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Abstract

Motivation: The evolution of complexity is one of the most fascinating and challenging problems in modern biology,
and tracing the evolution of complex traits is an open problem. In bacteria, operons and gene blocks provide a
model of tractable evolutionary complexity at the genomic level. Gene blocks are structures of co-located
genes with related functions, and operons are gene blocks whose genes are co-transcribed on a single mRNA mol-
ecule. The genes in operons and gene blocks typically work together in the same system or molecular complex.
Previously, we proposed a method that explains the evolution of orthologous gene blocks (orthoblocks) as a com-
bination of a small set of events that take place in vertical evolution from common ancestors. A heuristic method
was proposed to solve this problem. However, no study was done to identify the complexity of the problem.

Results: Here, we establish that finding the homologous gene block problem is NP-hard and APX-hard. We have
developed a greedy algorithm that runs in polynomial time and guarantees an OðlnnÞ approximation. In addition,
we formalize our problem as an integer linear program problem and solve it using the PuLP package and the stand-
ard CPLEX algorithm. Our exploration of several candidate operons reveals that our new method provides more op-
timal results than the results from the heuristic approach, and is significantly faster.

Availability and implementation: The software and data accompanying this paper are available under the GPLv3
and CC0 license respectively on: https://github.com/nguyenngochuy91/Relevant-Operon.

Contact: oeulenst@iastate.edu

1 Introduction

In bacteria and archaea, gene blocks are sets of genes co-located on
the chromosome, which are typically conserved, to some extent, be-
tween species. Operons can be viewed as a special case of gene
blocks where genes are co-transcribed as a polycistronic mRNA and
are often associated with related functions, molecular complexes or
both. Such conserved gene blocks have been used in gene function
prediction and phylogenetic analyses (Enault et al., 2003; Overbeek
et al., 1999; Srinivasan et al., 2005). There are several interesting
biological questions that could be answered by studying the evolu-
tion of gene blocks: which components of the gene block tend to be
more conserved? How did the gene block evolve? Given a gene
block in a reference genome, which gene blocks from other taxa are
homologous to it?

Annotating sequences of bacterial genomes and determining
whether gene blocks are orthologous is essential for our understand-
ing of bacterial genomes and their evolution. Recently, we have
developed a heuristic method to identify novel orthologous gene
blocks (Ream et al., 2015). Motivated by this approach, we

formalized the biological problem of finding orthologous gene
blocks, which we name here the Relevant Gene Block problem. In
this study, we show that the Relevant Gene Block problem is NP-
hard. We then describe a greedy approximation method and assess
its accuracy. Further, we formulate an Integer Linear Program for
an exact solution suitable for conducting smaller studies and can
serve as a baseline for evaluating the greedy method. We demon-
strate the exceptional scalability and accuracy of our greedy method
through extensive comparative empirical studies. From this point
on, we will refer to the method in (Ream et al., 2015) as the
Heuristic method, to our method as the Greedy method and to the
Integer Linear Programming formulation as the ILP method.

Related Work: several models have been proposed before to ex-
plain gene block and operon evolution. The models are not necessar-
ily mutually exclusive, and different operons may evolve according
to different models, or indeed a single operon may be the result of
the combination of several models (Alm et al., 2006; Bush et al.,
2018; Fani et al., 2005; Goldberg et al., 2016; Horowitz, 1945;
Hsiao et al., 2005; Koonin, 2009; Lawrence and Roth, 1996;
Omelchenko et al., 2003; Price et al., 2006; Stahl and Murray, 1966).
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As mentioned earlier, in the previous work we developed the
Heuristic method that explains the evolution of operons and ortho-
blocks as a combination of discrete events. In the course of their evo-
lution, gene blocks may gain or lose genes, have genes duplicated or
have them split away from the gene block. By determining the fre-
quency of the events for any orthoblock in a clade, we can determine
a cost for each event, and thus create a cost function to determine an
optimal vertical path for the evolution of orthoblocks (Nguyen
et al., 2019; Ream et al., 2015). We have also used the Heuristic
method to vertically trace the evolution of operons on along a phylo-
genetic tree (Nguyen et al., 2019), and discovered possible horizon-
tal gene transfer events (Nett et al., 2020).

