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Metastatic bone disease is generally incurable and leads to pathological fractures,
pain, hypercalcemia, spinal cord compression and decreased mobility. The skeleton
is the major site of bone metastases from solid cancers, including breast and
prostate carcinoma. Bone metastasis is facilitated by activation of bone-resorbing
osteoclasts, terminally differentiated multinucleated cells formed by fusion from
monocytic precursors. Cancer cells are known to produce specific factors that stimulate
osteoclast differentiation and function. Of interest, cancer cells are also known to alter
their own bioenergetics increasing the use of glycolysis for their survival and function.
Such change in energy utilization by cancer cells would result in altered levels of cell-
permeable metabolites, including glucose, lactate, and pyruvate. Osteoclast resorption
is energy-expensive, and we have previously demonstrated that during differentiation
osteoclasts actively adapt to their bioenergetics microenvironment. We hypothesize that
altered bioenergetics state of cancer cells will also modify the bioenergetics substrate
availability for the tissue-resident bone cells, potentially creating a favorable milieu for
pathological osteolysis. The goals of this review are to analyze how metastasizing cancer
cells change the availability of energy substrates in bone microenvironment; and to
assess how the altered bioenergetics may affect osteoclast differentiation and activity.
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INTRODUCTION

Bone is a preferred organ for metastasis from many tumors, including breast, prostate, and lung
carcinomas (Hernandez et al., 2018). Establishment of metastatic bone lesions is facilitated by
resident osteoclasts, cells that specialize in bone destruction. Molecular signatures that allow
successful integration of cancer cells in the bone microenvironment have been extensively
investigated (Olechnowicz and Edwards, 2014; Hiraga, 2019), however, none of the identified
factors fully explains the success of tumors in thriving in the bone. In this mini-review, we will
explore if tumor-mediated changes in bioenergetic environment may contribute to supporting
osteoclast formation and function.

Cancer cells are different from their somatic counterparts in many factors, including their
bioenergetics. Warburg effect, an increased use of anaerobic glycolysis by cancer cells, has re-gained

Abbreviations: AMPK, AMP-activated protein kinase; mTOR, Mammalian target of rapamycin; MCT, Monocarboxylate
transporters; PGC-1β, Peroxisome proliferator–activated receptor-c coactivator 1β; RANKL, Receptor activator of nuclear
factor kappa B-ligand; SLC, Solute carrier transporters.
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much attention in the recent years (Lunt and Vander Heiden,
2011; Liberti and Locasale, 2016). The benefits of upregulating
glycolysis for cancer cells are not fully understood, since
oxidation of one molecule of glucose into pyruvate and 36
molecules of ATP per glucose are produced lactate during
glycolysis generates 2 molecules of ATP, while 36 molecules of
ATP per glucose are produced during oxidative phosphorylation.
However, glycolysis is also important for biosynthesis of
nucleotides, lipids and amino acids, all required for cellular
proliferation (Lunt and Vander Heiden, 2011). Many metabolites
involved in glycolysis and Krebs cycle are transported by
the solute-carrier gene (SLC) family of membrane-bound
transporters (Markovich and Murer, 2004). Glucose transporters
that belong to 2A family of SLCs, represent a rate-limiting step
in glycolysis and are known to be strongly dysregulated in cancer
cells (Adekola et al., 2012). Lactate and pyruvate are transported
by monocarboxylate transporters MCT1-4 that belong to the
16A family of SLCs, and MCT1 and MCT4 are upregulated
in several cancers (Jones and Morris, 2016; Li et al., 2018).
Importantly, intracellular and extracellular pools of lactate and
pyruvate interchange relatively fast (Quek et al., 2016), therefore
changes in intracellular metabolite levels lead to corresponding
changes in the extracellular environment of cancer cells.

All cells adapt their energy metabolism to changing levels of
energy demands, as well as availability of energy substrates. AMP-
activated protein kinase (AMPK) is stimulated by an increase
in AMP/ATP ratio due to cells inability to meet the current
energy demand (Finley and Haigis, 2009). AMPK acts to decrease
metabolic expenditure and increase energy production (Gwinn
et al., 2008). Mammalian target of rapamycin (mTOR) generally
acts downstream of AMPK. Two mTOR complexes, mTORC1
(with raptor and PRAS40) and mTORC2 (with rictor, mSIN1,
and proctor) have distinct roles. While mTORC1 regulates
protein synthesis (Foster and Toschi, 2009) and the SLC-
mediated metabolite transport (Taylor, 2014), mTORC2 is linked
to cytoskeletal dynamics and cell survival (Gaubitz et al., 2015).
The metabolic sensors, AMPK and mTOR are critical players in
cellular adaptation to a varying bioenergetics environment.

