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Introduction

The first case of Alzheimer’s disease (AD) was 
described more than 100 years ago, but the precise 
pathogenetic changes leading to the development 
of AD are still a matter of considerable controversy. 
Based on the age of onset and heredity, AD is classified 
into early-onset AD (EOAD), late-onset AD (LOAD) 
and familial AD. LOAD or sporadic AD is the most 
common form of AD, accounting for about 90 per cent 
of cases and usually occurring after the age of 65 yr1. 
Neurofibrillary tangles of phosphorylated tau protein 
and senile plaques composed of amyloid β (Aβ)-protein 

are the two characteristic pathological hallmarks of 
AD; however, there exists controversy in how well 
these correlate with AD phenotype as some AD brains 
on post-mortem examination reveal minimal plaques 
and tangles2.

The protein apolipoprotein E (ApoE) is the only 
well-established genetic risk factor for LOAD. The 
APOE gene consists of four exons and three introns, with 
a total of 3597 base pairs, and is mapped to chromosome 
19. ApoE is polymorphic with three major isoforms, 
ApoE2, ApoE3 and ApoE4. High frequency of the 
APOE4 allele is found in patients with AD than in the 
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general population3. ApoE4 is known to inhibit neurite 
outgrowth, disrupt neuronal cytoskeleton4, stimulate 
tau phosphorylation and cause neurodegeneration5. 
However, neither is the APOE4 variant present in 
all AD cases nor is it absolutely essential for AD 
pathogenesis6. Multiple rare mutations in the amyloid 
precursor protein gene (APP), PSEN1 gene and PSEN2 
gene cause early-onset AD7. However, a large case-
control study (3940 cases and 13,373 controls) reported 
that common variants in these genes were not likely to 
make strong contributions to susceptibility for LOAD8.

Recent efforts have been focussed on conducting 
genome-wide association studies (GWASs) to identify 
newer risk genes for LOAD. Multi-stage meta-analytic 
reports by different groups documented the association 
of single-nucleotide polymorphisms (SNPs) in 
10 genes with AD; these being ABCA7, bridging 
integrator 1 gene (BIN1), triggering receptor expressed 
on myeloid cells gene (TREM), CD33, clusterin gene 
(CLU), complement receptor 1 gene (CR1), ephrin 
type-A receptor 1 gene (EPHA1), CD2AP, membrane-
spanning 4-domains, subfamily A (MS4A) gene cluster 
and phosphatidylinositol binding clathrin assembly 
protein gene (PICALM)9-12.

In 2009, Lambert et al13 published an open letter 
of two-stage GWAS performed on AD subjects and 
controls. The three-city study identified two new 
susceptibility loci: CLU and CR1. They also detected 
evidence for the association of PICALM with AD13. A 
collaborative consortium from Europe and the USA 
[European AD Initiative 1 (EADI 1)] also performed a 
GWAS over 16,000 individuals with AD and controls. 
They identified two novel loci CLU and PICALM, 
significantly associated with AD. They also observed 
one more associated locus BIN114. In 2010, Seshadri 
et al15 performed a three-stage analysis of GWAS data 
to identify additional loci associated with LOAD. In 
their gene discovery phase, they concluded that BIN1 
showed association with AD in GWAS. They also 
confirmed the association of two reported loci; CLU 
and PICALM with LOAD15. Hollingworth et al10 
undertook a combined analysis of four independent 
genome-wide studies- GERAD1, TGEN1, ADNI 
and EADI1 - to identify new susceptibility loci of 
AD. Their data provided significant evidence for the 
association of ABCA7, MS4A gene cluster with AD at 
stage one. In stage two, they observed association of 
more suggestive loci; CD33 and EPHA1 with AD10. 
To identify newer susceptibility loci for AD, the AD 
Genetic Consortium (ADGC) group conducted a three-

staged association study on AD patients and provided 
compelling evidence for the association of MS4A4A, 
EPHA1 and CD33 with AD. They also replicated 
previous associations of CR1, CLU and PICALM with 
LOAD11. Advances in sequencing techniques of entire 
genomes identified rare variants in those patients, in 
whom linkage analysis cannot be done. TREM2 is one 
of the variants that increase the risk of AD12.

