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Epigenomic markers can identify tumor subtypes, but few platforms can accommodate formalin-fixed paraffin-embedded (FFPE)
tumor tissue. We tested different amounts of bisulfite-converted (bs) DNA from six FFPE ovarian carcinomas (OC) of serous,
endometrioid, and clear cell histologies and two HapMap constitutional genomes to evaluate the performance of the GoldenGate
methylation assay. Methylation status at each 1,505 CpG site was expressed as 3-values. Comparing 400 ng versus 250 ng bsDNA,
reproducibility of the assay ranged from Spearman r* = 0.41 to 0.90, indicating that 3-values obtained with a lower DNA amount
did not always correlate well with the higher amount. Average methylation for the six samples was higher using 250 ng (f3-value =
0.45, SD = 0.29) than with 400 ng (B-value = 0.36, SD = 0.32). Reproducibility between duplicate HapMap samples (r* = 0.76 to
0.92) was also variable. Using 400 ng input bsDNA, THBS2 and ERG were differentially methylated across all histologic types and
between endometrioid and clear cell types at <0.1% false discovery rate. Methylation did not always correlate with gene expression
(r* = —0.70 to 0.15). We found that lower bsDNA overestimates methylation, and, using higher bsDNA amounts, we confirmed a
previous report of higher methylation of THBS2 in clear cell OC, which could provide new insight into biological pathways that
distinguish OC histological types.

1. Introduction

Epigenetics is defined as heritable changes in gene expression
that are not accompanied by changes in the DNA sequence
itself [1]. These changes are critical for key eukaryotic pro-
cesses of development and differentiation and may help to
explain the mechanism by which one tissue is distinguished
from another developmentally [2]. Physiologically, these pro-
cesses include control of gene expression [1], X chromosomal
inactivation [3], maintenance of chromatin structure [4], and
genomic imprinting [5].

The best understood example of epigenetic modifica-
tion is DNA methylation, which is well-associated with

transcriptional repression [1]. DNA methylation occurs on
the C5 position of cytosines that precede guanines (CpG
dinucleotides) and at non-CpG cytosines in plants and
embryonic stem cells in mammals [6, 7]. CpG dinucleotides
are unequally distributed across the human genome and can
exist as CpG islands (CGIs), defined as sequences approx-
imately 1kb in length with an elevated G + C content of
>50% and observed frequency >0.60 [8]. While most CpG-
rich repetitive DNA sequences and heterochromatin are nor-
mally methylated [9], CGIs within the 5’ promoter regions
of genes are normally unmethylated, allowing active gene
transcription. Pathologically, aberrant silencing or expression
leads to diseases such as cancer [1]. It has been shown that
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differentially methylated regions that are associated with nor-
mal tissue differentiation overlap considerably with regions
where methylation changes occur in cancers [10], supporting
the “epigenetic progenitor model of cancer;” which states that
methylation changes that drive normal cell development and
differentiation are the main mechanism by which epigenetic
changes drive cancer [10-12].

Carcinomas classified as ovarian are the fourth most com-
mon among female cancers [13], and one of the most complex
of all human malignancies [14]. Five major histologic types
exist (high-grade serous, endometrioid, clear cell, mucinous,
and low-grade serous) [15]. Efforts to understand these car-
cinomas have focused on clinical and pathological obser-
vations [16] and, more recently, on molecular mechanisms
of tumor development [17-19]. Most of our knowledge of
the methylation in ovarian tumors is based on studies that
predate genome-wide approaches. Methylated loci in candi-
date genes have been evaluated, but studies did not always
stratify by histology (reviewed in [20]). Among the most-
studied high-grade serous ovarian carcinomas, methylation
of BRCALI is a consistent finding [21-26]: 10-18% of women
show gene silencing due to promoter methylation, whereas
BRCA2 promoter methylation is rare [21, 22, 27-29]. DNA
methylation at specific loci in ovarian cancers, as in other
cancers, is nonrandom, tumor-specific, and reproducibly
measured [30].

