostability assays.**
403 Purified hEAAT3g was d:
404 mM NMDG, and 0.019
405 concentrator. The concent
406 Tris pH 7.4, 200 mM NaC 403 Purified hEAAT3g was diluted ~4000-fold in a buffer containing 50 mM Hepes-Tris pH 7.4, 100 mM NMDG, and 0.01% GDN and concentrated to ~100 μ M using a 100 kD MWCO concentrator. The concentrated protein was diluted 404 mM NMDG, and 0.01% GDN and concentrated to ~100 μ M using a 100 kD MWCO
405 concentrator. The concentrated protein was diluted 20-fold in a buffer containing 50 mM Hepes-
406 Tris pH 7.4, 200 mM NaCl, and 0.01% GDN, 405 concentrator. The concentrated protein was diluted 20-fold in a buffer containing 50 mM Hepes-
406 Tris pH 7.4, 200 mM NaCl, and 0.01% GDN, supplemented with 10 mM or 100 mM ligands. To
407 promote L-Cys binding, the 406 Tris pH 7.4, 200 mM NaCl, and 0.01% GDN, supplemented with 10 mM or 100 mM ligands. To
407 promote L-Cys binding, the concentrated protein was diluted 20-fold in a buffer containing 50
408 mM Tris-Cl, pH 8.8, 200 mM N 407 promote L-Cys binding, the concentrated protein was diluted 20-fold in a buffer containing 50 mM Tris-Cl, pH 8.8, 200 mM NaCl, and 0.01% GDN, supplemented with 100 mM L-Cys. The thermostability assay was performed usi 408 mM Tris-Cl, pH 8.8, 200 mM NaCl, and 0.01% GDN, supplemented with 100 mM L-Cys. The
409 thermostability assay was performed using Tycho NT.6 (NanoTemper Technologies). Protein
410 samples were heated from 35 °C to 95 409 thermostability assay was performed using Tycho NT.6 (NanoTemper Technologies). Protein
410 samples were heated from 35 °C to 95 °C at 30 °C per minute; the intrinsic protein fluorescence
411 was recorded at 330 nm an 410 samples were heated from 35 °C to 95 °C at 30 °C per minute; the intrinsic protein fluorescence
411 was recorded at 330 nm and 350 nm. The amplitude ratio, A350/A330 as a function of
412 temperature, and its first der 411 was recorded at 330 nm and 350 nm. The amplitude ratio, A350/A330 as a function of
412 temperature, and its first derivative were calculated by the Tycho NT.6 software. The inflection
413 temperature (Ti) corresponds t temperature, and its first derivative were calculated by the Tycho NT.6 software. The inflection

413 temperature (Ti) corresponds to the peak of the derivative. All measurements were repeated at

414 least thrice on indep temperature (Ti) corresponds to the peak of the derivative. All measurements were repeated at

414 least thrice on independently prepared protein samples except the D-Glu sample.
 415 Proteoliposome reconstitution and s 114 least thrice on independently prepared protein samples except the D-Glu sample.

115 **Proteoliposome reconstitution and solid-supported membrane electrophysiol**

116 The proteoliposome reconstitution and SSME were perf

Proteoliposome reconstitution and solid-supported membrane electrophysiology (SSME).
416 The proteoliposome reconstitution and SSME were performed as previously described³⁴. In brie
417 4 mg/ml liposomes comprising 5:5

The proteoliposome reconstitution and SSME were performed as previously described³⁴. In brief, 4 mg/ml liposomes comprising 5:5:2 (w:w) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, Avanti Polar Lipids), 1-pal

417 4 mg/ml liposomes comprising 5:5:2 (w:w) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
418 (POPC, Avanti Polar Lipids), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE, 418 (POPC, Avanti Polar Lipids), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE,

419 Avanti Polar Lipids) and CHS were extruded 11 times through 400 nm polycarbonate
420 membranes (Avanti Polar Lipids) in a buffer containing 50 mM Hepes-Tris, pH 7.4, 200 mM
421 NaCl, 1mM TCEP, 1 mM L-Asp. The resultin 420 membranes (Avanti Polar Lipids) in a buffer containing 50 mM Hepes-Tris, pH 7.4, 200 mM
421 NaCl, 1mM TCEP, 1 mM L-Asp. The resulting unilamellar liposomes were destabilized by
422 incubating with 5:1 (w:w) DDM-CHS at 421 NaCl, 1mM TCEP, 1 mM L-Asp. The resulting unilamellar liposomes were destabilized by
422 incubating with 5:1 (w:w) DDM-CHS at a 1:0.75 lipid-detergent ratio for 30 min at 23 °C. 0.4
423 mg purified hEAAT3g was incubat 422 incubating with 5:1 (w:w) DDM-CHS at a 1:0.75 lipid-detergent ratio for 30 min at 23 °C. 0.4
423 mg purified hEAAT3g was incubated with liposomes at a lipid-protein ratio (LPR) of 10 for 30
424 min at 23 °C. The deter 423 mg purified hEAAT3g was incubated with liposomes at a lipid-protein ratio (LPR) of 10 for 30 min at 23 °C. The detergent was removed by incubating with 100 mg fresh Bio-Beads SM-2 (Bio-Rad) for 1h at 23 °C, 1 h at 4 ° 424 min at 23 °C. The detergent was removed by incubating with 100 mg fresh Bio-Beads SM-2
425 (Bio-Rad) for 1h at 23 °C, 1 h at 4 °C (three times), overnight at 4 °C, and finally 2 h at 4 °C.
426 The proteoliposomes were 425 (Bio-Rad) for 1h at 23 °C, 1 h at 4 °C (three times), overnight at 4 °C, and finally 2 h at 4 °C.
426 The proteoliposomes were collected by centrifugation at 86,600 g for 45 min at 4 \Box °C and were
427 resuspended in 426 The proteoliposomes were collected by centrifugation at 86,600 g for 45 min at $4\square$ °C and were
427 resuspended in the SSME resting buffer containing 100 mM potassium phosphate, pH 7.4, 2 mM
428 MgSO₄. The proteoli 427 resuspended in the SSME resting buffer containing 100 mM potassium phosphate, pH 7.4, 2 mM
428 MgSO₄. The proteoliposomes were frozen in liquid nitrogen and thawed at room temperature.
429 The centrifugation and free MgSO₄. The proteoliposomes were frozen in liquid nitrogen and thawed at room temperature.

429 The centrifugation and freeze-thaw steps were repeated three times for buffer exchange. Then,

430 the proteoliposomes were e The centrifugation and freeze-thaw steps were repeated three times for buffer exchange. Then,

430 the proteoliposomes were extruded 11 times through a 400 nm polycarbonate membrane and

431 immediately deposited onto the 430 the proteoliposomes were extruded 11 times through a 400 nm polycarbonate membrane and
431 immediately deposited onto the SF-N1 sensor 3mm (Nanion Technologies). The transport-
432 coupled currents were recorded on a S 431 immediately deposited onto the SF-N1 sensor 3mm (Nanion Technologies). The transport-
432 coupled currents were recorded on a SURFE2R N1 instrument (Nanion Technologies). The non-
433 activating buffer containing 100 m coupled currents were recorded on a SURFE2R N1 instrument (Nanion Technologies). The non-
activating buffer containing 100 mM sodium phosphate, pH 7.4, and 2 mM MgSO₄ flowed
through the sensor to build ion gradients acro 433 activating buffer containing 100 mM sodium phosphate, pH 7.4, and 2 mM MgSO₄ flowed
434 through the sensor to build ion gradients across the proteoliposomes. The transport-coupled
435 current was activated by flowin 434 through the sensor to build ion gradients across the proteoliposomes. The transport-coupled
435 current was activated by flowing the activation buffer containing 100 mM sodium phosphate, pH
436 7.4, 2 mM MgSO₄, and 3 435 current was activated by flowing the activation buffer containing 100 mM sodium phosphate, pH
436 7.4, 2 mM MgSO₄, and 3 mM ligands. At least three sensors were recorded for each independent
437 proteoliposome prepa 2436 7.4, 2 mM MgSO₄, and 3 mM ligands. At least three sensors were recorded for each independent

437 proteoliposome preparation.

438 Cryo-EM sample preparation and data acquisition.

439 3.5 µl of protein samples at

437 proteoliposome preparation.
438 Cryo-EM sample preparation
439 3.5 µl of protein samples at ~
440 carbon-coated 300 mesh gole
441 ethane using FEI Mark IV V **438 Cryo-EM sample preparation and data acquisition.**

439 3.5 µl of protein samples at ~5 mg/ml were applied to g

440 carbon-coated 300 mesh gold grids. The grids were blow

441 ethane using FEI Mark IV Vitrobot at $4^$ 439 3.5 μl of protein samples at ~5 mg/ml were applied to glow-discharged Quantifoil R1.2/1.3 holey

440 carbon-coated 300 mesh gold grids. The grids were blotted for 3 s and plunge-frozen into liquid

441 ethane using F 440 carbon-coated 300 mesh gold grids. The grids were blotted for 3 s and plunge-frozen into liquid
441 ethane using FEI Mark IV Vitrobot at 4°C and 100% humidity. For the hEAAT3-X with 10 mM
442 L-Asp sample, 13,349 movi 441 ethane using FEI Mark IV Vitrobot at 4°C and 100% humidity. For the hEAAT3-X with 10 mM
442 L-Asp sample, 13,349 movies were collected at a nominal magnification of 100,000-fold with a
443 calibrated pixel size of 1.1 442 L-Asp sample, 13,349 movies were collected at a nominal magnification of 100,000-fold with a

443 calibrated pixel size of 1.16 Å. The nominal defocus value -1.0 ~ -2.5 µm and total dose 40 e⁻/Å²