Fig. 1 gives a schematic representation of the 
multiple research groups who worked to find new 
susceptibility genes for LOAD and also the different 
loci which affect LOAD pathogenesis.

Alzheimer’s disease (AD) pathogenesis as the 
cumulative effect of multiple genetic risk factors

Large-scale GWASs have identified SNPs in ten 
genes: ABCA7, BIN1, TREM2, CD33, CLU, CR1, 
EPHA1, MS4A, CD2AP and PICALM which may 
participate in the pathogenesis of AD by several 
functional pathways that are affected9-12. These genes 
may be categorized on the bases of their involvement 
in cellular pathways:
(i) Immune response and inflammation: CR1, MS4A 

family, EPHA1, CD33, TREM9,10,12.
(ii) Lipid (cholesterol) metabolism: CLU and ABCA79,10.
(iii) Endocytosis and synaptic function: PICALM, BIN1, 

CD2AP and EPHA19,10.

It is hypothesized that these gene SNPs identified 
by GWAS influence their respective interconnected 
cellular processes to cause AD. The exact pathogenesis 
of AD is still unclear, and it is possible that not all of the 
above processes are deranged in each case of LOAD. 
Either of the three may dominate in or solely contribute 
to LOAD in individual patients. Further, the exact 
links between the pathways still need to be worked 
out. However, the common pathways through which 
these act are widely believed to be the amyloidogenic 
pathway and the tau hyper-phosphorylation pathway1.

Fig. 2 represents how the various genetic risk 
factors may be interconnected and contribute to 
LOAD risk by ultimately inducing amyloid and hyper-
phosphorylated tau protein accumulation.

Functional significance of new genetic loci associated 
with LOAD

Genes associated with lipid metabolism: CLU codes 
for the secretory hetero-dimeric 75-80 kDa CLU 
also known as apolipoprotein J16. This gene encodes 
a 2 kb mRNA which translates into a 449 amino 
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acid primary polypeptide chain17. CLU is a highly 
conserved chaperone protein that is found in the cell 
cytosol under some stress conditions18. It is expressed in 
most mammalian tissues19, and has been reported to be 
involved in neurodegeneration and hypoxic-ischaemic 
neuronal death20. Elevated level of CLU has been found 
in post-mortem AD brains and also in the brains of 
ApoE4 carriers21. CLU is involved in the regulation 

of Aβ. This has been demonstrated in guinea pig brain 
perfusion model where apolipoprotein J interacts with 
the soluble form of Aβ in a specific and reversible 
manner and forms complexes in the brain, facilitating the 
transport of soluble Aβ across the blood-brain barrier22. 
In transgenic mouse model (clu− and clu+), it has been 
seen that Aβ deposits in clu− mice are significantly 
reduced as compared to clu+ which indicates that CLU 
has a role in Aβ fibril formation and neurotoxicity23. 
Plasma CLU level was reported to be associated with 
rapid clinical progression in AD, suggesting its possible 
use as a biomarker of AD24. GWASs found a significant 
negative association [odds ratio (OR)=0.86] between an 
SNP within the CLU, rs11136000 and the risk of having 
AD14. This association was found in both APOE4 
carriers and non-carriers15.