High-throughput technologic advances permit the simul-
taneous evaluation of thousands of CpG loci across the
human genome, but few platforms exist that accommodate
archival formalin-fixed paraffin-embedded (FFPE) tumor
tissue. The Illumina GoldenGate Cancer Panel I methyla-
tion assay targets 1,505 CpG sites across 808 growth- and
development-related genes known to be differentially meth-
ylated in various carcinomas and has been tested for appli-
cation in FFPE samples [31-34]. Concern with the assay
performance using the manufacturer’s minimum input DNA,
however, motivated the current investigation to evaluate assay
reproducibility using different quantities of input DNA from
six FFPE primary ovarian carcinomas of high-grade serous,
endometrioid, and clear cell histologies and two constitu-
tional genomes from the HapMap Project [35]. A secondary
objective was to identify and confirm previously reported
ovarian histology-specific methylation markers [36].

2. Methods

2.1. Patients. Patients were sampled from an ongoing study
of ovarian histological types comprising approximately 1,000
women with ovarian carcinomas (300 endometrioid, 300
clear cell, 300 mucinous, and 100 high-grade serous).
Women were identified from the Alberta Cancer Registry,
a population-based registry that records and maintains data
on all new cancer cases and cancer deaths occurring in the
province of Alberta, Canada, and for whom we are collecting
detailed pathologic assessment, tumor tissue, and clinical
data from medical chart abstraction. In 2010, we retrieved
hematoxylin and eosin-stained slides and corresponding
FFPE tumor blocks for eight patients (four high-grade serous,
two endometrioid, and two clear cell ovarian carcinomas)
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diagnosed with primary incident ovarian carcinoma in
2005. Two patients with high-grade serous carcinoma were
excluded: one due to block unavailability and the other from
insufficient extracted tumor DNA at the time of assay. A
diagnostic gynecological pathologist (MK) reviewed slides,
confirmed histology and identified malignant regions cor-
responding to >70% tumor cell nuclei. The protocol was
approved by the University of Calgary Conjoint Health
Research Ethics Board.

2.2. DNA Extraction, Bisulfite Conversion, and bsDNA Quan-
titation. Sections of 10 ym thickness were cut from each of
the six FFPE tumor blocks to achieve sufficient input DNA
for comparing the performance of the Illumina GoldenGate
Cancer Panel I methylation assay at two different DNA
amounts: 250 ng sodium bisulfite-converted (bs) DNA (Illu-
mina manufacturer’s minimum recommendation) [31-33]
and 400 ng bsDNA. FFPE sections were treated with xylene
to remove the paraffin, followed by DNA extraction using
the DNeasy Blood and Tissue kit (Qiagen, Germantown,
Maryland, USA) according to the manufacturer’s instruction.
DNA concentration was quantitated using the Biophotome-
ter (Eppendorf, Westbury, NY, USA). Each 10 um section
produced ~1 ug extracted DNA from each patient. In order
to obtain sufficient quantities of bsDNA for the Illumina
GoldenGate methylation assay, six to eight reactions of 1ug
DNA were subjected to bisulfite treatment using the EZ
DNA Methylation-Gold kit (Zymo Research, Orange, CA,
USA) according to the manufacturer’s instruction. Bisulfite-
converted DNA was quantitated using the Quant-iT Oli-
Green ssDNA kit (Invitrogen, Paisley, UK) following the
manufacturer’s guidelines. According to this protocol, ~2 ug
extracted DNA per patient produced 100-200 ng bsDNA. All
reagents were recommended by Illumina, Inc., for FFPE-
extracted DNA to achieve robust results [32].

2.3. Quality Control. Duplicate samples for each of two labo-
ratory controls were plated on the same chip using the manu-
facturer recommended amount of 250 ng bsDNA to evaluate
the reproducibility of the assay. We used a blood-based source
of DNA from two unrelated individuals, NA10851 male and
NA10859 female of Northern or Western European ances-
try obtained from the Centre d’Etude du Polymorphisme
Humain (CEPH) population in the HapMap project (Coriell,
Camden, NJ, USA), according to a previously published
protocol [33]. We hypothesized that 250 ng of high molecular
weight DNA obtained from lymphocytes would be more
likely to perform well on the GoldenGate methylation assay
than the same amount of DNA from less pure FFPE tissue.
Bisulfite conversion of DNA and bsDNA quantitation was
performed at The Centre for Applied Genomics, The Hospital
for Sick Children, Toronto, Canada.