444 (dose rate 7 calibrated pixel size of 1.16 Å. The nominal defocus value -1.0 ~ -2.5 μ m and total dose 40 e⁻/Å² 443
444
445
446
447
448 (dose rate 7.98 e \angle Å² 444 (dose rate 7.98 e⁻/Å²/s) were applied to the data collection. For the hEAAT3-X with 10 mM R-
445 2HG dataset, 11,952 movies were collected at a nominal magnification of 105,000-fold with a
446 calibrated pixel siz 2HG dataset, 11,952 movies were collected at a nominal magnification of 105,000-fold with a calibrated pixel size of 0.8443 Å using the counting model. The nominal defocus value of ~0.8-
2.2 µm and the total dose of 50.54 446 calibrated pixel size of 0.8443 Å using the counting model. The nominal defocus value of ~0.8-
447 2.2 μ m and the total dose of 50.54 $e^t/\text{\AA}^2$ (dose rate 33.69 $e^t/\text{\AA}^2$ /s) were applied to data collection.
4 2.2 µm and the total dose of 50.54 e⁻/ \AA ² (dose rate 33.69 e⁻/ \AA ² 2.2 μ m and the total dose of 50.54 $e^{\frac{1}{A^2}}$ (dose rate 33.69 $e^{\frac{1}{A^2}}$) were applied to data collection.
448 For the hEAAT3-X with 10 mM D-Asp sample, 4,190 movies were collected at a nominal
449 magnification 448 For the hEAAT3-X with 10 mM D-Asp sample, 4,190 movies were collected at a nominal magnification of 64,000-fold with a calibrated pixel size of 1.076 Å using the counting model. A magnification of 64,000-fold with a c magnification of 64,000-fold with a calibrated pixel size of 1.076 \AA using the counting model. A

nominal defocus value $-0.5 \sim -2.0$ µm was applied to data collection, with the total dose 52.19 e⁻ 450
451
452
453
454
455 $/\text{\AA}^2$ (dose rate 26.09e⁻/ \AA^2 451 /Å² (dose rate 26.09e/Å²/s) distributed over 40 frames in each movie. For data collection on
452 hEAAT3-X with 10 mM L-Cys sample, subset A (5,765 movies) and subset B (3,757 movies)
453 were collected at a nomina 452 hEAAT3-X with 10 mM L-Cys sample, subset A (5,765 movies) and subset B (3,757 movies)
453 were collected at a nominal magnification of 105,000-fold with a calibrated pixel size of 0.4125
454 Å using the super-resoluti 453 were collected at a nominal magnification of 105,000-fold with a calibrated pixel size of 0.4125
454 Å using the super-resolution model. A nominal defocus value -0.8~-2.4 µm was applied to data
455 collection, with th 454 Å using the super-resolution model. A nominal defocus value -0.8~-2.4 μ m was applied to data
455 collection, with the total dose 58.25 e⁻/Å² (dose rate 29.12 e⁻/Å²/s, subset A) and 58.01 (dose rate
456 29.0 collection, with the total dose 58.25 e⁻/ \AA ² (dose rate 29.12 e⁻/ \AA ² 455 collection, with the total dose 58.25 e/ \overrightarrow{A}^2 (dose rate 29.12 e/ \overrightarrow{A}^2 /s, subset A) and 58.01 (dose rate
456 29.00 e/ \overrightarrow{A}^2 /s, subset B) e/ \overrightarrow{A}^2 distributed over 50 frames in each movie. The hEAAT3-29.00 e⁻/ \AA^2 /s, subset B) e⁻/ \AA^2 29.00 e⁷/Å²/s, subset B) e⁷/Å² distributed over 50 frames in each movie. The hEAAT3-X with 10 mM L-Asp data was auto-collected using EPU on Glacios with Falcon4i camera at Weill Cornell Cryo-EM facility; other dat mM L-Asp data was auto-collected using EPU on Glacios with Falcon4i camera at Weill Cornell
458 Cryo-EM facility; other datasets were auto-collected using Leginon⁷¹ on Titan Krios with Gantan
459 K3 camera at the Simons Cryo-EM facility; other datasets were auto-collected using Leginon⁷¹ 458 Cryo-EM facility; other datasets were auto-collected using Leginon⁷¹ on Titan Krios with Gantan
459 K3 camera at the Simons Electron Microscopy Center (SEMC) at New York Structural Biology
460 Center (SEMC-NYSBC, R-2 459 K3 camera at the Simons Electron Microscopy Center (SEMC) at New York Structural Biology

460 Center (SEMC-NYSBC, R-2HG, and D-Asp datasets), and at New York University Langone's

461 Cryo-EM laboratory (L-Cys dataset) 460 Center (SEMC-NYSBC, R-2HG, and D-Asp datasets), and at New York University Langone's

461 Cryo-EM laboratory (L-Cys dataset) and. All microscopes were equipped with a 20 -eV energy

462 filter.

463 Cryo-EM image proc 461 Cryo-EM laboratory (L-Cys dataset) and. All microscopes were equipped with a 20 -eV energy
462 filter.
463 Cryo-EM image processing.
465 For the hEAAT3-X with 10 mM L-Asp dataset, the movies were aligned using MotionC

462 filter.

463

464 **Cryo-**

465 For th

466 impler 464
465
466
467
468 464 **Cryo-EM image processing.**
465 For the hEAAT3-X with 10 r
466 implemented in Relion 4, and
467 4.1⁷³. Over 12 million particl
468 with a box size of 120 pixel For the hEAAT3-X with 10 mM L-Asp dataset, the movies were aligned using MotionCorr2⁷² 466
467
468
469
470 466 implemented in Relion 4, and the micrograph CTF parameters were estimated using CtfFfind-
467 4.1⁷³. Over 12 million particles were selected by Laplacia-of-Gaussian (LoG)⁷⁴ and extracted
468 with a box size of 120 4.1⁷³. Over 12 million particles were selected by Laplacia-of-Gaussian $(LoG)^{74}$ and extracted 467 4.1⁷⁵. Over 12 million particles were selected by Laplacia-of-Gaussian (LoG)⁷⁴ and extracted
468 with a box size of 120 pixels (2-fold binning) from 12,021 micrographs. The particles were
469 divided into four par 468 with a box size of 120 pixels (2-fold binning) from 12,021 micrographs. The particles were
469 divided into four parts and imported into CryoSPARC v4⁷⁵ for 2D classification. 378,103
470 particles showing clear seco divided into four parts and imported into CryoSPARC v4⁷⁵ 469 divided into four parts and imported into CryoSPARC v4⁷⁵ for 2D classification. 378,103 particles showing clear secondary features were selected and used for 1 round of *ab initio* reconstruction; the resulting 211, particles showing clear secondary features were selected and used for 1 round of *ab initio*
reconstruction; the resulting 211,611 particles were subjected to nonuniform refinement⁷⁶
(hereafter NUR) with C1 symmetry to g reconstruction; the resulting 211,611 particles were subjected to nonuniform refinement⁷⁶ 471
472
473
474
475
476 472 (hereafter NUR) with C1 symmetry to generate a good template, while for generating 5 decoy
473 templates, 448,378 junk particles were selected and subjected to *ab initio* reconstruction for less
474 than 10 iteration templates, 448,378 junk particles were selected and subjected to *ab initio* reconstruction for less
than 10 iterations. More than 10 million particles after 2D selection that removed obvious non-
protein junks (2D cleanin 474 than 10 iterations. More than 10 million particles after 2D selection that removed obvious non-

475 protein junks (2D cleaning) were further cleaned by heterogeneous refinement with 1 good

476 template and 5 decoy n 475 protein junks (2D cleaning) were further cleaned by heterogeneous refinement with 1 good
476 template and 5 decoy noise volumes (heterogeneous refinement cleaning, HRC). 1,240,537
477 particles were refined to 4.84 Å 476 template and 5 decoy noise volumes (heterogeneous refinement cleaning, HRC). 1,240,537 particles were refined to 4.84 Å by NUR with C1 symmetry. Then, the particles were re-
478 imported into Relion through PyEM⁷⁷ a 477 particles were refined to 4.84 Å by NUR with C1 symmetry. Then, the particles were re-
478 imported into Relion through PyEM⁷⁷ and extracted with a box size of 240 pixels without
479 binning. These particles were im imported into Relion through PyEM⁷⁷ 478 imported into Relion through PyEM^{$\prime\prime$} and extracted with a box size of 240 pixels without binning. These particles were imported into CryoSPARC and subjected to HRC and NUR, generating a 3.30 Å map. The resulting 479 binning. These particles were imported into CryoSPARC and subjected to HRC and NUR, generating a 3.30 Å map. The resulting 1,217,462 particles were subjected to two rounds of 480 generating a 3.30 Å map. The resulting 1,217,462 particles were subjected to two rounds of $\frac{1}{2}$ polishing in Relion, HRC, and NUR. The final 908,281 particles were refined to 2.87 Å. Then,

482 the particles were expanded using C3 symmetry and applied to local 3D classification with a

483 mask covering the protomer 482 the particles were expanded using C3 symmetry and applied to local 3D classification with a
483 mask covering the protomer in Relion. No other conformations were found following symmetry
484 expansion and local 3D clas mask covering the protomer in Relion. No other conformations were found following symmetry

484 expansion and local 3D classification. For the hEAAT3-X with 10 mM R2-HG dataset, the

485 movie alignments, and micrograph CT 484 expansion and local 3D classification. For the hEAAT3-X with 10 mM R2-HG dataset, the
485 movie alignments, and micrograph CTF estimation were performed in Relion 4. 3,622,598
486 particles were auto-picked using templ movie alignments, and micrograph CTF estimation were performed in Relion 4. 3,622,598

particles were auto-picked using template picking and extracted with a box size of 160 pixels (2-

fold binning). The particles were im particles were auto-picked using template picking and extracted with a box size of 160 pixels (2-

487 fold binning). The particles were imported into CryoSPARC v4 for 2D classification, 2D