Contribution. In this work we formalize the event-based model
to define the essential Relevant Gene Block (RGB) problem. Given
a reference gene block, and a set of homologous gene blocks in a tar-
get genome, this problem seeks to find orthologous gene blocks. We
prove that this problem is inherently difficult, that is, NP-hard.
Furthermore, we show that the RGB problem is unlikely to be effi-
ciently approximated with a ratio bounded by a constant, meaning
the problem is APX-hard. Despite these discouraging time complex-
ity results, we describe an efficient greedy algorithm with an OðlnnÞ
approximation for the RGB problem. In addition, we provide an
ILP formulation of the RGB problem suitable for smaller sized gene-
block studies. Finally, in a comparative study of empirical data, we
demonstrate our proposed methods’ outstanding performance in
terms of scalability and optimization.

2 Preliminaries

2.1 Methods
First, we formalize the gene block evolution problem. To analyze
the time complexity of this problem, we further formulate a relevant
sub-problem, for which we demonstrate the NP-hardness and APX-
hardness results. We then describe a greedy approximation algo-
rithm for the gene block evolution problem. Finally, we provide an
ILP formulation of the problem.

Here, we propose the Relevant-Gene-Block problem that is
essential for analyzing the complex evolutionary histories of ortho-
blocks. In particular, we present the first mathematical formaliza-
tion of the biological event-based model of orthoblock evolution.

2.2 The event-based model
A reference taxon is a taxon where operons have been reliably iden-
tified by experimental means. Such a taxon serves as a standard of
truth to determine if the genes on a suspected orthoblock reside in
an operon or a similar co-regulated gene block at least in one spe-
cies. For this work, we chose E.coli K-12 MG1655 (NC 000913) as
the reference taxon, since it belongs to the well-studied class of c-
proteobacteria in the Proteobacteria phylum.

An event is a single change in an orthoblock that is characterized
as a split, deletion or duplication. Figure 1 depicts an example of
such events. The event-based cost between any two orthoblocks is
then defined to be the minimum possible number of splits, duplica-
tions and deletions required to explain the difference between them.

Given a reference operon O, we define G :¼ fx1; x2;x3; . . . ; xng
to be the set of genes of O. A gene block B over G is a non-
empty multiset of G defined as B :¼ fxk1

1 ; x
k2

2 ; . . . ;xkn
n g where

xi 2 G; ki 2N. We define the set of genes in gene block B as
Gene(B) :¼ fxi jki � 1g, the duplication gene set of a gene block B
as Dup(B) :¼ fxi jki � 2g, and the size of a gene block B as Size(B)
:¼
P

ki. An orthoblock O is a set of blocks that is either empty or
contains at least one gene block of a size larger than or equal to two.
We define the set of genes of O as GeneðOÞ :¼ [B2O, and the set of
genes that is duplicated in some gene blocks of O as DupðOÞ :¼
[B2O Dup(B). Given a gene block B and a gene set G over G, we de-
fine B \G :¼ fxki

i 2 B jxi 2 Gg.
Costs for orthoblocks are described as pairwise functions that

calculate the event count from one orthoblock to another, as a proxy
for their evolutionary distance. The costs between any two ortho-
blocks O and O0 are defined as follows.