2.4. Illumina GoldenGate Cancer Panel 1 Methylation Assay.
DNA methylation was evaluated using the Illumina Golden-
Gate Cancer Panel I Methylation bead array at The Centre
for Applied Genomics at the Hospital for Sick Children,
Toronto, Canada, and results interpreted with GenomeStudio
software [37, 38]. Briefly, bisulfite-treated, biotinylated DNA
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was immobilized on an array matrix of bead-based probe
sequences where each bead is coated with universal probes
(1,505 different bead types or CpG sites) and represented,
on average, 30 times for increased accuracy. Pooled query
oligonucleotides wee annealed to the DNA under a controlled
hybridization program, and then washed to remove excess or
mishybridized oligonucleotides. Hybridized oligonucleotides
were then extended and ligated to generate amplifiable
templates, followed by PCR using fluorescently labeled uni-
versal primers. The methylation status at each CpG site was
determined by calculating f3, which is defined as the ratio of
the fluorescent signal from the methylated allele to the sum of
the fluorescent signals of both methylated and unmethylated
alleles [33, 39] and ranged from 0 in the case of completely
unmethylated sites to 1 in completely methylated sites.

Background normalization was performed using Illu-
mina’s software to minimize the amount of variation in back-
ground signals. The background value is derived by averaging
the signals of built-in negative control bead types. Outliers
were removed using the median absolute deviation method.
The built-in negative controls were designed to be ther-
modynamically equivalent to the regular probes but lacked
a specific target in the transcriptome. Negative controls
allowed for estimating the expected signal level in the absence
of hybridization to a specific target. The negative controls
represented unexpressed targets, half of which were expected
to be negative. The average signal of the negative controls was
subtracted from the probe signals.

2.5. The Cancer Genome Atlas (TCGA). We used publicly
available data from 543 serous ovarian carcinomas from
TCGA [21] as an independent dataset to compare methyla-
tion levels with those from the serous carcinomas evaluated
in the current study (only serous ovarian carcinomas were
evaluated in TCGA). We also used TCGA data to evaluate
Spearman correlation coefficients between tumor methyla-
tion levels and gene expression to provide information on
functional associations. Methylation in TCGA was evalu-
ated using the Illumina Infinium Human DNA Methylation
27 chip assayed at Johns Hopkins/University of Southern
California and expressed as f-values. Gene expression was
evaluated using the Agilent 244 K Custom Gene Expression
G4502A_07 assayed at the University of North Carolina and
expressed as fold change between tumor and patient-matched
normal tissue (e.g., fallopian tube) on the log2 scale.

2.6. Statistical Analysis. To evaluate reproducibility of the
assay, Spearman correlation coefficients were used to com-
pare 3-values from 250 ng versus 400 ng input bsDNA for (i)
each patient sample separately and (ii) for patient group data.
We also compared reproducibility between replicate samples
using 250 ng input bsDNA for the CEPH controls. To eval-
uate validity, we examined gender-specific CpG sites among
CEPH male and female controls using 250 ng input bsDNA
at housekeeping genes from the X chromosome represented
on the GoldenGate methylation assay (e.g., EFNBI, ELKI,
EMRI, G6PD, GPC3, and GLA). Methylation of these genes
is expected to show gene dosage between males and females
owing to gene silencing on one of the two X chromosomes

in female somatic cells that compensates for the single X
chromosome among males [40]. Therefore, we expected to
see no or little methylation at these sites among males (f3-
values = 0) and hemimethylation among females (f-values =
0.5) as previously reported [33]. Spearman correlation coef-
ficients were used to compare 3-values with gene expression
in TCGA samples. Statistical tests were two-sided and were
implemented with SAS (SAS Institute, NC). Graphs were
produced using Stata (Stata Corporation, TX).