488 cleaning, and HRC as the L-487 fold binning). The particles were imported into CryoSPARC v4 for 2D classification, 2D cleaning, and HRC as the L-Asp dataset. 1,233,807 particles, refined to 3.81 Å, were re-imported into Relion 4 and extracted with 488 cleaning, and HRC as the L-Asp dataset. 1,233,807 particles, refined to 3.81 Å, were re-imported
489 into Relion 4 and extracted with a box size of 320 pixels without binning. These particles were
490 further processe 489 into Relion 4 and extracted with a box size of 320 pixels without binning. These particles were
490 further processed as the L-Asp dataset; the final 3.07 Å map was reconstituted using 773,970
491 particles. Symmetry e 490 further processed as the L-Asp dataset; the final 3.07 Å map was reconstituted using 773,970 particles. Symmetry expansion and local 3D classification performed in CryoSPARC sorted out about 8% of monomers in a minor c 491 particles. Symmetry expansion and local 3D classification performed in CryoSPARC sorted out
492 about 8% of monomers in a minor conformation. For the hEAAT3-X with 10 mM D-Asp dataset,
493 the movies were aligned by Mo 492 about 8% of monomers in a minor conformation. For the hEAAT3-X with 10 mM D-Asp dataset,
493 the movies were aligned by MotionCorr2 implemented in Relion 3, and the micrograph CTF
494 parameters were estimated using Ct 493 the movies were aligned by MotionCorr2 implemented in Relion 3, and the micrograph CTF
494 parameters were estimated using CtfFfind-4.1. 3,346,010 particles were selected by LoG,
495 extracted with a box size of 256 pi parameters were estimated using CtfFfind-4.1. 3,346,010 particles were selected by LoG,
extracted with a box size of 256 pixels, and imported into CryoSPARC v3 for 2D classification.
496 719,954 particles showing secondary 495 extracted with a box size of 256 pixels, and imported into CryoSPARC v3 for 2D classification.
496 719,954 particles showing secondary features were selected and subjected to *ab initio*
497 reconstruction followed by 496 719,954 particles showing secondary features were selected and subjected to *ab initio*
497 reconstruction followed by NUR with C3 symmetry to generate a good template. 3,075,243
498 particles after 2D cleaning were su 497 reconstruction followed by NUR with C3 symmetry to generate a good template. 3,075,243 particles after 2D cleaning were subjected to two rounds of HRC using one good model and seven decoy volumes. 444,289 particles wer 498 particles after 2D cleaning were subjected to two rounds of HRC using one good model and
499 seven decoy volumes. 444,289 particles were selected and refined to 3.29 Å by NUR. After two
500 rounds of polishing in Reli 499 seven decoy volumes. 444,289 particles were selected and refined to 3.29 Å by NUR. After two
500 rounds of polishing in Relion, HRC, and NUR, 391,308 particles were refined to 2.73 Å by NUR
501 with C3 symmetry. Symme 500 rounds of polishing in Relion, HRC, and NUR, 391,308 particles were refined to 2.73 Å by NUR with C3 symmetry. Symmetry expansion and local 3D classification did not identify multiple conformations in this dataset. For 501 with C3 symmetry. Symmetry expansion and local 3D classification did not identify multiple
502 conformations in this dataset. For the hEAAT3-X with L-Cys subset A, 5,756 movies were
503 aligned using MotionCorr2 implem 502 conformations in this dataset. For the hEAAT3-X with L-Cys subset A, 5,756 movies were
503 aligned using MotionCorr2 implemented in Relion 3 with 2-fold binning. The micrograph CTF
504 parameters were estimated using C 503 aligned using MotionCorr2 implemented in Relion 3 with 2-fold binning. The micrograph CTF
504 parameters were estimated using CtfFfind-4.1. 2,538,702 particles were selected using LoG and
505 extracted with a box size 504 parameters were estimated using CtfFfind-4.1. 2,538,702 particles were selected using LoG and
505 extracted with a box size of 300 pixels. Particles were imported into CryoSPARC v3 for 2D
506 classification. The good t 505 extracted with a box size of 300 pixels. Particles were imported into CryoSPARC v3 for 2D classification. The good template was generated using particles showing 2D features as previously described. Separately, all th 506 classification. The good template was generated using particles showing 2D features as
507 previously described. Separately, all the particles after 2D classification were used in *ab initio*
508 reconstruction with le previously described. Separately, all the particles after 2D classification were used in *ab initio*
508 reconstruction with less than 10 iterations to generate 7 noise volumes. 2,268,928 particles after
509 2D cleaning we 508 reconstruction with less than 10 iterations to generate 7 noise volumes. 2,268,928 particles after 2D cleaning were further cleaned by HRC with one good template and 7 decoy noise volumes.
510 After that, 902,201 parti 509 2D cleaning were further cleaned by HRC with one good template and 7 decoy noise volumes.
510 After that, 902,201 particles were reconstituted to 2.8 Å with C3 symmetry by NUR. Then, the
511 particles were re-imported 510 After that, 902,201 particles were reconstituted to 2.8 Å with C3 symmetry by NUR. Then, the
511 particles were re-imported to Relion using PyEM and subjected to Bayesian polishing. The
511 particles were re-imported t 511 particles were re-imported to Relion using PyEM and subjected to Bayesian polishing. The

512 polished particles underwent one round of HRC and NUR to improve resolution. The second
513 round of polishing, HRC, and NUR procedures finally generated a 2.43 Å map with 653,778
514 particles. Subset B was processed 514 particles. Subset B was processed in parallel using a similar strategy. 1,641,561 particles were
515 extracted from 3,757 micrographs and imported into CryoSPARC for 2D classification. After 2D
516 cleaning, 1,474,916 514 particles. Subset B was processed in parallel using a similar strategy. 1,641,561 particles were

515 extracted from 3,757 micrographs and imported into CryoSPARC for 2D classification. After 2D

516 cleaning, 1,474,91 515 extracted from 3,757 micrographs and imported into CryoSPARC for 2D classification. After 2D cleaning, 1,474,916 particles underwent further cleaning through heterogeneous refinement. The resulting 614,371 particles w 516 cleaning, 1,474,916 particles underwent further cleaning through heterogeneous refinement. The
517 resulting 614,371 particles were refined to 2.92 Å by NUR with C3 symmetry. After two rounds
518 of polishing in Relio 517 resulting 614,371 particles were refined to 2.92 Å by NUR with C3 symmetry. After two rounds
518 of polishing in Relion, HRC, and NUR, 444,946 particles were refined to 2.54 Å. 1,112,764
519 particles from two subsets 519 particles from two subsets were combined and refined to 2.36 Å by NUR. These particles were
520 applied to symmetry expansion and local 3D classification. Individual classes of interest were
521 further subjected to lo 519 particles from two subsets were combined and refined to 2.36 Å by NUR. These particles were
520 applied to symmetry expansion and local 3D classification. Individual classes of interest were
521 further subjected to l

applied to symmetry expansion and local 3D classification. Individual classes of interest were

521 further subjected to local refinement in CryoSPARC.

522 **Model building and refinement.**

523 hEAAT3-X structures with bo 521 further subjected to local refinement in CryoSPARC.
522 **Model building and refinement.**
523 hEAAT3-X structures with bound L-Glu in iOFS*, 1
524 iOFS, and hEAAT3g with bound L-Asp (PDB acce
525 6X2Z respectively) were 522 **Model building and refinement.**
523 **hEAAT3-X** structures with bound
524 **iOFS**, and hEAAT3g with bound
525 6X2Z respectively) were fitted i
526 manually adjusted in COOT⁷⁹ ar hEAAT3-X structures with bound L-Glu in iOFS*, hEAAT3-X bound to $Na⁺$ 523 hEAAT3-X structures with bound L-Glu in iOFS*, hEAAT3-X bound to Na⁺ ions in OFS, and
524 iOFS, and hEAAT3g with bound L-Asp (PDB accession codes: 8CTC, 8CV2 and 8CV3, and
525 6X2Z respectively) were fitted into EM 524 iOFS, and hEAAT3g with bound L-Asp (PDB accession codes: 8CTC, 8CV2 and 8CV3, and 6X2Z respectively) were fitted into EM density maps using ChimeraX⁷⁸. The models were manually adjusted in COOT⁷⁹ and subjected to 6X2Z respectively) were fitted into EM density maps using Chimera X^{78} 525 6X2Z respectively) were fitted into EM density maps using ChimeraX⁷⁸. The models were
526 manually adjusted in COOT⁷⁹ and subjected to real-space refinement in Phenix⁸⁰. Structural
527 model validation was perfo manually adjusted in COOT^{79} and subjected to real-space refinement in Phenix⁸⁰ manually adjusted in COOT⁷⁹ and subjected to real-space refinement in Phenix⁸⁰. Structural
527 model validation was performed in Phenix. All the structural figures were prepared using
528 ChimeraX.
Acknowledgments: W

model validation was performed in Phenix. All the structural figures were prepared using
528 ChimeraX.
529 Acknowledgments:
530 We thank Dr. Xiaoyu Wang, Dr. Qianyi Wu, Dr. Krishna Reddy, and Dr. Yun Huang for the
531 usef 528 ChimeraX.
529 Acknowled
530 We thank I
531 useful discu
532 NYU Lange 529 **Acknowledgments:**
530 We thank Dr. Xiaoy
531 useful discussions. V
532 NYU Langone's Cryc
533 for assistance with 530 We thank Dr. Xiaoyu Wang, Dr. Qianyi Wu, Dr. Krishna Reddy, and Dr. Yun Huang for the useful discussions. We thank Jing Wang at SEMC-NYSBC, Bing Wang and William Rice at NYU Langone's Cryo-EM laboratory, and Edwin Fluc 531 useful discussions. We thank Jing Wang at SEMC-NYSBC, Bing Wang and William Rice at NYU Langone's Cryo-EM laboratory, and Edwin Fluck at Weill Cornell Cryo-EM facility center for assistance with data collection. **Fundi** 532 NYU Langone's Cryo-EM laboratory, and Edwin Fluck at Weill Cornell Cryo-EM facility center
533 for assistance with data collection. **Funding**: This work was supported by HHMI and the
534 National Institute of Neurologi 533 for assistance with data collection. **Funding**: This work was supported by HHMI and the
534 National Institute of Neurological Disorders and Stroke R37NS085318 to Olga Boudker. Some
535 of this work was performed at th 534 National Institute of Neurological Disorders and Stroke R37NS085318 to Olga Boudker. Some
535 of this work was performed at the Simons Electron Microscopy Center at the New York
536 Structural Biology Center, with majo 535 of this work was performed at the Simons Electron Microscopy Center at the New York
536 Structural Biology Center, with major support from the Simons Foundation (SF349247). **Author**
537 **contribution and interest confl** 536 Structural Biology Center, with major support from the Simons Foundation (SF349247). **Author**
537 **contribution and interest conflict**: B.Q. performed the experiments; B.Q. and O.B. conceived
538 the projects, analyzed 537 **contribution and interest conflict**: B.Q. performed the experiments; B.Q. and O.B. conceived
538 the projects, analyzed data, and wrote the manuscript. Competing interests: The authors declare
539 no competing commerc the projects, analyzed data, and wrote the manuscript. Competing interests: The authors declare
539 no competing commercial interests. **Data availability**: The Cryo-EM maps and atomic
540 coordinates have been deposited in 539 no competing commercial interests. **Data availability**: The Cryo-EM maps and atomic
540 coordinates have been deposited in the Electron Microscopy Data Bank (EMDB) and Protein
541 Data Bank (PDB) under accession code: 540 coordinates have been deposited in the Electron Microscopy Data Bank (EMDB) and Protein
541 Data Bank (PDB) under accession code: EMD-46586, PDB-9D66 (hEAAT3-X with L-Asp
541 Data Bank (PDB) under accession code: EMD-4 541 Data Bank (PDB) under accession code: EMD-46586, PDB-9D66 (hEAAT3-X with L-Asp

-
-
- 542 bound at iOFS*); EMD-46587, (hEAAT3-X in sodium and R-2HG at OFS); EMD-46588, PDB-
9D67 (hEAAT3-X with D-Asp bound at iOFS*); EMD-46589, PDB-9D68 (hEAAT3-X with L-
544 Cys bound at OFS, semi-open HP2); EMD-46590, PDB-9 543 9D67 (hEAAT3-X with D-Asp bound at iOFS*); EMD-46589, PDB-9D68 (hEAAT3-X with L-

544 Cys bound at OFS, semi-open HP2); EMD-46590, PDB-9D69 (hEAAT3-X with L-Cys bound at

iOFS); EMD-46591, PDB-9D6A (hEAAT3-X with L-Cys
- 544 Cys bound at OFS, semi-open HP2); EMD-46590, PDB-9D69 (hEAAT3-X with L-Cys bound at iOFS); EMD-46591, PDB-9D6A (hEAAT3-X with L-Cys bound at iOFS*); EMD-46592 (hEAAT3-X in sodium and L-Cys at IFS).
547 545 iOFS); EMD-46591, PDB-9D6A (hEAAT3-X with L-Cys bound at iOFS*); EMD-46592
546 (hEAAT3-X in sodium and L-Cys at IFS).
547
- 546 (hEAAT3-X in sodium and L-Cys at IFS).
547
-

-
- 548 **References** 549
556
5552
5553
555
555 Mature 383, 634-637, doi:10.1038/383634a0 (1996).