(1) The split cost, denoted as cs, is the absolute difference in the
number of relevant gene blocks between the two taxa involved. We
define RelðO;O0Þ as the set of gene blocks from O where each gene
in each gene block has to appear in O0 at least once. Formally,
RelðO;O0Þ :¼ [B2OðB \GeneðO0ÞÞ. The split cost can be formalized
as:

csðO;O0Þ :¼ jjRelðO;O0Þj � jRelðO0;OÞjj (1)

¼ jj [
B2O
ðB \GeneðO0ÞÞj � j [

B2O0
ðB \GeneðOÞÞjj: (2)

If the orthoblock O0 is the reference gene block, the split cost be-
tween two orthoblocks O and R can be simplified as follows.

csðR;OÞ ¼ jjRelðR;OÞj � jRelðO;RÞjj (3)

¼ jj [
B2R
ðB \GeneðO0ÞÞj � j [

B2O0
ðB \GeneðRÞÞjj (4)

¼ jj [
B2R
ðB \GeneðO0ÞÞj � j [

B2O0
ðB \GeneðO0ÞÞjj (5)

¼ j1� j [
B2O0

Bjj ¼ j1� jOjj ¼ jOj � 1: (6)

For example, for the reference gene block R ¼ ðabcdefgÞ, gen-
ome A has blocks O ¼ ððabÞ; ðdef ÞÞ. We then compute the relevant
gene blocks RelðR;OÞ ¼ ðabdef Þ (removing genes c, g) and
RelðO;RÞ ¼ ððabÞ; ðdef ÞÞ. Therefore, csðO;O0Þ ¼ j1� 2j ¼ 1.

(2) The duplication cost, denoted as (cu), is the pairwise count of
gene duplications between two orthoblocks. We define Dif ðO;O0Þ
to be the set of duplicated genes of gene block O, such that these
genes also appear in O0 but are not duplicated in O0. Formally,
DifðO;O0Þ :¼ ðDupðOÞ \GeneðO0ÞÞnDupðO0Þ. Here, our gene
blocks are guaranteed to have at most one duplication of each gene
for each block. We formalize the duplication cost as follows.

cuðO;O0Þ :¼ jDifðO;O0Þj þ jDifðO0;OÞj (7)

¼ jðDupðOÞ \GeneðO0ÞÞnDupðO0Þj

1þ jðDupðO0Þ \GeneðOÞÞnDupðOÞj: (8)

If the orthoblock O0 serves as the reference gene block, we can
simplify the duplication cost between orthoblocks O and R as
follows.

cuðR;OÞ ¼ jDifðR;OÞj þ jDifðO;RÞj (9)

¼ jðDupðRÞ \GeneðOÞÞnDupðOÞj

1þ jðDupðOÞ \GeneðRÞÞnDupðRÞj (10)

Fig. 1. The orthoblocks from species A to E are arranged in a phylogenetic species

tree. Species C has an experimentally determined operon (black arrows) and serves

as the reference taxon. The orthologs in the species A, B, D and E were identified as

described in (Ream et al., 2015). The events between species C and all other species

for this orthoblock are (1) A–C: deletion (of gene c), (2) B–C: split (of gene c), (3)

C–D: duplication (of b) and (4) split (jagged line); C–E: duplication (of b)
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¼ j1j þ jðDupðOÞj ¼ jðDupðOÞj (11)

For example, for a reference gene block R ¼ ðabcdeÞ, the genome
A has the gene block O ¼ ðabbccÞ. Observe that the orthologs
of genes Ob and Oc are duplicated in genome B. We then
compute DifðR;OÞ ¼1 and DifðO;RÞ ¼ fb; cg. Therefore,
cuðO;O0Þ ¼ 0þ 2 ¼ 2.

(3) The deletion cost, denoted as cd, is the difference in the num-
ber of orthologs that are in the orthoblocks of the genome of one
taxon, or the other, but not in both. In other words, the deletion
cost is the symmetric difference between the set of orthologous genes
of the two gene blocks O;O0. We formalize the deletion cost as:

cdðO;O0Þ :¼ jGeneðOÞ�GeneðO0Þj:

If orthoblock O0 is the reference gene block, we can simplify the
split cost between orthoblocks O and R

cdðR;OÞ ¼ jGeneðRÞ�GeneðOÞj (12)

¼ jGeneðRÞj � jGeneðOÞjasGeneðOÞ � GeneðRÞ: (13)