ABCA7 is a member of the superfamily of ATP-
binding cassette (ABC) transporters, which transport 
various molecules across extra- and intra-cellular 
membranes. These transporters are divided into eight 
distinct subfamilies. ABCA7 is a member of the ABC1 
subfamily25. This gene codes for a membrane protein 
which is expressed in the myelolymphatic tissues, 
brain and trachea26. Analysis of isolated foetal human 
brain cells has shown that microglia express the highest 
level of ABCA7 mRNA27. This gene is also involved 
in AD pathogenesis28. It regulates the phagocytosis of 
apoptotic cell debris inside the brain. Protein products 
of these loci bind with APOA1 and contribute to 

Fig. 1. Schematic representation of multiple organizations who worked to find new genome-wide association study loci and how different 
loci are connected with each other. The gene loci found as a result of meta-analyses belong to three broad functional categories: immune 
response, synaptic function and cholesterol metabolism. GWAS, genome wide association studies; GERAD1, genetic and environmental risk 
for Alzheimer’s disease consortium 1; EADI1, European Alzheimer’s disease initiative 1; CHARGE, Cohorts for Heart and Aging research 
in genomic epidemiology; TGRI, Translational Genomics Research Institute; ADGC, Alzheimer’s disease genetic consortium; LOAD, late 
onset Alzheimer’s disease.

Fig. 2. Interconnected responsible pathways to cause amyloid and 
tau accumulation. Gene involved in AD pathogenesis can be broadly 
grouped into 3 categories; immune response (CR1, MS4A, TREM2, 
CD33, EPHA1), cholesterol metabolism (APOE, CLU, ABCA7), 
synaptic function (PICALM, CD2AP, BIN1). The cumulative effect 
of all these genes is manifested through the final common pathway 
of amyloid and tau cascade.
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the apolipoprotein-mediated phospholipid efflux 
mechanism in cells29.

In stage 1 meta-analysis of GERAD1, TGEN1, 
ADNI and EADI1, evidence was found for the positive 
association (OR=1.22) of SNP of ABCA7 (rs3764650) 
with AD. This has further been proven in stages 2 and 
3 meta-analysis10. Another SNP variant of ABCA7, i.e. 
rs3752246, was found to be associated with AD in stage 
2 meta-analysis (OR=1.17). However, association of 
rs3764650 with ABCA7 expression was not observed30.

Genes associated with inflammatory response: CD33 
is located on chromosome 19q13.3 in humans and 
codes for the 67kDa CD33 protein31. CD33 belongs 
to the sialic acid-binding immunoglobulin-like lectins 
(Siglecs) family32. It is expressed in microglial cells in 
the human brain33. The Siglecs family mediates cell-cell 
interaction through glycan recognition34. They also 
play an important role in the regulation of functions 
of innate and adaptive immune cell systems35. CD33 is 
expressed by haematopoietic and phagocytic cells and 
participates in adhesion processes of human primary 
immune cells36. It appears to inhibit the production of 
pro-inflammatory cytokines [such as interleukin-1β, 
tumour necrosis factor alpha (TNF-α)] by monocytes37. 
Being an inhibitory receptor in immune response, it 
also regulates cell growth and survival and also induces 
apoptosis38.

CD33 inhibits Aβ clearance in LOAD39. It has been 
seen that levels of CD33-positive microglial cells are 
increased in brains of AD patients, and play a direct role 
in the progression of AD. The CD33 SNP rs3865444, 
which confers protection against AD, has been seen to 
be associated with reductions in both CD33 expression 
and insoluble Aβ42 levels in AD brain33. Various SNPs 
of CD33 such as rs3826656 and rs3865444 are found 
to be associated with AD40.

CR1 found on chromosome 1q32 codes for the 
complement regulatory protein, CR1 or CD35 which 
is expressed widely on a number of blood cells41 and 
can also be found dissolved in the blood plasma42. CR1 
induces phagocytosis by forming a complex with C3b/
C4b. Extracellular domain of CR1 is composed of long 
homologous repeats (LHRs). Genetic duplications and 
deletions result in increased number of LHR regions, 
which result in the formation of four co-dominant 
alleles of CR1. Frequencies of the four alleles vary only 
slightly between populations43. The increased number 
of LHRs means that the larger alleles have additional 
C3b/C4b-binding sites44.