551 Nature 383, 634-637, doi:10.1038/383634a0 (1996).

552 Levy, L. M., Warr, O. & Attwell, D. Stoichiometry of the glial glutamate transporter GLT-1

553 expressed induci Matare 383, 634-637, doi:10.1038/383634a0 (1996).

552 2 Levy, L. M., Warr, O. & Attwell, D. Stoichiometry of the expressed inducibly in a Chinese hamster ovary cel

554 Na+-dependent glutamate uptake. *J Neurosci* 18, 962
- 553

552 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous

554 Na+-dependent glutamate uptake. J Neurosci 18, 9620-9628 (1998).

555 3 Owe, S. G., Marcaggi, P. & Attwell, D. The ionic st 554 Na+-dependent glutamate uptake. J Neurosci 18, 9620-9628 (1998).

555 3 Owe, S. G., Marcaggi, P. & Attwell, D. The ionic stoichiometry of the GLAST glutamate

556 transporter in salamander retinal glia. The Journal of 554 Natio dependent glutamate uptake. J Neurosch 18, 5020-5020 (1530).
555 3 Owe, S. G., Marcaggi, P. & Attwell, D. The ionic stoichiometry of the transporter in salamander retinal glia. The Journal of physiol
557 doi:10.1
- transporter in salamander retinal glia. The Journal of physiology 577, 591-599,

557 doi:10.1113/jphysiol.2006.116830 (2006).

558 4 Martinez-Lozada, Z. & Ortega, A. Milestone Review: Excitatory amino acid transporters -
 Fransporter in salamander retinal glia. The Sournal of physiology 577, 591-595,

doi:10.1113/jphysiol.2006.116830 (2006).

Martinez-Lozada, Z. & Ortega, A. Milestone Review: Excitatory amino acid transporters -

Beyond the
- 558 4 Martinez-Lozada, Z. & Ortega, A. Mileston
559 Beyond their expected function. *J Neur*
560 (2023).
561 5 Danbolt, N. C., Storm-Mathisen, J. & Kan
562 transporter purified from rat brain is loc:
563 295-310, doi:10.1 Examples 19 Beyond their expected function. J Neurochem 165, 457-466, doi:10.1111/jnc.15809

560 (2023).

561 5 Danbolt, N. C., Storm-Mathisen, J. & Kanner, B. I. An [Na+ + K+]coupled L-glutamate

562 transporter purified Eeyond their expected function. J Neurochem 165, 457-466, doi.10.1111jnc.15805

560 (2023).

561 5 Danbolt, N. C., Storm-Mathisen, J. & Kanner, B. I. An [Na+ + K+]coupled L-glutamate

562 transporter purified from rat brai
- 561 5 Danbolt

562 transpo

563 295-310

564 6 Arriza,

565 transpo

566 *Proceed*

567 1155-12 transporter purified from rat brain is located in glial cell processes. Neuroscience 51,

563 295-310, doi:10.1016/0306-4522(92)90316-t (1992).

564 6 Arriza, J. L., Eliasof, S., Kavanaugh, M. P. & Amara, S. G. Excitatory Transporter purified from rat brain is located in grian cell processes. Neuroscience 31,

295-310, doi:10.1016/0306-4522(92)90316-t (1992).

564 6 Arriza, J. L., Eliasof, S., Kavanaugh, M. P. & Amara, S. G. Excitatory amin 564 6 Arriza, J. L., Eliasof, S., Kavanaugh, M. P. & Am

565 transporter 5, a retinal glutamate transporter co

566 *Proceedings of the National Academy of Sciences o*

567 4155-4160, doi:10.1073/pnas.94.8.4155 (1997).

56 transporter 5, a retinal glutamate transporter coupled to a chloride conductance.

566 *Proceedings of the National Academy of Sciences of the United States of America* 94,

567 4155-4160, doi:10.1073/pnas.94.8.4155 (1997)
- France Proceedings of the National Academy of Sciences of the United States of America 94,

567 the National Academy of Sciences of the United States of America 94,

568 7 Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Froceedings of the National Academy of Sciences of the Onted States of America 94,

4155-4160, doi:10.1073/pnas.94.8.4155 (1997).

Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Kavanaugh, M. P. & Amara, S. G. An

excit 568 7 Fairman, W. A., Vandenberg, R. J., Arriza, J. L.
569 excitatory amino-acid transporter with propert
570 *Nature* 375, 599-603, doi:10.1038/375599a0 (19
571 8 Kanai, Y. & Hediger, M. A. Primary structure ar
572 affini
-
- excitatory amino-acid transporter with properties of a ligand-gated chloride channel.

570 excitatory amino-acid transporter with properties of a ligand-gated chloride channel.

571 8 Kanai, Y. & Hediger, M. A. Primary str S70 Mature 375, 599-603, doi:10.1038/375599a0 (1995).

S71 8 Kanai, Y. & Hediger, M. A. Primary structure and functional characterization of a high-

affinity glutamate transporter. Nature 360, 467-471, doi:10.1038/360467a Matare 375, 355-605, doi:10.1038/375559a0 (1535).

571 8 Kanai, Y. & Hediger, M. A. Primary structure and fu

572 affinity glutamate transporter. *Nature* 360, 467-471,

573 9 Andersen, J. V. *et al.* Glutamate metabolism 572 amin'ny glutamate transporter. Nature 360, 467-471, doi.10.1038/360467a0 (1532).
573 9 Andersen, J. V. *et al.* Glutamate metabolism and recycling at the excitatory synap
613 health and neurodegeneration. Neuropharmaco
- 571 8 Kanai, Y. & Hediger, M. A. Primary structure and functional characterization of a high-
- 573 5 Andersen, J. V. et al. Glutamate metabolism and recycling at the excitatory synapse in

574 health and neurodegeneration. Neuropharmacology 196, 108719,

575 10 Nadler, J. V. Aspartate release and signalling in the h 675 health and neurodegeneration. Meanopharmacology 150, 168715,

575 doi:10.1016/j.neuropharm.2021.108719 (2021).

576 10 Nadler, J. V. Aspartate release and signalling in the hippocampus. Neurochemical

577 research 36, 576 10 Nadler, J. V. Aspartate release and signalling
577 research 36, 668-676, doi:10.1007/s11064-010-0
578 11 Herring, B. E., Silm, K., Edwards, R. H. & Ni
579 Neurotransmitter? *J Neurosci* 35, 10168-10171
580 (2015).
5 576 10 Nadler, J. V. Aspartate release and signalling in the inppocampus. Neurochemical
577 research 36, 668-676, doi:10.1007/s11064-010-0291-3 (2011).
578 11 Herring, B. E., Silm, K., Edwards, R. H. & Nicoll, R. A. Is Asp
- Fescarch 36, 668-676, doi:10.1007/s11004-010-0291-3 (2011).

578 11 Herring, B. E., Silm, K., Edwards, R. H. & Nicoll, R. A. Is

579 Neurotransmitter? *J Neurosci* 35, 10168-10171, doi:10.1523/

581 12 Schell, M. J., Coope 579 Neurotransmitter? *J. Neurosci* 35, 10168-10171, doi:10.1523/JNEUROSCI.0524-15.2015
580 (2015).
581 12 Schell, M. J., Cooper, O. B. & Snyder, S. H. D-aspartate localizations imply neuronal and
582 neuroendocrine roles. S80 (2015).
580 (2015).
581 12 Schell, M. J., Cooper, O. B. & Snyder, S. H. D-aspartate localizations imply neuronal and
582 neuroendocrine roles. *Proceedings of the National Academy of Sciences of the United*
583 *States* 581 12 Schell, I

582 neuroer

583 *States c
*584 13 Ota, N.,

585 neuroer

586 (2012).
- 582 neuroendocrine roles. *Proceedings of the National Academy of Sciences of the United*
583 *States of America* **94**, 2013-2018, doi:10.1073/pnas.94.5.2013 (1997).
584 13 Ota, N., Shi, T. & Sweedler, J. V. D-Aspartate ac Sex methodocrine roles. Proceedings of the National Academy of Sciences of the Onted
583 States of America 94, 2013-2018, doi:10.1073/pnas.94.5.2013 (1997).
584 13 Ota, N., Shi, T. & Sweedler, J. V. D-Aspartate acts as a s States of America 94, 2015 2016, doi:10:1073/phas.34.5.2015 (1597).

584 13 Ota, N., Shi, T. & Sweedler, J. V. D-Aspartate acts as a signaling molec

neuroendocrine systems. Amino Acids 43, 1873-1886, doi:10.1007/s

587 14
- 585

13 Oktober 13 Okida, N., Shimo Acids 43, 1873-1886, doi:10.1007/s00726-012-1364-1

586 (2012).

14 Watts, S. D., Torres-Salazar, D., Divito, C. B. & Amara, S. G. Cysteine transport through

14 Watts, S. D., Torres-Sal France, and EXA
587 14 Watts, S. D., Torres-Salazar, D., Divito, C. B. & Amara, S. G. Cysteine transport through excitatory am 587 14 Watts, 588 excitate
588 excitate
589 doi:10.1 588 excitatory amino acid transporter 3 (EAAT3). PloS one **9**, e109245,
doi:10.1371/journal.pone.0109245 (2014). 589 doi:10.1371/journal.pone.0109245 (2014). 589 doi:10.1371/journal.pone.0109245 (2014).

15

amino acid transporter. The Journal of physiology **493 (Pt 2)**, 419-423,

592 doi:10.1113/jphysiol.1996.sp021393 (1996).

593 16 Arriza, J. L. et al. Cloning and expression of a human neutral amino acid transporter with

5 592 doi:10.1113/jphysiol.1996.sp021393 (1996).
593 16 Arriza, J. L. et al. Cloning and expression of a human neutral amino acid transporter with
594 structural similarity to the glutamate transporter gene family. The Jour

- 593 16 Arriza, J. L. *et al.* Cloning and expression of a
594 structural similarity to the glutamate transp
595 *chemistry* **268**, 15329-15332 (1993).
596 17 Utsunomiya-Tate, N., Endou, H. & Kanai, Y. (
597 system ASC-lik 593 16 Arriza, 5. L. et al. cloning and expression of a human neutral amino acid transporter with
595 structural similarity to the glutamate transporter gene family. The Journal of biological
595 themistry 268, 15329-15332 Structural similarity to the glutamate transporter gene rarmy. The Journal of photogreat

595 chemistry 268, 15329-15332 (1993).