For example, for a reference gene block R ¼ ðabcdeÞ, the genome
A has gene block O ¼ ðabdÞ and the deletion cost between ortho-
blocks R, O is cdðR;OÞ ¼ jfa; b; c; d; eg�fa; b; dgj ¼ 5� 3 ¼ 2:

2.3 The Relevant-Gene-Block problem
Under the assumption that the reference gene block is the true op-
eron, our problem is to identify the orthoblocks in our target gen-
ome so that the overall cost for the three events is minimized.
Observe that this problem might be challenging since the event costs
are not independent of each other in view of the fact that they
contain the variable Gene(O). First, we describe a mathematical for-
malization of the problem, which we refer to as the Relevant-Gene-
Block (Deletion Duplication Split) problem. Then we formulate
restricted variations of this problem relevant for our time complex-
ity analyses that involve a reduction from the minimum set-cover
problem.

PROBLEM 1. [Relevant-Gene-Block (deletion, duplication, split)]

Instance: < R;O >, which are the reference gene block, and the set of

homologous gene blocks in target genome.

Find: < O0 > where O0 � O, so that cðR;O0Þ :¼ cdðR;O0Þ þ
csðR;O0Þ þ cuðR;O0Þ is minimum.

PROBLEM 2. [Relevant-Gene-Block (deletion, split)]

Instance: < R;O >, which are the reference gene block, and the cluster

of homologous gene in target genome.

Find: < O0 > where O0 � O, so that cðR;O0Þ :¼ cdðR;O0Þ þ
csðR;O0Þ ¼ jGeneðRÞj � jGeneðO0Þj þ jO0j � 1 is minimum.

Since Gene(R) is essentially the gene set of R, and one is a constant, we

can reduce this problem further into its final form suitable for our

analysis.

PROBLEM 3. [Relevant-Gene-Block (deletion, split, simplified)]

Instance: < S;C >, which are the set of genes of our reference block,

and the collection of subset of the reference gene set respectively.

Find: < O0 > where O0 � O, so that f ðS;O0Þ :¼ jSj � j [O0j þ jO0j is

minimum.

We state the minimum set cover problem required for our reduction.

PROBLEM 4. [Minimum-Set-Cover]

Instance: < S;C >, which are the set of genes of our reference block,

and the collection of subset of the reference gene set respectively.

Find: < O0 > where O0 � O, so that f ðS;O0Þ :¼ jSj � j [O0j þ jO0j is

minimum.

From now on, we use MSC to stand for the Minimum-Set-Cover prob-

lem, and RGB for Relevant-Gene-Block (deletion, split, simplified)

problem.

3 Materials and methods

First, we prove the NP-hardness of the RGB problem by a reduction
from the MSC problem. Our reduction relies on the essential prop-
erty that the solution of the RGB problem should be a minimum set
covering itself. Using this property, we introduce three lemmas that
allow us to show the reduction. Second, we prove that our problem
is equivalent in cost to the MSC problem and describe a greedy algo-
rithm to provide an OðlnnÞ approximation of the RGB problem.
Finally, we describe an ILP formulation of the RBB problem.

3.1 Computational hardness of RGB
For the reduction, we are going to take an instance of the MSC
problem and reduce it to an RGB instance that has a solution if and
only if the MSC instance has a solution. Given an instance < S;C >

of MSC where S is the set of ground elements and C is a collection
of subset of S, we construct the same instance < S;C > for RGB
problem, where S is the set of genes and C is the collection of subset
of the reference gene set. Observe that [C ¼ S.

LEMMA 1. If the set C0 is a solution to our RGB instance < S;C >, then

C0 is the minimum set cover of the set [C0.