The classical complement pathway has been long 
known to play a protective role in AD by acceleration 
of clearance of the Aβ plaques. Aβ interacts with C1q 
of the classical complement pathway45. This results 
in the activation of the membrane attack complex 
comprising C3b/C4b, which results in activation of 
glial cells46. CR1 helps in this process by providing 
multiple C3b/C4b-binding sites47. Lambert et al13 
found an SNP variant of CR1, rs6656401 (OR=1.12) 
with a strong association with LOAD.

EPHA1 also known as eph is located on 
chromosome 7q34.1. The protein product belongs to the 
tyrosine kinase receptor family48 and the ephrin receptor 
subfamily. The ligand for the EphA receptor is ephrin-A, 
which is anchored to the cell membrane through a 
glycosylphosphatidylinositol linkage49. Eph receptors 
and ephrins are expressed in endothelial and epithelial 
cells50, and guide the migration of cells during embryonic 
development and also have a role in cytoskeletal 
organization of neuronal processes51. They play a role 
in synaptic development and plasticity52. Additional 
roles in apoptosis and inflammation exist53. AD patients 
with an allele of EPHA1 (A allele) having enhanced rate 
of cerebral metabolism for glucose in the right lateral 
occipitotemporal gyrus and inferior temporal gyrus may 
not have hippocampal atrophy54. Combined result of the 
meta-analysis of the GERAD consortia with the ADGC 
GWAS shows that the rs11767557 SNP of the EPHA1 
gene is negatively associated with AD (OR=0.90)10.

MS4A encodes several proteins including CD20. 
This gene family is further divided into at least 12 
subgroups from MS4A1 to MS4A1255. CD20 expressed 
by B-lymphocytes56 forms a hetero-tetrameric complex 
on the cell membrane that regulates Ca2+ influx 
downstream57. This regulation of calcium signalling may 
have an important role in neurodegeneration and AD 
pathogenesis58. Several members of this cluster (such 
as MS4A1, MS4A2 and MS4A4B) have an important 
role in immunity59. MS4A4B appears to have a role in 
Th1 development, CD8+ memory T-cell function and 
modulation of regulatory T-cell signalling60. MS4A2 
mediates interactions with IgE-bound antigens that lead to 
cellular responses such as the degranulation of mast cells61.

Meta-analysis data of GWAS by ADGC suggested 
two SNPs of the MS4A gene cluster: rs610932 and 
rs670139 to be associated with LOAD10. Another 
independent GWAS study on the Spanish population 
revealed the association of rs1562990 SNP of MS4A 
with AD62.
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TREM2 codes for a membrane glycoprotein, 
consisting of an extracellular immunoglobulin-like 
domain and a cytoplasmic tail that is involved in 
receptor signalling complex along with the DAP12 and 
TYRO binding proteins63. This protein functions in 
the immune response and may be involved in chronic 
inflammation64. In brain cells, TREM2 is primarily 
expressed on microglia65,66. Microglia stimulate the 
proliferation of CD4+ T-cells, as well as the secretion 
of TNF and CCL267. Microglia have phagocytic role 
on amyloid plaques68. In a study, reduced phagocytic 
activity was found in microglial cells to phagocytose β 
amyloid fragment of AD brain in TREM2 knockdown 
mice in comparison with mice expressing TREM269. 
A rare missense mutation (rs75932628) in the TREM2 
results in an R47H substitution which has been found 
to confer a significant risk of AD. This may be because 
of the inability of the brain to clear Aβ toxicity65.

Genes associated with endocytosis: PICALM codes for 
PICALM which can influence the risk of AD through 
modulation of APP processing via AP2-dependent 
clathrin-mediated endocytotic pathways, resulting 
in changes in Aβ level70. PICALM initiates clathrin 
polymerization at sites of coated pit formation71. It 
was seen in cell culture experiments that clathrin-
mediated endocytosis (CME) retrieved full length APP 
from the cell surface, thus promoting the intracellular 
accumulation of amyloid72. In the endosome, full length 
APP is cleaved in to Aβ by β-secretase (BACE) and 
this is released into the brain interstitial fluid. Increased 
number of endosomes formed by CME drives more 
APP into the cell73, resulting in an increase of Aβ 
production74. Synaptic vesicles limit the dispersion of 
neurotransmitter at the pre-synaptic plasma membrane. 
It was seen in live cell image of hippocampal neurons 
that synaptic vesicle containing VAMP2 on surface 
helped in diffusing neurotransmitters along the 
axonal membrane75. PICALM may also be involved 
in directing the trafficking of VAMP276. The SNP of 
PICALM which has been found to be most significantly 
protective against LOAD is rs3851179 (OR=0.86)14.