596 17 Utsunomiya-Tate, N., Endou, H. & Kanai, Y. Cloning and functional characterization of
- Enemistry 200, 15329-15332 (1533).

596 17 Utsunomiya-Tate, N., Endou, H. & K.

597 *biological chemistry* 271, 14883-1489

599 18 Bassi, M. T. *et al.* Identification and

600 with 4F2 heavy chain, the amino a

601 *Europ* system ASC-like Na+-dependent neutral amino acid transporter. The Journal of
598 biological chemistry 271, 14883-14890, doi:10.1074/jbc.271.25.14883 (1996).
599 18 Bassi, M. T. et al. Identification and characterisation of 598 biological chemistry 271, 14883-14890, doi:10.1074/jbc.271.25.14883 (1996).
599 18 Bassi, M. T. et al. Identification and characterisation of human xCT that co-expresses,
600 with 4F2 heavy chain, the amino acid trans Enological chemistry 271, 14883-14890, doi:10.10747jbc.271.25.14883 (1596).

599 18 Bassi, M. T. *et al.* Identification and characterisation of human xCT that co-

with 4F2 heavy chain, the amino acid transport activity s 599 18 Bassi, M. T. et al. Identification and characterisation of human xcT that co-expresses,

600 with 4F2 heavy chain, the amino acid transport activity system xc. *Pflugers Archiv :*

602 19 Broer, A. *et al.* The astr
-
- 601 European journal of physiology 442, 286-296, doi:10.1007/s004240100537 (2001).
602 Broer, A. et al. The astroglial ASCT2 amino acid transporter as a mediator of glutamine
603 efflux. J Neurochem 73, 2184-2194 (1999).
6 European journal of physiology 442, 286-290, doi:10.1007/s004240100337 (2001).

602 Broer, A. *et al.* The astroglial ASCT2 amino acid transporter as a mediator of gluta

efflux. *J* Neurochem 73, 2184-2194 (1999).

Sakai, 603 efflux. *J Neurochem* **73**, 2184-2194 (1999).
604 20 Sakai, K., Shimizu, H., Koike, T., Furuya, S. & Watanabe, M. Neutral amino acid
605 transporter ASCT1 is preferentially expressed in L-Ser-synthetic/storing glial ce EHIRA: 3 Well October 133, 2184-2134 (1999).

604 20 Sakai, K., Shimizu, H., Koike, T., Furuya

605 mouse brain with transient expression in c

607 doi:10.1523/JNEUROSCI.23-02-00550.2003

608 21 Ottestad-Hansen, S. *et al.* Framsporter ASCT1 is preferentially expressed in L-Ser-synthetic/storing glial cells in the

mouse brain with transient expression in developing capillaries. J Neurosci 23, 550-560,

doi:10.1523/JNEUROSCI.23-02-00550.2003
- mouse brain with transient expression in developing capillaries. J Neurosci 23, 550-560,

607 doi:10.1523/JNEUROSCI.23-02-00550.2003 (2003).

21 Ottestad-Hansen, S. *et al.* The cystine-glutamate exchanger (xCT, Slc7a11) i mouse brann with transient expression in developing capitalies. *5 Neurosci* 23, 550-560,

doi:10.1523/JNEUROSCI.23-02-00550.2003 (2003).
 608 21 Ottestad-Hansen, S. *et al.* The cystine-glutamate exchanger (xCT, Slc7a11
- 21 Ottestad-Hansen, S. *et al*. The cystine-glutamate e

609 in significant concentrations in a subpopulation of a

610 951-970, doi:10.1002/glia.23294 (2018).

611 22 Himi, T., Ikeda, M., Yasuhara, T., Nishida, M. & M

61 609 in significant concentrations in a subpopulation of astrocytes in the mouse brain. *Glia* 66,
610 951-970, doi:10.1002/glia.23294 (2018).
611 22 Himi, T., Ikeda, M., Yasuhara, T., Nishida, M. & Morita, I. Role of neuro 610 951-970, doi:10.1002/glia.23294 (2018).
611 22 Himi, T., Ikeda, M., Yasuhara, T., Nishida, M. & Morita, I. Role of neuronal glutamate
612 transporter in the cysteine uptake and intracellular glutathione levels in cultu 611 22 Himi, T., Ikeda, M., Yasuhara, T., Nishid
612 transporter in the cysteine uptake and in
613 neurons. *J Neural Transm (Vienna)* 11
614 (2003).
615 23 Chen, Y. & Swanson, R. A. The glutan
616 cysteine uptake in corti 612

612 transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical

613 neurons. *J Neural Transm (Vienna)* **110**, 1337-1348, doi:10.1007/s00702-003-0049-z

614 (2003).

615 23 Chen, Y. &
-
- meurons. *J Neural Transm (Vienna)* 110, 1337-1348, doi:10.1007/s00702-003-0049-z

614 (2003).

615 23 Chen, Y. & Swanson, R. A. The glutamate transporters EAAT2 and EAAT3 mediate

616 cysteine uptake in cortical neuron cu 614 (2003).
615 23 Chen, Y. & Swanson, R. A. The glutamate transporters EAAT2 and EAAT3 mediate
616 cysteine uptake in cortical neuron cultures. *J Neurochem* 84, 1332-1339 (2003).
617 24 Paul, B. D., Sbodio, J. I. & Snyde 615 23 Chen, 1
616 cysteine
617 24 Paul, B.
618 in Hun
620 25 Zivanov cysteine uptake in cortical neuron cultures. *J Neurochem* 84, 1332-1339 (2003).

617 24 Paul, B. D., Sbodio, J. I. & Snyder, S. H. Mutant Huntingtin Derails Cysteine Metabolism

in Huntington's Disease at Both Transcripti eysteme uptake in cortical neuron cultures. J Neurochem 84, 1332-1333 (2003).

617 24 Paul, B. D., Sbodio, J. I. & Snyder, S. H. Mutant Huntingtin Derails Cysteine Me

in Huntington's Disease at Both Transcriptional and Po
- 618

in Huntington's Disease at Both Transcriptional and Post-Translational Levels.

619
 Antioxidants (Basel) 11, doi:10.3390/antiox11081470 (2022).

620 25 Zivanovic, J. *et al.* Selective Persulfide Detection Reveals in Huntington's Disease at Both Transcriptional and Post-Translational Levels.

619 Antioxidants (Basel) 11, doi:10.3390/antiox11081470 (2022).

620 25 Zivanovic, J. et al. Selective Persulfide Detection Reveals Evolutiona Examples 25 Antioxidants (Basel) 11, doi:10.33390/antiox11081470 (2022).

620 25 Zivanovic, J. et al. Selective Persulfide Detection Reveals

621 Antiaging Effects of S-Sulfhydration. *Cell Metab*

623 26 Bjorn-Yoshimoto, Extrained Extra Conserved Terroric Cell Metab 30, 1152-1170 e1113,

622 Antiaging Effects of S-Sulfhydration. Cell Metab 30, 1152-1170 e1113,

623 26 Bjorn-Yoshimoto, W. E. & Underhill, S. M. The importance of the excitato
-
-
- 622 Antiaging Effects of S-Sulffydration. Cell Metab 30, 1152-1170 e1115,
622 doi:10.1016/j.cmet.2019.10.007 (2019).
623 26 Bjorn-Yoshimoto, W. E. & Underhill, S. M. The importance of the excitatory amino acid
624 transpo 623 26 Bjorn-Yoshimoto, W. E. & Underhill, S. M
624 transporter 3 (EAAT3). Neurochem Int 98
625 27 Aoyama, K. Glutathione in the Brain. Int.
626 28 Trivedi, M., Shah, J., Hodgson, N., Byun,
627 changes in global DNA methyl 624 transporter 3 (EAAT3). *Neurochem Int* **98**, 4-18, doi:10.1016/j.neuint.2016.05.007 (2016).
625 27 Aoyama, K. Glutathione in the Brain. *Int J Mol Sci* **22**, doi:10.3390/ijms22095010 (2021).
626 28 Trivedi, M., Shah, J Eart of the Brain, Int J Mol Sci 22, doi:10.1016/j.neumt.2016.05.007 (2010).

625 27 Aoyama, K. Glutathione in the Brain. Int J Mol Sci 22, doi:10.3390/ijms22095010 (2021).

626 28 Changes in global DNA methylation and re Example in the Brain. *Int 3 Mor Set* 22, doi:10.33590/ijms22093010 (2021).

626 28 Trivedi, M., Shah, J., Hodgson, N., Byun, H. M. & Deth, R. Morphine induces redox-based

changes in global DNA methylation and retrotransp changes in global DNA methylation and retrotransposon transcription by inhibition of
628 excitatory amino acid transporter type 3-mediated cysteine uptake. *Molecular*
629 pharmacology 85, 747-757, doi:10.1124/mol.114.0917
- excitatory amino acid transporter type 3-mediated cysteine uptake. Molecular

pharmacology 85, 747-757, doi:10.1124/mol.114.091728 (2014).

G30 29 Grubb, T. *et al.* The SLC1A1/EAAT3 Dicarboxylic Amino Acid Transp excitatory amino acid transporter type 3 mediated cysteme uptake. Molecular
629 pharmacology 85, 747-757, doi:10.1124/mol.114.091728 (2014).
630 31 Grubb, T. et al. The SLC1A1/EAAT3 Dicarboxylic Amino Acid Transpo 630 29 Grubb, T. *et al.* The SLC1A1/EAAT3 Dicarboxylic Am
631 an Epigenetically Dysregulated Nutrient Carrier that Sustains
632 Programs. *bioRxiv*, 2023.2009.2004.556240, doi:10.1101/2023.09 631 an Epigenetically Dysregulated Nutrient Carrier that Sustains Oncogenic Metabolic Programs. bioRxiv, 2023.2009.2004.556240, doi:10.1101/2023.09.04.556240 (2023). 632 Programs. *bioRxiv*, 2023.2009.2004.556240, doi:10.1101/2023.09.04.556240 (2023). 632 Programs. bioRxiv, 2023.2009.2004.556240, doi:10.1101/2023.09.04.556240 (2023).