Using the 400 ng input bsDNA, we assessed differences
in methylation across the three carcinoma types adjusted for
multiple comparisons by controlling the False Discovery Rate
(FDR) [41]. FDR is based on a moderated t-test. Under the
null hypothesis of no difference between the two groups, the
group labels are interchangeable, and a null distribution of
the moderated test statistic can be generated, using 1,000
permutations of the group labels. FDR is calculated based on
the null distribution. Methylation differences with FDR below
a specified threshold such as 1% ensured that no more than
1% of methyl-cytosine calls were false positives. We evaluated
the significance of genes differentially methylated across all
three ovarian carcinoma types (multiclass procedure), and
also for three pair-wise tests comparing serous versus clear
cell types, serous versus endometrioid types, and clear cell
versus endometrioid types. Prior to analysis, we selected the
probe with the maximum f-value for each of the 808 unique
genes using all six carcinomas and tested the methylation
status at the gene level. In a secondary approach, we also
tested all 1,505 probes.

3. Results

3.1 Insufficient Bisulfite DNA Overestimates Methylation Lev-
els. Patients with high-grade serous tumors had FIGO (Inter-
national Federation of Gynecology and Obstetrics) stage clas-
sification IIIC, whereas the two patients with endometrioid
tumors had FIGO stages IC and IIB. Two patients with clear
cell tumors also had FIGO stages IC and IIB. Spearman cor-
relation coefficients (%) of Illumina background-normalized
data comparing 400 ng versus 250 ng bsDNA showed a range
of ¥ of 0.41-0.90 for patient data (Figures 1(a)-1(f)), indicat-
ing that the findings with a lower amount of DNA did not
always correlate well with the higher amount of DNA. Group
data showed improved correlation of r* =0.90 (Figure 1(g)).
Indeed, the average methylation across 1,505 CpG loci
among the six samples was higher using 250 ng bsDNA
(average f-value = 0.45, standard deviation = 0.29) than
400 ng bsDNA (average f3-value = 0.36, standard deviation =
0.32), suggesting insufficient bsDNA leads to overestimation
of methylation. Furthermore, because the reproducibility
between duplicate HapMap samples using 250 ng bsDNA was
r* = 0.76 for the CEPH male (Figure 1(h)) and r* = 0.92 for
the CEPH female (Figure 1(i)), we infer that the lower amount
of 250 ng can bias methylation results even with non-FFPE
sources of DNA. In support of this deduction, we observed
that methylation of X chromosome loci was close to zero
for one replicate sample of the CEPH male, as expected, but
higher for the other CEPH male replicate (Table 1). -values
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FIGURE 1: Scatter plots of 3-values and Spearman correlation coefficients (). (a) to (f), patient data comparing 250 ng versus 400 ng bsDNA
for high-grade serous ((a) and (b)), endometrioid ((c) and (d)), and clear cell ((e) and (f)) carcinomas; (g), averaged group data comparing
250 ng versus 400 ng bsDNA; (h) to (i), reproducibility plots of 250 ng bsDNA for a CEPH male (h) and a CEPH female (i).

were closer to one than to hemimethylation for several CpG
loci for the female replicate samples.

3.2. Endometrioid Ovarian Carcinomas Exhibit Fewer Methy-
lated Loci. Figure 2 shows the extent of methylation at CpG
loci on autosomal chromosomes in the three different ovarian
carcinoma types by patient using the higher 400 ng bsDNA
amount. Although the number of samples is small, very
low levels (B-value < 0.1) of methylated loci were seen in
approximately 50% of the endometrioid carcinoma types
compared to 30% to 40% of the serous and clear cell types.

3.3. Differentially Methylated Loci Distinguish Ovarian Carci-
noma Histological Types. The multiclass procedure identified
two genes that were differentially methylated across all three
carcinoma types at the 1% FDR level: THBS2 (FDR < 0.1%)

and ERG (FDR < 0.1%). Both genes showed higher methy-
lation at CpG sites among clear cell carcinomas (Table 2).
The remaining genes had FDR values larger than 38%. Next,
we conducted pair-wise tests between ovarian carcinoma
types. Comparing clear cell and endometrioid types, THBS2,
ERG, MSTIR, ISL1, LY6GGE, and NRGI were differentially
methylated at 1% FDR (Table 2). Comparing serous and clear
cell types, only ERG was differentially methylated at 1% FDR.
No gene was differentially methylated at 1% FDR between
serous and endometrioid types.