Proof. Assume the contrary: 9C� � C;[C� ¼ [C0; jC�j < jC0j. We

then have the following equality: f ðS;C�Þ ¼ jSj � j [ C�j þ jC�j ¼
jSj � j [ C0j þ jC�j. Since jC�j < jC0j; f ðS;C�Þ < jSj � j [ C0j þ jC0j ¼
f ðS;C0Þ. Hence, f ðS;C�Þ < f ðS;C0Þ, which contradicts that C0 is a solu-

tion to our RGB. Thus, C0 is the minimum set cover of the set [C0, as

desired. h

LEMMA 2. If the set C0 is a solution to our RGB instance < S;C >, then

8c 2 ðCnC0Þ; jcnC0j � 1.

Proof. Assume the contrary: 9c� 2 ðCnC0Þ; jc�nC0j � 2. Consider

C� ¼ C0 [ fc�g. We then have the following equality: f ðS;C�Þ ¼
jSj � j [ C�j þ jC�j ¼ jSj � j [ ðC0 [ fc�gÞj þ jC0 [ fc�g j ¼ jSj � j [ C0j�
jc�nC0j þ jC0j þ 1.

Since jc�nC0j � 2, f ðS;C�Þ � jSj � j [ C0j � 2þ jC0j þ 1 ¼ jSj � j [ C0jþ
jC0j � 1 ¼ f ðS;C0Þ � 1.

Therefore, we have f ðS;C�Þ � f ðS;C0Þ � 1 < f ðS;C0Þ. Hence, f ðS;C�Þ
< f ðS;C0Þ, which contradicts that C0 is a solution to our RGB instance.

Thus, 8c 2 ðCnC0Þ; jcnC0j � 1, as desired. h

LEMMA 3. If the set C0 is a solution to our RGB instance < S;C >; 8c 2
ðCnC0Þ and jcnC0j ¼ 1;C1 :¼ C0 [ fcg is the minimum set cover of

[ðC0 [ fc�gÞ

Proof. The proof is straightforward. As long as we add the subset that

contributes exactly one to our cover so far, we increase the number of
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block by 1, and decrease the number of element to cover by 1.

Therefore, f ðS;C1Þ does not change and is still the minimum. h

CLAIM 1. If the set C0 is a solution to our RGB instance < S;C >, then

we can construct the set C1 that is a solution to MSC instance < S;C >

using Algorithm 1 in polynomial time.

Proof. Since C0 is a solution to the RGB instance < S;C >, according to

Claim 1, C0 is a minimum set cover of the set [C0. By Claim 2, any subset

c in the collection of subset C, but not in C0, can contribute at most 1

more element to our set C0. Hence, if we include all of the subsets c that

contribute one extra element to our set C1 as in the for loop of

Algorithm 1, we eventually cover all of the elements in the set S. Now,

using Claim 3, our new set C1, after including each of such subsets c

maintains the invariant that: C1 is the minimum set cover of [C1.

Therefore, C1 is a minimum set cover of S, and C1 is a solution for the

MSC instance < S;C >. Observe that Algorithm 1 runs in polynomial

time. Therefore, given that C0 is a solution to our RGB instance

< S;C >, we can construct C1 that is a solution to the MSC instance <

S;C > using Algorithm 1 in polynomial time. In addition, the solution to

RGB has the same cost as the solution to MSC. h

CLAIM 2. If the set C0 is a solution to our MSC instance < S;C >, then

C0 is also a solution to RGB instance < S;C >.

Proof. Since C0 is a solution to our MSC instance, we have

f ðS;C0Þ ¼ jSj � j [ C0j þ jC0j ¼ 0þ jC0j ¼ jC0j.