- 634 cell activation. *Cell Rep* 43, 114332, doi:10.1016/j.celrep.2024.114332 (2024).
635 31 Xiong, J. *et al.* SLC1A1 mediated glutamine addiction and contributed to natural killer T-
636 cell lymphoma progression with im 635 31 Kiong, J. *et al.* SLC1A1 mediated glutamine addiction and contributed to natureal
636 cell lymphoma progression with immunotherapeutic potential. *EBioMedicine* 7
637 doi:10.1016/j.ebiom.2021.103614 (2021).
638 32
- 636 cell lymphoma progression with immunotherapeutic potential. *EBioMedicine* 72, 103614
637 doi:10.1016/j.ebiom.2021.103614 (2021).
638 32 Wang, X. *et al.* SLC1A1-mediated cellular and mitochondrial influx of R-2-
639 637 doi:10.1016/j.ebiom.2021.103614 (2021).
638 32 Wang, X. *et al.* SLC1A1-mediated cellular and mitochondrial influx of R-2-
639 hydroxyglutarate in vascular endothelial cells promotes tumor angiogenesis in IDH1-
640 mu 638 32 Wang, X. *et al.* SLC1A1-mediated completed by the mutant solid tumors. Cell Res 32, 638-658, 641 33 Bunse, L. *et al.* Suppression of antitumor by the mutant solid tumors. Cell Res 32, 638-658, 641 33 Bunse, L. *et* 639 bydroxyglutarate in vascular endothelial cells promotes tumor angiogenesis in IDH1-
640 hydroxyglutarate in vascular endothelial cells promotes tumor angiogenesis in IDH1-
641 33 Bunse, L. *et al.* Suppression of anti
- 640 mutant solid tumors. *Cell Res* 32, 638-658, doi:10.1038/s41422-022-00650-w (2022).
641 33 Bunse, L. *et al.* Suppression of antitumor T cell immunity by the oncometabolite (R)-2-
642 hydroxyglutarate. *Nat Med* 24, 1
-
- 641 33 Bunse, L. *et al.* Suppression of antitumor T cell immunity by the oncometabolite (R
642 hydroxyglutarate. *Nat Med* 24, 1192-1203, doi:10.1038/s41591-018-0095-6 (2018).
643 34 Qiu, B. & Boudker, O. Symport and ant 642 bydroxyglutarate. Nat Med 24, 1192-1203, doi:10.1038/s41591-018-0095-6 (2018).
643 34 Qiu, B. & Boudker, O. Symport and antiport mechanisms of human glutamate
644 transporters. Nat Commun 14, 2579, doi:10.1038/s41467-642 hydroxyglutarate. Nat Med 24, 1192-1203, doi:10.1038/s41391-018-0093-6 (2018).
643 diu, B. & Boudker, O. Symport and antiport mechanisms of human glutar
644 transporters. Nat Commun 14, 2579, doi:10.1038/s41467-023-38 644 transporters. *Nat Commun* 14, 2579, doi:10.1038/s41467-023-38120-5 (2023).
645 35 Qiu, B., Matthies, D., Fortea, E., Yu, Z. & Boudker, O. Cryo-EM structures of excitatory
646 amino acid transporter 3 visualize coupled 645 35 Qiu, B., Matthies, D., Fortea, E., Yu, Z. & Boudker, O. Cryo-EM structures of a amino acid transporter 3 visualize coupled substrate, sodium, and proton bir transport. Sci Adv 7, doi:10.1126/sciadv.abf5814 (2021).
 646 amino acid transporter 3 visualize coupled substrate, sodium, and proton binding and
647 transport. Sci Adv 7, doi:10.1126/sciadv.abf5814 (2021).
648 36 Canul-Tec, J. C. *et al.* Structure and allosteric inhibition of
- transport. Sci Adv 7, doi:10.1126/sciadv.abf5814 (2021).

648 36 Canul-Tec, J. C. et al. Structure and allosteric inhibition of excitatory amino acid

transporter 1. Nature 544, 446-451, doi:10.1038/nature22064 (2017).

65 648 36 Canul-Tec, J. C. *et al.* Structure and allosteric inhibitransporter 1. Nature 544, 446-451, doi:10.1038/nature2
650 37 Canul-Tec, J. C. *et al.* The ion-coupling mechanism of
651 transporters. The EMBO journal 41,
-
- 649

transporter 1. Nature 544, 446-451, doi:10.1038/nature 22064 (2017).

650 37 Canul-Tec, J. C. et al. The ion-coupling mechanism of human excitatory amino acid

transporters. The EMBO journal 41, e108341, doi:10.15252
- 650 37 Canul-Tec, J. C. *et al.* The ion-coupling mechanism of human excited transporters. The *EMBO journal* 41, e108341, doi:10.15252/embj.2021 652 38 Kato, T. *et al.* Structural insights into inhibitory mechanism of h 651 cand Fec, 3. et al. The forf coupling mechanism of human excitatory amino acid
651 transporters. The EMBO journal 41, e108341, doi:10.15252/embj.2021108341 (2022).
652 Kato, T. et al. Structural insights into inhibito
- 652 38 Kato, T. *et al.* Structural insights into inhibitory mechanism of human excitatory amil
653 Kato, T. *et al.* Structural insights into inhibitory mechanism of human excitatory amil
654 39 Zhang, Z. *et al.* Struct 652 38 Kato, T. et al. Structural insights into inhibitory mechanism of human excitatory amino
653 acid transporter EAAT2. Nat Commun 13, 4714, doi:10.1038/s41467-022-32442-6 (2022).
654 39 Zhang, Z. et al. Structural bas 654 39 *Abang, Z. et al. Structural basis of ligand binding modes of human EAAT2. Nat Commun* 13, 3329, doi:10.1038/s41467-022-31031-x (2022).

655 **13**, 3329, doi:10.1038/s41467-022-31031-x (2022).

656 40 Stehantsev, P. 655 **13**, 3329, doi:10.1038/s41467-022-31031-x (2022).
656 **40** Stehantsev, P. *et al.* A structural view onto disease-linked mutations in the human neutral amino acid exchanger ASCT1. Comput Struct Biotechnol J **19**, 524 656 40 Stehantsev, P. *et al.* A structural view onto dise
657 neutral amino acid exchanger ASCT1. *Comput*
658 doi:10.1016/j.csbj.2021.09.015 (2021).
659 41 Garaeva, A. A. *et al.* Cryo-EM structure of the hu
660 ASCT2.
- 657 and a stehantsev, P. et al. A structural view onto disease-linked mutations in the human
657 neutral amino acid exchanger ASCT1. Comput Struct Biotechnol J 19, 5246-5254,
659 41 Garaeva, A. A. et al. Cryo-EM structure 658 doi:10.1016/j.csbj.2021.09.015 (2021).
659 41 Garaeva, A. A. *et al.* Cryo-EM structure of the human neutral amino acid transporter
660 ASCT2. Nature structural & molecular biology 25, 515-521, doi:10.1038/s41594-018-659 41 Garaeva, A. A. *et al.* Cryo-EM structure
660 ASCT2. Nature structural & molecular
661 0076-y (2018).
662 42 Yu, X. *et al.* Cryo-EM structures of the
663 the outward-facing conformation. *eLife*
664 43 Garaeva, A.
-
- 660 ASCT2. Nature structural & molecular biology 25, 515-521, doi:10.1038/s41594-018-
661 0076-y (2018).
662 42 Yu, X. et al. Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in
663 the outward-facing 661 $0076-y$ (2018).
662 42 Yu, X. *et al.* Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in
663 the outward-facing conformation. *eLife* 8, doi:10.7554/eLife.48120 (2019).
664 43 Garaeva, A. A., Gus 662 42 Yu, X. *et al.* Cry
663 the outward-fa
664 43 Garaeva, A. A.,
665 for the huma
666 doi:10.1038/s4
667 44 Borowska, A. 42 Tu, X. et al. cryo-EM structures of the human glutamine transporter Stellas (ASCT2) in
663 the outward-facing conformation. *eLife* 8, doi:10.7554/eLife.48120 (2019).
664 43 Garaeva, A. A., Guskov, A., Slotboom, D. J. & 664 43 Garaeva, A. A., Guskov, A., Slotboom, D. J. & Paulino, C. A one-gate elevator for the human neutral amino acid transporter ASCT2. Nat Communication. 665 doi:10.1038/s41467-019-11363-x (2019).
667 44 Borowska, A. M.
- 665 for the human neutral amino acid transporter ASCT2. Nat Commun 10, 3427,
666 doi:10.1038/s41467-019-11363-x (2019).
667 44 Borowska, A. M. *et al.* Structural basis of the obligatory exchange mode of human
668 neutral 66 doi:10.1038/s41467-019-11363-x (2019).
667 44 borowska, A. M. *et al.* Structural basis of the obligatory exchange mode of human
668 neutral amino acid transporter ASCT2. Nat Commun 15, 6570, doi:10.1038/s41467-024-
508 44 Borowska, A. M. *et al.* Structural basis
668 neutral amino acid transporter ASCT2. No
669 50888-8 (2024).
670 45 Khare, S. *et al.* Receptor-recognition an
671 human proteins. Nature structural & mole
672 6 (2024).
- 668 neutral amino acid transporter ASCT2. Nat Commun 15, 6570, doi:10.1038/s41467-024-
669 50888-8 (2024).
670 45 Khare, S. *et al.* Receptor-recognition and antiviral mechanisms of retrovirus-derived
671 human proteins. N 669 50888-8 (2024).

669 50888-8 (2024).

670 45 Khare, S. *et al.* Receptor-recognition and antiviral mechanisms of retrovirus-derived

671 human proteins. Nature structural & molecular biology, doi:10.1038/s41594-024-012
- 670 45 Khare, S. *et al.*
671 human proteins.
672 6 (2024).
673 46 Wang, X. & Bou
674 substrate rele
675 doi:10.7554/eLif 671 human proteins. Nature structural & molecular biology, doi:10.1038/s41594-024-01295-
672 6 (2024).
673 46 Wang, X. & Boudker, O. Large domain movements through the lipid bilayer mediate
674 substrate release and inhibi 671 human proteins. Nature structural a molecular biology, doi:10.1030/341594-024-01259
672 6 (2024).
673 46 Wang, X. & Boudker, O. Large domain movements through the lipid bilayer mediate
674 substrate release and inhibi 673 46 Wang, X.
674 substrate
675 doi:10.75 674 substrate release and inhibition of glutamate transporters. *eLife* 9, doi:10.7554/eLife.58417 (2020). 675 substrate release and immunion of glutamate transporters. eLife 9, $\frac{1}{2}$, $\frac{1}{2}$ 675 doi:10.7554/eLife.58417 (2020).

- 47
- 677 homologue from Pyrococcus horikoshii. Nature 431, 811-818, doi:10.1038/nature03018
678 (2004).
679 48 Boudker, O., Ryan, R. M., Yernool, D., Shimamoto, K. & Gouaux, E. Coupling substrate
680 and ion binding to extracel 678 (2004).
678 (2004).
679 48 Boudker, O., Ryan, R. M., Yernool, D., Shimamoto, K. & Gouaux, E. Coupling substrate
680 and ion binding to extracellular gate of a sodium-dependent aspartate transporter.
681 *Nature* 445, 3 679 48 Boudke

680 and ion

681 *Nature*

682 49 Reyes, 1

683 glutama

684 50 Verdon,
-
- and ion binding to extracellular gate of a sodium-dependent aspartate transporter.