3.4. Gene Expression Does Not Always Correlate with CGI
Promoter Methylation. We compared the median 3-values of
the aforementioned genes for the two serous ovarian carcino-
mas in the current investigation (Table 2) with those obtained
from 543 serous ovarian carcinomas in the TCGA sample
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TABLE 1: Average [3-values for CEPH control replicates at 6 housekeeping X-chromosome genes.
Target CpG (Gene_Probe)  CpG locus ID NA10851 replicate1 ~ NA10851 replicate2 ~ NA10859 replicate1 ~ NA10859 replicate 2
Male Male Female Female
EFNBI1_E69_F cg09459058 0.0126 0.2023 0.7337 0.6362
EFNBI_P136_R cgl4717445 0 0.0464 0.7696 0.7287
EFNBI_P17_F €g22151131 0.0347 0.4068 0.9331 0.9314
ELK1_E156_F cg00983071 0 0.3000 0.6910 0.6078
ELK1_E53_F cgl2482901 0 0.2093 0.8778 0.8242
ELK1_P195_R cgl3072663 0.0609 0.1694 0.8192 0.7816
ELK1_P569_R cgl1111083 0.0635 0.2362 0.8847 0.8524
FMRI_P62_R €g26857803 0 0 0.8810 0.8428
G6PD_E190_F cgl0661350 0 0.0003 0.6423 0.6107
G6PD_P1065_R €g26368202 0 0 0.9371 0.9436
G6PD_P196_F €g27592930 0.0674 0.1537 0.6010 0.6159
G6PD_P597_F €g26178557 0 0.7808 0.9157 0.9148
GLA_E98_R cgl5481221 0.0667 0.0802 0.7609 0.6608
GLA_P112_F cg20747453 0 0 0.9764 0.9668
GLA_P343_R cg24484149 0 0.0134 0.3123 0.2510
GPC3_E72_F €g27496708 0 0 0.6807 0.7110
GPC3_P235_R cg07504028 0.0240 0.0475 0.8579 0.8565

¥Probe annotation according to the Illumina GoldenGate Cancer Panel I methylation assay; all loci are located within CpG islands.
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FIGURE 2: Stack column graph showing the extent of methylation in
the three ovarian carcinoma types using 1,421 autosome CpG loci.
The extent of methylation in each ovarian carcinoma is represented
by the different percentages of -value categories as shown in the
legend.

(Table 3). Generally, both groups showed low or negligible
B-values for ERG probes, with values varying, on average,
by a two-fold factor for the other genes. In making this
comparison, however, we note that different CpG coordinates
for each gene were represented on the two assays. In analyses
that compared methylation and gene expression values using
samples from the TCGA, only the probes targeting CpG loci

in MSTIR showed strong inverse Spearman correlation coef-
ficients (r = —0.70 for position 49,915,857 bp and r = —-0.65
for position 49,916,155 bp, both P < 0.0001) (Figure 3(c)).
There were weak correlations between methylation and gene
expression for the remaining genes/probes.

In the secondary approach, which evaluated all 1,505
CpG loci at <0.1% FDR, THBS2_P605_R, ERG_E28_F, EYA4_
E277_F, and NPY_P295_F probes were differentially methy-
lated across all three carcinoma types, THBS2_P605_R
and PTGS2_P524_R were differentially methylated between
endometrioid and clear cell types, IL11_E232_F was differ-
entially methylated between serous and endometrioid types,
and IGF2AS_P203_F and ERG_E28_F were differentially
methylated between serous and clear cell types (data not
shown). No other probes were differentially methylated at
<5% FDR.

4. Discussion

This study used gene-level and locus-level approaches to
investigate associations between methylation and ovarian
carcinoma types. Both approaches identified THBS2 (throm-
bospondin 2) and ERG (erythroblastosis virus E26 oncogene
homolog) genes to be significantly differentially methylated
across all three ovarian carcinoma histological types and,
specifically, between endometrioid and clear cell carcinomas
and suggested that different biological pathways are impor-
tant in the natural history of the histological types. The
endometrioid and clear cell types comprise approximately
10% each of the epithelial ovarian carcinomas [15]. Morpho-
logically, the cell types are quite different [42] and show
differential expression of certain biomarkers including hor-
mone receptors and HNFI1B [43]. Importantly, expression of
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FIGURE 3: Scatter plots of B-values versus gene expression (log2 ratio) and Spearman correlation coefficients (r*) from 543 serous ovarian
carcinomas from The Cancer Genome Atlas. Two CpG loci were evaluated per gene. (a) and (b), ERG; (¢) and (d), ISLI; (e) and (f), MSTIR;
(g) and (h), NRGI; (i) and (j), THSB2. 3-values were not available for LY6G6E.