Assume the contrary, 9C� � C; C� is a solution to the RGB in-
stance and f ðS;C�Þ < f ðS;C0Þ. Now, we can use Algorithm 1 to
construct C1 that is a set cover of S and f ðS;C1Þ ¼ f ðS;C�Þ (from the
Claims 1, 2 and 3). This provides the following property: f ðS;C1Þ ¼
jSj � j [ C1j þ jC1j ¼ jSj � jSj þ jC1j ¼ jC1j ¼ f ðS;C�Þ: Therefore,
together with f ðS;C0Þ ¼ jC0j and f ðS;C�Þ < f ðS;C0Þ, we have
f ðS;C�Þ < jC0j. Since we have just proven that f ðS;C�Þ ¼ jC1j, this
means that jC1j < jC0j and C1 is a set cover of S. Hence, we can
construct a set cover C1 that has size less than that of C0. This con-
tradicts our assumption that C0 is a solution to our MSC instance
(i.e. C0 is the minimum set cover of S). By proof of contradiction, C0

is also a solution to the RGB instance < S;C >. Furthermore, the
solution to MSC has the same cost as the solution to RGB. h

Both, the NP-hardness and the APX-hardness of the RGB problem
follow from the previous claims.

THEOREM 1. The RGB problem is NP-hard

Proof. From the Claim 1 and Claim 2, we conclude that the MSC prob-

lem reduces in p-time to the RGB problem. Since the MSC problem is

NP-Hard, it follows that the RGB problem is NP-Hard. h

THEOREM 2. RGB problem is APX-hard

Proof. We observe that a solution of MSC and a solution of RGB are of

equal in cost. Therefore, our reduction is also an approximation-

preserving reduction. Henceforth, RGB is APX-Hard. h

3.2 Addressing the RGB problem
With the NP-hardness result in hand, it is unlikely that there exists

an efficient algorithm that can optimally solve the RGB problem.
We have also shown that the problem is APX-Hard, therefore RGB
is unlikely to have an efficient approximation algorithm. However,

our reduction shows that the solution of MSC problem has the same
cost as the solution of RGB. Therefore, we devise a greedy algorithm
for the RGB problem as follows.

3.2.1 Greedy Algorithm

We will show that our algorithm is a lnn approximation of our RGB
problem. In order to do so, we need the following lemma.

LEMMA 4. Let Copt be the optimal result of our RGB instance < S;C >

and C� be the optimal result of the MSC instance < S0;C > as in

Algorithm 2. We will show that:

f ðS;CoptÞ ¼ jSn [ Cj þ f ðS0;C�Þ

Proof. Following Lemma 1, Copt is the minimum set cover of [Copt.

Then, using Algorithm 1, we can build a set C1 which is the minimum

set cover of S0 ¼ [C so that f ðS;CoptÞ ¼ f ðS;C1Þ. Hence, C1 is also an

optimal result of the MSC instance < S0;C >, which means jC1j ¼ jC�j.
We expand the equality f ðS;CoptÞ ¼ f ðS;C1Þ as follows:

f ðS;CoptÞ ¼ f ðS;C1Þ

¼ jSj � j [ C1j þ jC1j

¼ jSj � j [ Cj þ jC1jas C1 covers [ C

¼ jSn [ Cj þ jC1j

¼ jSn [ Cj þ jS0j � j [ C�j þ jC1jas C� covers S0

¼ jSn [ Cj þ jS0j � j [ C�j þ jC�jas jC1j ¼ jC�j

¼ jSn [ Cj þ f ðS0;C�Þ

Therefore, the proof is concluded. h

THEOREM 3. The greedy algorithm runs in polynomial time and provides

an OðlnnÞ—approximation of our RGB problem, where n is the cardin-

ality of the set S.

Algorithm 1: Constructing solution of MSC given solution of

RGB

Input: C: a collection of subset, C0: a solution of RGB

Output: C1: solution of MSC C CnC0
C1  C0

for c 2 C do

if cnC1 ¼¼ 1 then

C1  C1 [ fcg
return C1

Algorithm 2: Greedy Algorithm to solve RGB problem

Input: S: gene set of the reference gene block, C: set of

orthologous gene block

Output: C0: solution of RGB S0  [C

C0  fg
while S0 6¼1 do

Select c 2 C that maximizes jc \ S0j
S0  S0nc
C0  C0 [ c

return C0

Computational hardness of finding orthologous gene blocks i671



Proof. Firstly, we use the result from this paper (Chvatal, 1979). Given

C� is the optimal solution to MSC of instance S0;C and C0 is the output

of our alogrithm 2 we have:

f ðS0;C0Þ � ð1þ lnnÞf ðS0;C�Þ

$ f ðS0;C0Þ � ð1þ lnnÞðf ðS;CoptÞ � jSn [ CjÞ

$ f ðS0;C0Þ � ð1þ lnnÞðf ðS;Copt � dÞÞ

$ f ðS0;C0Þ � ð1þ lnnÞf ðS;CoptÞ

Let jSj ¼ n; jCj ¼ m, line 1 and 2 in the algorithm take linear time in n.

Regarding the loop, each time we goes through the set of orthologous

gene block to find the best gene block. Hence, the while loop takes

O(mn). The claimed statement folllows. h

3.3 Integer linear programming
Given an instance S, C of the RGB problem, we define xi for every
set ci 2 C that takes a value of 1 if we include ci in our answer, and
a value of 0 otherwise. We can express our RGB problem as the fol-
lowing integer linear program:

minimize
Xn

i¼1

xi (14)

subject to
X

i;g2ci

xi � 18g 2 [C (15)

xi 2 f0;1g8g 2 S (16)

The size of this version of ILP is the same as the size of ILP
version of typical MSC problem, which is less or equal to
jCj þ jSj � jCj

THEOREM 4. Let Copt be the optimal result of our RGB, and C� be the op-

timal result of the ILP formulation above. We can show that:

f ðS;CoptÞ ¼ jSn [ Cj þ f ðS0;C�Þ

Proof. Since C� is an optimal solution for ILP, it is also a solution to

an instance < S0;C > of MSC. Using Lemma 4, we can conclude the

proof. h

4 Results

Here, we evaluate the performance of the Greedy method in approx-
imating the RGB problem. The performance is analysed by compar-
ing our algorithm with the previously best-known approach, the
Heuristic method (Ream et al., 2015) and our exact ILP solution as
described in Section 4.3. All of our studies are performed using the
previously used benchmark data-set (Ream et al., 2015), which we
describe first. In our comparative studies we first analyze the run-
times (see Section 5.1), then the accuracy (see Section 5.2) and final-
ly conclude the studies (see Section 5.3). We run all our experiment
on a Dell Laptop, Intel Core i7 8th Gen, 15 GB DDR4 RAM run-
ning Ubuntu 18.04.4 LTS. Code was written in Python 3.5.

Datasets We used the experimentally identified operons from the
E.coli K-12 genome as the gold standard. We chose E.coli because
of the high quality of annotation, and the large number of experi-
mentally verified operons. The genomes in which we looked for
orthoblocks were taken from (Fani et al., 2005). Previously the
Heuristic method has been used on this group of taxa (Ream et al.,
2015), and the 55 operons were chosen based on the criteria: each
operon comprised of at least 5 genes.

4.1 Scalability study
We compared the run-time of the Greedy method, the Heuristic
method and the ILP approach, using datasets ranging from input
sizes of 5 to 13 genes per operon.

Experimental settings We compare the running time of three
methods. In each analysis, we ran the three methods on the same
dataset (55 gene blocks) and recorded their running time in log 10
(seconds).

Overall, as shown in Figure 2, we can see that ILP takes the lon-
gest time to finish for all the operons except cai, mdt, rbs and paa.
The Greedy method is the fastest without exception, beating the
Heuristic method by a large margin. On average, the running time
of the Greedy method is 2:9� 10�7, of the Heuristic method is
8:8� 10�5 and of the ILP method is 10�4. This means that the
Greedy method should be around 100 times faster than the Heuristic
method, and 1000 times faster than the ILP method. This is expected,
since the Heuristic method tries to generate almost all possible com-
bination of block, and the ILP method solves the problem exactly. To
our surprise, the Heuristic method actually performs slowest in the
four cases of cai, mdt, rbs and paa. The reason is not because those
operons have more genes, but because they have more potential
orthologous gene blocks. Although in the worst case the Heuristic
method only takes milliseconds to finish, we only surveyed 55 operons
within a group of 33 taxa. Currently, NCBI has more than 26 000
bacterial genomes. The running time will become important when
running on more complex operons and larger number of species. In
sum, the Greedy method performs the best in terms of run time.