681 Mature 445, 387-393, doi:10.1038/nature05455 (2007).

682 49 Reyes, N., Ginter, C. & Boudker, O. Transport mechanism of a bacterial ho Mature 445, 387-393, doi:10.1038/nature05455 (2007).

682 49 Reyes, N., Ginter, C. & Boudker, O. Transport mechanism of a bacterial homologue of

683 glutamate transporters. Nature 462, 880-885, doi:10.1038/nature08616 (20 Mature 445, 387-353, doi:10.1038/nature03435 (2007).

682 49 Reyes, N., Ginter, C. & Boudker, O. Transport mechani

glutamate transporters. *Nature* 462, 880-885, doi:10.10

684 50 Verdon, G., Oh, S., Serio, R. N. & Boudke glutamate transporters. *Nature* **462**, 880-885, doi:10.1038/nature08616 (2009).

684 50 Verdon, G., Oh, S., Serio, R. N. & Boudker, O. Coupled ion binding and structural

transitions along the transport cycle of glutamate
- 684 50 Verdon, G., Oh, S., Serio, R. N. & Boudker, O. Coupled ion binding and st
685 transitions along the transport cycle of glutamate transporters. *eLife* 3,
686 doi:10.7554/eLife.02283 (2014).
687 51 Arkhipova, V., Gus 685

transitions along the transport cycle of glutamate transporters. *eLife* 3, e02283,

doi:10.7554/eLife.02283 (2014).

687 51 Arkhipova, V., Guskov, A. & Slotboom, D. J. Structural ensemble of a glutamate

transporter 686 doi:10.7554/eLife.02283 (2014).
687 doi:10.7554/eLife.02283 (2014).
687 foi:10.7554/eLife.02283 (2014).
688 transporter homologue in lipid nanodisc environment. *Nat Commun* 11, 998,
689 doi:10.1038/s41467-020-14834-8 687 51 Arkhipova, V., Guskov, A. & S
688 transporter homologue in lip
690 52 Guskov, A., Jensen, S., Faustino
691 mechanism of three sodium ions
692 GltTk. Nat Commun 7, 13420, do
- 688 transporter homologue in lipid nanodisc environment. Nat Commun 11, 998,
689 doi:10.1038/s41467-020-14834-8 (2020).
690 52 Guskov, A., Jensen, S., Faustino, I., Marrink, S. J. & Slotboom, D. J. Coupled binding
691 mech 689 doi:10.1038/s41467-020-14834-8 (2020).
689 doi:10.1038/s41467-020-14834-8 (2020).
690 52 Guskov, A., Jensen, S., Faustino, I., Marrink, S. J. & Slotboom, D. J. Coupled binding
691 mechanism of three sodium ions and asp
- 690 52 Guskov, A., Jensen, S., Faustino, I., Mar
691 mechanism of three sodium ions and aspa
692 GltTk. *Nat Commun* 7, 13420, doi:10.1038
693 53 Shabaneh, M., Rosental, N. & Kanner,
694 trimerization domains of a neuronal Framechanism of three sodium ions and aspartate in the glutamate transporter homologue

GHTK. Nat Commun 7, 13420, doi:10.1038/ncomms13420 (2016).

Shabaneh, M., Rosental, N. & Kanner, B. I. Disulfide cross-linking of tran 692 GltTk. *Nat Commun* **7**, 13420, doi:10.1038/ncomms13420 (2016).

693 53 Shabaneh, M., Rosental, N. & Kanner, B. I. Disulfide cross-linking of transport and

trimerization domains of a neuronal glutamate transporter res 693 53 Shabaneh, M., Rosental, N. & Kanner, B. I. Disulfide cross-lin
694 trimerization domains of a neuronal glutamate transporter res
695 substrate to the gating of the anion conductance. *The Journal* of
696 **289**, 1117 trimerization domains of a neuronal glutamate transporter restricts the role of the

substrate to the gating of the anion conductance. The Journal of biological chemistry
 289, 11175-11182, doi:10.1074/jbc.M114.550277 (2
- substrate to the gating of the anion conductance. The Journal of biological chemistry
 289, 11175-11182, doi:10.1074/jbc.M114.550277 (2014).

697 54 Wang, J., Zielewicz, L., Dong, Y. & Grewer, C. Pre-Steady-State Kinetic 895 substrate to the gating of the anion conductance. The Journal of biological chemistry
696 **289**, 11175-11182, doi:10.1074/jbc.M114.550277 (2014).
697 54 Wang, J., Zielewicz, L., Dong, Y. & Grewer, C. Pre-Steady-State K 697 54 Wang, J., Zielewicz, L., Dong, Y. & Grewer, C. Pre-Stead
698 Transport in Rat Glutamate Transporter EAAC1 with an Ir
699 Neurochemical research 47, 148-162, doi:10.1007/s11064
700 55 Scheres, S. H. Processing of St Fransport in Rat Glutamate Transporter EAAC1 with an Immobilized Transport Domain.

699 *Neurochemical research* 47, 148-162, doi:10.1007/s11064-021-03247-8 (2022).

700 55 Scheres, S. H. Processing of Structurally Heterog
- For Methods Enzymol 579, 125-152, doi:10.1007/s11064-021-03247-8 (2022).

55 Scheres, S. H. Processing of Structurally Heterogeneous Cryo-EM Data in RELION.

56 Methods Enzymol 579, 125-157, doi:10.1016/bs.mie.2016.04.012
-
- France, S. H. Processing of Structurally Heterogeneous Cryo-EM Data in

701 Methods Enzymol 579, 125-157, doi:10.1016/bs.mie.2016.04.012 (2016).

702 56 Arkhipova, V. et al. Binding and transport of D-aspartate by the glut *Methods Enzymol* 579, 125-157, doi:10.1016/bs.mie.2016.04.012 (2016).

701 Methods Enzymol 579, 125-157, doi:10.1016/bs.mie.2016.04.012 (2016).

703 Arkhipova, V. *et al.* Binding and transport of D-aspartate by the gluta 702 56 Arkhipova, V. *et al.* Binding and transport of D-aspartate by the glutami

703 homolog Glt(Tk). *eLife* 8, doi:10.7554/eLife.45286 (2019).

704 57 Bendahan, A., Armon, A., Madani, N., Kavanaugh, M. P. & Kanner, B.
 To the glutamate transporter

702 56 Arkhipova, V. et al. Binding and transport of D-aspartate by the glutamate transporter

703 6 Bendahan, A., Armon, A., Madani, N., Kavanaugh, M. P. & Kanner, B. I. Arginine 447

705 pla 703 homolog Glt(Tk). ezije 8, doi:10.7554/ezite.45286 (2015).
704 57 Bendahan, A., Armon, A., Madani, N., Kavanaugh, M. P
705 *Journal of biological chemistry* 275, 37436-37442, doi:10.1
707 58 Koivunen, P. *et al.* Transf plays a pivotal role in substrate interactions in a neuronal glutamate transporter. The

706 *Journal of biological chemistry* 275, 37436-37442, doi:10.1074/jbc.M006536200 (2000).

707 58 Koivunen, P. *et al.* Transformati
- Final of biological chemistry 275, 37436-37442, doi:10.1074/jbc.M006536200 (2000).

707 58 Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to

708 EGLN activation. Nature 483, 484-488, 38 Koivunen, P. *et al.* Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to

TOB Koivunen, P. *et al.* Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to

EGLN activation. *Nature* 483,
- 708 EGLN activation. *Nature* 483, 484-488, doi:10.1038/nature10898 (2012).
709 59 Issa, G. C. & DiNardo, C. D. Acute myeloid leukemia with IDH1 and IDH2 mutations: 2021
710 treatment algorithm. *Blood Cancer J* 11, 107, d 709 59 Issa, G. C. & DiNardo, C. D. Acute myeloid leukemia with IDH1 and IDH2 r
170 treatment algorithm. *Blood Cancer J* 11, 107, doi:10.1038/s41408-021-00
171 60 Notarangelo, G. *et al.* Oncometabolite d-2HG alters T cel
-
- 10 10994).

1710 11 treatment algorithm. *Blood Cancer J* 11, 107, doi:10.1038/s41408-021-00497-1 (2021).

1712 12 Notarangelo, G. *et al.* Oncometabolite d-2HG alters T cell metabolism to impair CD8(+) T

1712 18 12 Cell
- Fraction algorithm. Blood Cancer J. 11, 107, doi:10.1038/s41408-021-00497-1 (2021).

711 60 Notarangelo, G. et al. Oncometabolite d-2HG alters T cell metabolism to impair CD8(+)

712 cell function. Science 377, 1519-1529, 712 cell function. *Science* 377, 1519-1529, doi:10.1126/science.abj5 104 (2022).
713 61 Arriza, J. L. *et al.* Functional comparisons of three glutamate transporter subtypes
714 cloned from human motor cortex. *J Neurosci* 212 centraliction. Science 377, 1515-1525, doi.10.1120/science.abj5104 (2022).

713 61 Arriza, J. L. *et al.* Functional comparisons of three glutamate transpor

714 cloned from human motor cortex. *J Neurosci* **14**, 5559-213 61 Arriza, J. L. et al. Functional comparisons of three glutamate transporter subtypes

214 cloned from human motor cortex. J Neurosci 14, 5559-5569 (1994).

215 62 Wang, H., Rascoe, A. M., Holley, D. C., Gouaux, E. & 714 cloned from human motor cortex. J Neuroscr 14, 5359-5569 (1534).
715 62 Wang, H., Rascoe, A. M., Holley, D. C., Gouaux, E. & Kavar
716 doi:10.1371/journal.pone.0070947 (2013).
717 doi:10.1371/journal.pone.0070947 (2013 716 dicarboxylate selectivity in an insect glutamate transporter homolog. *PloS one* 8, e70947,
doi:10.1371/journal.pone.0070947 (2013). 717 doi:10.1371/journal.pone.0070947 (2013). 717 doi:10.1371/journal.pone.0070947 (2013).

63

- interactions in a neuronal glutamate transporter. *J Gen Physiol* 129, 527-539,

720 doi:10.1085/jgp.200609707 (2007).

721 64 Fu, X. *et al.* Cysteine Disulfides (Cys-ss-X) as Sensitive Plasma Biomarkers of Oxidative

722 720 doi:10.1085/jgp.200609707 (2007).
721 64 Fu, X. et al. Cysteine Disulfides (Cys-ss-X) as Sensitive Plasma Biomarkers of Oxidative
722 Stress. Scientific reports 9, 115, doi:10.1038/s41598-018-35566-2 (2019).
723 65 Cif 721 64 Fu, X. *et al.* Cysteine Disulfides (Cy
722 Stress. Scientific reports 9, 115, doi:
723 65 Ciftci, D. *et al.* Linking function 1
724 transporter. Proceedings of the Na
725 America 118, doi:10.1073/pnas.202!
726 66 721 64 Fu, X. et al. Cysteme Bisamics (Cys-ss-X) as Sensitive Frasma Biomarkers of Oxidative

722 Stress. Scientific reports 9, 115, doi:10.1038/s41598-018-35566-2 (2019).

723 65 Ciftci, D. et al. Linking function to glob 3122 Stress. Scientific reports 9, 115, doi:10.1030/s41598-018-35366-2 (2015).