HNFIB in ovarian clear cell, compared to high-grade serous,
histological types was associated with differentially methy-
lated promoter regions [44]. Endometriosis may be the cell
of origin of the endometrioid and clear cell cancers [45, 46],
yet little is known of the mechanism by which these two
cancer types are derived from the same precursor lesion.
There is compelling evidence to support the role of epigenetic
alterations in their pathogenesis [47-52], and differential
methylation of THBS2 and ERG could provide a new insight
into biological pathways.

The finding with THBS2 is particularly noteworthy when
interpreted within the context of the study by Houshdaran
et al. [36]. That study evaluated methylation between fifteen
serous, nine endometrioid, and three clear cell ovarian car-
cinomas using the same Illumina GoldenGate methylation
platform. 3-values at the THBS2_P605_R probe across histo-
logical types in our investigation were remarkably similar to
those reported by Houshdaran et al. [36]. Identification of the
same differentially methylated loci in the current study, there-
fore, can be considered a replication of earlier findings despite
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TaBLE 3: Median f-values at selected genes® in 543 serous ovarian carcinomas from The Cancer Genome Atlas.

Target geneb Chr  Coordinate,bp ~ CpGlocusID  Distance to TSS, bp°  Location in promoter CGI* pB-value  (Min., max.)
ERG 21 38955504 cg03127334 16 Yes 0.13 0.02, 0.88
ERG 21 38955762 cgl7274064 27 No 0.11 0.02,0.70
ISL1 5 50714208 cg21410991 81 Yes 0.24 0.02,0.91
ISL1 5 50715118 €g26896762 9 Yes 0.07 0.02, 0.76
LY6G6E® 6 — — — — — —
MSTIR 3 49915857 cg08687163 21 Yes 0.74 0.20, 0.97
MSTIR 3 49916155 cg03332271 8 Yes 0.20 0.02, 0.91
NRG1 8 32524969 cgl9162158 32 Yes 0.01 0.003, 0.72
NRGI1 8 32525393 cgl7457560 9 Yes 0.04 0.01, 0.76
THBS2 6 169395886 cg21652958 17 Yes 0.07 0.02, 0.81
THBS2 6 169396617 cg21732383 55 No 0.14 0.02,0.93

Genes found to be differentially methylated in the current study.

® Annotation according to the Illumina Infinium Human DNA Methylation 27 assay.

“Distance in bp of CpG locus to transcription start site.
4CpG Island.
¢ B-values not available in Illumina Infinium Human Methylation 27 K chip.

the small number of clear cell tumors evaluated in both
studies. THBS?2 is located on 6p27 and encodes a member
of the thrombospondin family. Thrombospondin 2 mediates
cell-to-cell and cell-to-matrix interactions and may function
as either a potent inhibitor [53, 54] or stimulator [55, 56]
of tumor growth and angiogenesis in ovarian carcinoma,
although no studies evaluated thrombospondin 2 according
to ovarian histological type. Interestingly, the gene product
of related THBSI is expressed in ovarian cancer cell lines and
ascites fluid of patients [57].

Unlike the current investigation, ERG was not differen-
tially methylated in the study by Houshdaran et al. [36]. ERG,
located on 21q22.3, encodes a member of the erythroblast
transformation-specific (ETS) family of transcription factors;
members of this family are key regulators of embryonic devel-
opment, cellular proliferation, differentiation, angiogenesis,
inflammation, and apoptosis. ERG is perhaps best known for
the gene fusion product, TMPSSR2-ERG, which is common
in approximately 50% of prostate cancers [58].