Fig. 2. X axis: operon/gene block names, we sort the gene blocks in ascending order according to the number of genes in each block. From left to right: operon ast to operon

ygb have 5 genes in the gene block; cai to ydh have 6 genes; cas to tdc have 7 genes; bam to ydg have 8 genes; atp to yje have 9 genes; paa to yrb have 11 genes, hyf has 12

genes. nuo has 13 genes. Y-axis: run time of the method in log10 seconds
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4.2 Cost optimization
We evaluate the methods in terms of the event-based cost function.
That is, we say that the method that is able to reconcile the blocks
with the reference operon using the smallest number of split and de-
letion events is more accurate. The reasoning is that a lower cost is
the most parsimonious explanation for the evolutionary distance be-
tween any two orthoblocks as explained in Nguyen et al. (2019).
This is somewhat analogous the process of pairwise protein se-
quence alignment by assigning a cost function based on the costs of
indels and substitutions.

Experimental settings We generated the best orthologous gene
block in each of the 33 species using three different methods. We then
calculated the total number of deletion events and split events for
each operon for each model and present it in Figure 3a and b. Then,
for each model we calculated the sum of deletion events and split
events for each operon (Fig. 3c) that represents our cost function. The
method is considered better if the number of events is lower.

Results and discussion As shown in Figure 3a, in most cases the
three models have the same number of deletion events. In 18 out
of 55 cases, the Greedy method has a smaller number of deletion of
events than the Heuristic method, and they have the same amount of
deletion events. In all cases, ILP has the lowest number of deletion
events. As shown in Figure 3b, the three models have the same num-
ber of split events in most cases. However, in 13 of 55 operons, the
Heuristic method has a lower number of split events than the
Greedy method. In 3 of 55 operons, the Greedy method has lower
number of splits than the Heuristic method. Figure 3c conveys the
cost function (sum of deletion and split events) for each of the meth-
ods. In 15 of 55 operons, the Greedy method has a lower cost than
the Heuristic method. The Greedy and Heuristic methods perform
similarly on the other operons. In all of the cases, the ILP method al-
ways has the lowest cost, as it is an exact method by design.
Following that, the Greedy method is more accurate than the
Heuristic method in 15 of 55 operons.

Fig. 3. For X-axis values see Figure 2. The y-axis is the event count for the orthologous gene block in each species compare to the reference gene block. (a) Dots represents

deletion events, (b) split events, (c) sum of deletion and split events
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4.3 Concluding discussion
From our scalability and accuracy study we observe that the Greedy
method is the fastest, being 100� faster than the heuristic method,
and 1000� faster than the exact ILP method. In terms of accuracy,
the Greedy method follows the ILP method very closely and either
outperforms the Heuristic method or has the same results for all of
the 55 operons. Therefore, on our small dataset that was used in
(Ream et al., 2015), our Greedy method is outperforming the
Heuristic method in both scalability and accuracy.

5 Conclusions

Finding orthologous gene blocks is an important step in understand-
ing the evolution of gene blocks and complexity in bacterial
genomes. In this study we formally define the problem of identifying
orthologous gene blocks given a reference operon, prove that it is
NP-hard, and present an algorithm that guarantees OðlnnÞ approxi-
mation and runs in polynomial time. In addition, we designed an
ILP formulation and proved that it can solve our problem exactly. In
our experimental study, we demonstrated that the Greedy method
performs better than the Heuristic method in terms of both accuracy
and scalability. We note that the methods developed in this work
cannot handle the duplication events. While those are relatively rare,
handling duplications would be an interesting topic for future work.
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