BIN1 codes for Myc box-dependent-interacting 
protein 1. It is a nucleo-cytoplasmic tumour suppressor 
adaptor protein77. Isoforms of this protein expressed 
in the central nervous system are involved in synaptic 
vesicle endocytosis78. The BIN1is identified as the most 
important genetic susceptibility locus in LOAD after 
APOE79. Higher BIN1 expression has been reported 
to be linked with later age at onset and shorter disease 
duration80. Although the mechanisms are still not fully 

understood, data suggest that BIN1 affects AD risk 
primarily by modulating tau pathology. BIN1 also affects 
other cellular functions including endocytosis/trafficking, 
inflammation, calcium homoeostasis and apoptosis79. 
Seshadri et al15 combined the data from CHARGE, 
TGEN, EADI1 and GERAD1 groups and analyzed by 
a three-stage sequential meta-analysis. They reported the 
association (OR=1.13) of the BIN1 SNP rs744373 with 
LOAD15. Another independent study- The Washington 
Heights-Inwood Columbia Aging Project and the Estudio 
Familiar de Influencia Genetica de Alzheimer study also 
showed positive associations of the BIN1 SNP rs7561528 
with LOAD in the ε4 carrier state81.

CD2AP codes for CD2-associated protein which 
is a scaffolding molecule that regulates the actin 
cytoskeleton82. It plays a role in receptor-mediated 
endocytosis. CD2AP contributes to APP metabolism 
and subsequent Aβ generation83. It regulates the 
encounter of APP and BACE1 in axonal and dendritic 
endosomes84. GERAD1, EADI1, deCODE and AD-IG 
GWAS datasets observed independent evidence for the 
association of CD2AP gene loci with AD (OR=1.11 for 
rs9349407 SNP)10.

Racial variation of Alzheimer’s disease susceptibility 
genes

Survival after the diagnosis of AD varies amongst 
different races, ranging from 3 to 9 years. African 
American and Latino AD patients have better survival 
than Caucasian patients and genetic background plays 
an important role in the progression of AD85. Most 
GWASs and replication studies of AD have been done 
in populations of European descent, and non-European 
genetic studies of new AD-susceptibility loci are 
limited. Studies that evaluated the association of CLU 
and CR1 with AD in Asian populations are limited86. 
Many AD-associated SNPs of CLU, PICALM and 
BIN1 were not necessarily identical in Caribbean 
Hispanic individuals compared with a European 
American data set81. Meta-analytic data showed 
that CLU, PICALM and CR1 were associated with 
LOAD in Caucasians subjects, but a study found that 
investigated SNPs of CR1, CLU and PICALM were not 
associated with AD in a Polish population87. A study 
found that in the Korean population, the PICALM is 
the only AD susceptibility loci in addition to APOE88. 
ADGC assembled multiple data sets for meta-analysis 
representing African American older subjects. The 
data showed another SNP (rs115550680) of ABCA7 
(OR=1.79) was associated with AD in comparison to 
European ancestry89.