723 65 Ciftci, D. et al. Linking function to global and local dynamics in ar

1724 America 118, doi:10.1073/pnas.2025520118 (2021).

726 66 Hu
- 223 65 Ciftci, D. et al. Linking function to global and focal dynamics in an elevator-type

224 transporter. Proceedings of the National Academy of Sciences of the United States of

225 America 118, doi:10.1073/pnas.202552 The Manisporter. Proceedings of the National Academy of Sciences of the Onica States of

725 America 118, doi:10.1073/pnas.2025520118 (2021).

726 66 H.M., Ciftci, D., Wang, X., Blanchard, S. C. & Boudker, O. The high-ener
- 225 America 118, doi:10.1073/phas.2023520118 (2021).

726 66 Huysmans, G. H. M., Ciftci, D., Wang, X., Blanchard, Stransition state of the glutamate transporter homo

228 e105415, doi:10.15252/embj.2020105415 (2021).

729 727

Transition state of the glutamate transporter homologue GltPh. The EMBO journal 40,

e105415, doi:10.15252/embj.2020105415 (2021).

729 67 Grewer, C. & Rauen, T. Electrogenic glutamate transporters in the CNS: molecul The EMBO journal 40,

1728 e 105415, doi:10.15252/embj.2020105415 (2021).

729 67 Grewer, C. & Rauen, T. Electrogenic glutamate transporters in the CNS: molecular

1730 mechanism, pre-steady-state kinetics, and their impac
- 729 67 Grewer, C. & Rauen, T. Electrogenic glutamate

730 mechanism, pre-steady-state kinetics, and their ir

731 *Biol* **203**, 1-20, doi:10.1007/s00232-004-0731-6 (20

732 68 Watzke, N., Bamberg, E. & Grewer, C. Early int mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr

731 Biol 203, 1-20, doi:10.1007/s00232-004-0731-6 (2005).

732 68 Watzke, N., Bamberg, E. & Grewer, C. Early intermediates in the trans mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membri

731 Biol 203, 1-20, doi:10.1007/s00232-004-0731-6 (2005).

732 68 Watzke, N., Bamberg, E. & Grewer, C. Early intermediates in the tran 203, 1-20, doi:10.1007, 300232-004-0731-0 (2005).

732 68 Watzke, N., Bamberg, E. & Grewer, C. Early intermedia

733 neuronal excitatory amino acid carrier EAAC1.

735 69 Bergles, D. E., Tzingounis, A. V. & Jahr, C. E. Com
- 733

1733 neuronal excitatory amino acid carrier EAAC1. J Gen Physiol 117, 547-562,

1735 69 Bergles, D. E., Tzingounis, A. V. & Jahr, C. E. Comparison of coupled and uncoupled

1736 currents during glutamate uptake by GLT 133 foi:10.1085/jgp.117.6.547 (2001).

734 doi:10.1085/jgp.117.6.547 (2001).

735 69 Bergles, D. E., Tzingounis, A. V. & Jahr, C. E. Comparison of coupled and uncoupled

1736 currents during glutamate uptake by GLT-1 trans 735 69 Bergles, D. E., Tzingounis, A. V. 8
736 currents during glutamate uptake
737 doi:10.1523/JNEUROSCI.22-23-101
738 70 Morrison, E. A. & Henzler-Wildma
740 289, 6825-6836, doi:10.1074/jbc.N
- currents during glutamate uptake by GLT-1 transporters. J Neurosci 22, 10153-10162,

737 doi:10.1523/JNEUROSCI.22-23-10153.2002 (2002).

738 70 Morrison, E. A. & Henzler-Wildman, K. A. Transported substrate determines exch 236 currents during glutamate uptake by GLT-1 transporters. J Neurosci 22, 10153-10162,

737 doi:10.1523/JNEUROSCI.22-23-10153.2002 (2002).

738 70 Morrison, E. A. & Henzler-Wildman, K. A. Transported substrate determines 738 70 Morrison, E. A. & Henzler-Wildman, K. A. Transpo
739 rate in the multidrug resistance transporter EmrE
740 **289**, 6825-6836, doi:10.1074/jbc.M113.535328 (20
741 71 Suloway, C. *et al.* Automated molecular microscopy
-
- Transporter Emreta The Journal of biological chemistry

739 Trate in the multidrug resistance transporter Emreta The Journal of biological chemistry

740 289, 6825-6836, doi:10.1074/jbc.M113.535328 (2014).

741 Transported 740 **289**, 6825-6836, doi:10.1074/jbc.M113.535328 (2014).

741 71 Suloway, C. *et al.* Automated molecular microscopy: the new Leginon system. *Journal of* structural biology 151, 41-60, doi:10.1016/j.jsb.2005.03.010 (200 289, 6825-6836, doi:10.1074) Joc.M113.535328 (2014).

741 71 Suloway, C. et al. Automated molecular microscopy: the
 structural biology 151, 41-60, doi:10.1016/j.jsb.2005.03

743 72 Zheng, S. Q. et al. MotionCor2: anisot 742 Suloway, C. et al. Automated molecular microscopy: the new Leginon system. Journal of

72 Structural biology 151, 41-60, doi:10.1016/j.jsb.2005.03.010 (2005).

743 72 Zheng, S. Q. et al. MotionCor2: anisotropic correct
- 2742 structural biology 151, 41-60, doi:10.1016/j.jsb.2005.03.010 (2005).

743 72 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-

improved cryo-electron microscopy. *Nature methods*

745 doi:10.1038/nmet 743 72 Zheng, S. Q. et al. Motioncor2: anisotropic correction of beam-induced motion for

744 improved cryo-electron microscopy. Nature methods 14, 331-332,

745 73 Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate de miproved cryo-electron microscopy. Matare methods 14, 331-332,

745 doi:10.1038/nmeth.4193 (2017).

746 73 Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from

relectron micrographs. *Journal of* 746 73 Rohou, A. & Grigorieff, N. CTF
747 electron micrographs. Jour
748 doi:10.1016/j.jsb.2015.08.008 (20
749 74 Zivanov, J. *et al.* New tools
750 determination in RELION-3. *eLife*
751 75 Punjani, A., Rubinstein, J. L.,
-
- electron micrographs. Journal of structural biology 192, 216-221,

748 doi:10.1016/j.jsb.2015.08.008 (2015).

749 74 Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure

750 determination in RELION 2148 doi:10.1016/j.jsb.2015.08.008 (2015).

749 74 Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure

determination in RELION-3. *eLife* 7, doi:10.7554/eLife.42166 (2018).

751 75 Punjani, A., 749 74 Zivanov, J. *et al.* New tools for
750 determination in RELION-3. *eLife* 7, do
751 75 Punjani, A., Rubinstein, J. L., Fleet, D
752 rapid unsupervised cryo-EM structure
753 doi:10.1038/nmeth.4169 (2017).
754 76 Punj 2749 74 Zivanov, 3. et al. New tools for automated ingiriesolation cryo-EM structure

2750 determination in RELION-3. *eLife* 7, doi:10.7554/eLife.42166 (2018).

2751 75 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Bruba
- 750 determination in RELION 3. eLife 7, doi:10.7354/eLife.42166 (2016).
751 75 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSP
752 rapid unsupervised cryo-EM structure determination. Nature me
753 doi 752 rapid unsupervised cryo-EM structure determination. Nature methods 14, 290-296,

1753 doi:10.1038/nmeth.4169 (2017).

754 76 Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization

1755 i 752 rapid unsupervised cryo-EM structure determination. Nature methods 14, 250-256,

1753 doi:10.1038/nmeth.4169 (2017).

754 76 Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization

1755 i 754 76 Punjani, A., Zhang, H. & Fleet, I

755 improves single-particle cryo-El

756 doi:10.1038/s41592-020-00990-8

757 77 Asarnow, D., Palovcak, E.

758 doi:<u>https://doi.org/10.5281/zeno</u>

759 78 Goddard, T. D. et al. UCS 755 improves single-particle cryo-EM reconstruction. Nature methods 17, 1214-1221,

756 doi:10.1038/s41592-020-00990-8 (2020).

757 77 Asarnow, D., Palovcak, E. & Cheng, Y. UCSF pyem v0.5. Zenodo.

758 doi:https://doi.org/

757 77 Asarnow, D., Palovcak, E. & C

758 doi:<u>https://doi.org/10.5281/zenodo.3576</u>

759 78 Goddard, T. D. *et al.* UCSF ChimeraX: M.

760 analysis. *Protein Sci* **27**, 14-25, doi:10.100.

2755 improves single-particle cryo-EM reconstruction. Nature methods 17, 1214-1221,

756 doi:10.1038/s41592-020-00990-8 (2020).

757 77 Asarnow, D., Palovcak, E. & Cheng, Y. UCSF pyem v0.5. Zenodo.

758 doi:<u>https://doi.o</u> 2758 doi:https://doi.org/10.5281/zenodo.3576630 (2019).

759 78 Goddard, T. D. *et al.* UCSF ChimeraX: Meeting modern challenges in visualization and

2760 analysis. *Protein Sci* 27, 14-25, doi:10.1002/pro.3235 (2018). 759 78 Goddard, T. D. *et al.* UCSF ChimeraX: Meeting mode
analysis. *Protein Sci* 27, 14-25, doi:10.1002/pro.3235 (759 78 Goddard, T. D. et al. 0051 Chimerax: Meeting modern challenges in visualization and
analysis. Protein Sci 27, 14-25, doi:10.1002/pro.3235 (2018). analysis. Protein Sci 27, 14-25, doi:10.1002/pro.3235 (2018).

79

Acta crystallographica. Section D, Biological crystallography 66, 486-501,

163 doi:10.1107/S0907444910007493 (2010).

764 80 Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular

1765 structu 762 Acta crystallographica. Section D, Biological crystallography 66, 466-501,

763 doi:10.1107/S0907444910007493 (2010).

764 80 Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for macromolecular

struc 764 80 Adams, P. D. *et al*. PHENIX: a comprehens
765 structure solution. *Acta crystallographica.*
766 221, doi:10.1107/S0907444909052925 (20
767 764 80 Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular
765 structure solution. Acta crystallographica. Section D, Biological crystallography 66, 213-
767
767 765 structure solution. Acta crystallographica. Section D, Biological crystallography 66, 213-
766 221, doi:10.1107/S0907444909052925 (2010).
767

767
767
Song