Although macrophage stimulating 1 receptor (MSTIR)
was not differentially methylated across histological types in
the study by Houshdaran et al. [36], that study did report
that three of eight CpG loci in MSTIR were strongly inversely
correlated (r*: —0.88 to —0.96) with gene expression in ovar-
ian cancer cell lines. We found similar inverse correlations
(r*: —0.65 to —0.70) with gene expression in the TCGA data.
MSTIR islocated on 3p21.3 and encodes a cell surface receptor
for macrophage-stimulating protein with tyrosine kinase
activity.

Other genes evaluated in the current study did not show
an inverse relation between CGI methylation and gene
expression. This is not surprising. Although DNA methyla-
tion in 5’ promoter regions causes transcriptional repression
[1], mammalian tissue and cell type-specific methylation are
present in a small percentage of 5 CGI promoters, and most
CGIs are normally unmethylated in somatic cells [6]. This

plasticity permits regulation of gene expression by transcrip-
tion factors, except when CGI promoter methylation is asso-
ciated with maintenance of long-term silencing, for example,
X-chromosome inactivation. In contrast, data from cancer
cells suggest that gene silencing and transcriptional activity
by mechanisms other than CGI promoter methylation may
correlate inversely with gene expression independent of CGI
promoter methylation [10, 59-63]. Thus, more thorough
investigation of associations between cytosine methylation
and gene expression will require evaluation of nonpromoter
CGI regions and novel transcripts and alternate slice forms,
which can be achieved with next generation sequencing
methods [64].

We found that the minimal amount of 250 ng bsDNA
recommended by the manufacturer [31-33] resulted in higher
overall f3-values compared to 400 ng bsDNA. The effect
appeared to overestimate the methylation of DNA cytosines,
although the variability (standard deviation) was similar
between the amounts. Overestimation of methylation levels
will not bias relative risk associations in epidemiologic studies
if methylation levels are overestimated to the same extent
across all probes and for each sample under study. How-
ever, this was not true in the current investigation because
evaluation of duplicate samples of the HapMap controls at
X-chromosome housekeeping genes showed concordance of
B-values for some probes but not for others. It is unlikely
that this differential outcome is the result of laboratory error
during sample preparation. Although discontinued as a plat-
form in March 2010, the assay remains available to researchers
for custom design. We note that other Illumina methylation
platforms, such as the Infinium 27 K chip (also discontinued)
and the 450 K chip require a minimum of 500 ng bsDNA. The
Infinium protocols incorporate a whole-genome amplifica-
tion (WGA) step following bisulfite-conversion rather than
a PCR step used in the GoldenGate protocol. WGA DNA is
sensitive to the quality and purity of the DNA. Because of
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this, the Infinium protocols have been recently modified to
include a restoration step that elongates FFPE-derived DNA
to optimize the 450 K array analysis with this type of DNA.
We believe the findings from our evaluation of the existing
GoldenGate protocol will be useful to inform the protocols of
others who proceed with any methylation assays using FFPE-
derived DNA.

Limitations of this study include the small sample size
for each histology and the lack of an independent method
to validate methylation status of loci; thus, the findings for
methylated loci should be interpreted cautiously. Further,
the Illumina GoldenGate Cancer Panel I methylation array
lacked the increased coverage of the Illumina 450 K bead
chip; however, a limitation of all hybridization-based tech-
niques is the inaccessibility to measure methylation at repeti-
tive sequences, which encompass nearly half of the 28 million
CpG sites in the methylome and are a critical component
of epigenetic gene regulation [65, 66]. The strength of this
investigation is the replication of a previously reported dif-
ferentially methylated locus between endometrioid and clear
cell types. Although this does not prove validity, reproducible
findings provide credibility that an initial finding may not
be due to chance [67]. Our study, therefore, contributes to
the identification of novel methylated loci that may provide
new insight into biological pathways that distinguish their
development.

5. Conclusions

The reproducibility of the Illumina GoldenGate Cancer Panel
I methylation assay may be improved using input bsDNA
closer to the amounts recommended for the 450 K bead chip
(>400 ng bsDNA). Given the complexity and heterogeneity
of ovarian carcinomas, evaluating wide-spread epigenomic
events could aid to further clarify histological type het-
erogeneity, which would improve our understanding of the
natural history of the disease and identify potential targets
for improved treatment strategies.
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