140  INDIAN J MED RES, AUGUST 2018

Potential therapeutic implications of GWAS loci

Novel loci may exert their effects in a number of 
pathways such as oxidative balance, protein metabolism, 
cholesterol metabolism and synaptic function90. 
Genes with moderate to large effects on LOAD risk 
are valuable targets for therapeutic development. 
Neuroinflammation is both a cause and a consequence 
of AD and treatment with anti-inflammatory agents 
is likely to be successful if initiated before the onset 
of neurological symptoms91. Similarly, on the lipid 
metabolism front, the CLU protein may be targeted to 
reduce AD risk92. Genes associated with endocytosis 
and synaptic functions are BIN1, PICALM and CD2AP. 
Modulating these at the gene-expression level using 
siRNA or antisense techniques is a valid approach.

New developments

While the present review focuses on the most 
established gene loci involved in AD pathogenesis as 
suggested by GWAS, several newer loci have made 
a foray into the AD scene. Under the supervision 
and support of International Genomics of AD 
project, two-stage meta-analysis identified 11 loci 
which are HLA-DRB5-DRB1 gene, SORL1, PTK2B, 
SLC24A4, ZCWPW1, INPP5D, MEF2C, CELF1, 
NME8, CASS4, FERMT2 genes, with suggestive 
evidence of association with AD93. The Table 
represents newer loci involved in AD pathogenesis 
as suggested by GWAS with tentative pathogenic 
mechanisms94.

Table. New susceptibility gene loci of Alzheimer’s disease
Genes as risk factors

Gene Location Function SNP variant OR
HLA-
DRB5-HLA-DRB1

Chromosome 6 Binds with antigen peptide of APC, encoding 
MHC-II, associated with immune-competence and 
histocompatibility

rs9271192 1.11

PTK2B Chromosome 8 Involved in calcium-induced regulation, regulate 
neuronal activity, involved in the induction of 
hippocampal CA1 in memory formation, mediates 
responses to cellular stress

rs28834970 1.10

INPP5D Chromosome 2 Affecting multiple signaling pathways, interact with 
CD2AP

rs35349669 1.08

CELF1 Chromosome 11 Involved in mRNA editing, and translation, may affect 
long-term neuronal viability in Alzheimer’s disease

rs10838725 1.08

FERMT2 Chromosome 14 Expressed in the brain, involved in tau-mediated 
toxicity via protein localization

rs17125944 1.14

Protective genes
SORL1 Chromosome 11 Gene encoding sortilin-related receptor, expressed in 

the central nervous system, plays roles in endocytosis 
and sorting, and formation of beta-amyloid

rs11218343 0.77

SLC24A4-RIN3 Chromosome 14 Role in calcium transport during amelogenesis, 
involved in iris development, protein that may be 
connected to tau-mediated pathology

rs10498633 0.91

ZCWPW1 Chromosome 7 Encoding zinc finger, modulates epigenetic regulation, 
in mice affects brain size and neurites elongation

rs1476679 0.91

MEF2C Chromosome 5 Mutations associated with severe mental retardation, 
stereotypic movements, epilepsy and cerebral 
malformation, essential role in hippocampal-dependent 
learning, crucial for normal neuronal development, 
distribution, and electrical activity

rs190982 0.93

NME8 Chromosome 7 Responsible for primary ciliary dyskinesia type 6 rs2718058 0.93
CASS4 Chromosome 20 Involved in actin dynamics, binds to CMS in Drosophila rs7274581 0.88
SNP, single-nucleotide polymorphism; APC, antigen-presenting cells; MHC, major histocompatibility complex; OR, odds ratio; 
CMS, cas ligand with multiple SH3 domain; CA1, Cornu Ammonis 
Source: Refs 93, 94
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Conclusion

GWASs have revealed the association of new 
gene loci with AD. The first few identified SNPs from 
GWAS suggest the involvement of different associated 
pathways with pathogenesis of AD although the exact 
mechanisms remain unknown. Modification and 
advancing the research in these pathways may lead to 
therapeutic intervention for AD. Many of these GWAS 
loci may serve as biomarkers of AD. The search for 
additional genetic risk factors requires more large-scale 
meta-analysis of GWAS and enhanced statistical power 
as well as replicating these findings at the molecular 
level. Exciting times await us in AD genetic research 
and newer paradigms might open in the near future.
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