The goal of this review is to examine how changes in
extracellular glycolytic metabolites due to the presence of actively
proliferating cancer cells may alter osteoclast metabolic support,
differentiation and function.

BIOENERGETICS REQUIREMENTS OF
OSTEOCLASTS

To understand how osteoclasts can be affected by the metabolic
substrates, we need to consider the normal bioenergetic
requirements of these cells at different stages of their
differentiation and function. Osteoclasts are multinucleated
cells formed by fusion of monocytes. Mature osteoclasts attach
to bone matrix, forming a sealing zone, where proton pumps
lower the extracellular pH to dissolve hydroxyapatite, and
proteolytic enzymes are secreted to digest the organic matrix
(Stenbeck, 2002). Osteoclasts survive for ∼7–10 days, after
which they die primarily by apoptosis (Akchurin et al., 2008;

Kopesky et al., 2014). Osteoclast differentiation and function
place significant and varied demands for energy required for
migration of monocytes for cell fusion, phospholipid synthesis
for cell membrane growth, protein synthesis to gain resorptive
capacity, action of ion pumps and secretion of proteolytic
enzymes. To provide this energy, monocytes increase glucose
and oxygen consumption within 24–48 h of exposure to RANKL
(Kim et al., 2007), up-regulate metabolic enzymes involved
in energy production (Czupalla et al., 2005), and generate
abundant large mitochondria (Dudley and Spiro, 1961; Lemma
et al., 2016; Figure 1). Mitochondrial biogenesis stimulated
by peroxisome proliferator–activated receptor-c coactivator 1β

(PGC-1β) is a pre-requisite of successful osteoclastogenesis (Ishii
et al., 2009; Wei et al., 2010; Zeng et al., 2015; Zhang et al.,
2018). During resorption, osteoclast glucose transport increases
2-fold (Williams et al., 1997) and mitochondria locate near
resorption surface (Kawahara et al., 2009). ATP levels markedly
increase during osteoclastogenesis (Le Nihouannen et al., 2010).
AMPK and mTOR are important for osteoclast differentiation
and function. Osteoclastogenesis is associated with changes in
AMPK isoform composition (Fong et al., 2013) and AMPK
negatively regulates early stages of osteoclast differentiation
(Lee et al., 2010; Shah et al., 2010; Kang et al., 2013). Signaling
through mTOR is critical for osteoclast formation and survival
(Glantschnig et al., 2003; Sugatani and Hruska, 2005; Hu et al.,
2016; Dai et al., 2017), while osteoclast fusion and cytoplasmic
growth depend on mTOR-mediated Akt signaling (Tiedemann
et al., 2017). Importantly, nutrient availability during osteoclast
differentiation was shown to significantly affect AMPK, mTORC1
and mTORC2 complexes (Fong et al., 2013; Tiedemann et al.,
2017). Thus, it is conceivable that changes in metabolic substrate
accessibility due to the presence of proliferating cancer cells may
directly affect osteoclast differentiation and function.

POTENTIAL EFFECTS OF ALTERATIONS
IN METABOLIC ENVIRONMENT ON
OSTEOCLASTS

Glucose
Glucose, transported by glucose transporters 1 and 3 (Kim et al.,
2007), is the most effective bioenergetics substrate for supporting
bone resorption (Williams et al., 1997). In the absence of
glucose, fatty acids, ketone bodies, and lactate can support
bone resorption at 20–30% of the levels achievable with glucose
(Williams et al., 1997). Nevertheless, the dose-dependence of
glucose effects is complex. An increase from less than 1 mM to 5–
10 mM glucose was demonstrated to stimulate osteoclastogenesis
(Kim et al., 2007), resorption (Williams et al., 1997), and
osteoclastogenic signaling through p38 mitogen-activated
protein kinase (Larsen et al., 2002) and calcium/calmodulin-
dependent kinase II (CaMK II) (Larsen et al., 2005). In a mouse
model of type 2 diabetes, moderate hyperglycemia [∼10 mM
circulating glucose (Fernandez et al., 2001)] was associated
with increased osteoclastogenesis (Kawashima et al., 2009). In
contrast, high glucose concentrations inhibit osteoclastogenesis
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FIGURE 1 | Schematics summarizing the state of energy metabolism in osteoclasts formed under physiological conditions (top), and the adaptive changes in
osteoclasts (indicated in red) exposed to the local microenvironment modified by metastasizing cancer cells (bottom).

(Kim et al., 2007; Wittrant et al., 2008), which could be explained
by metabolic effects, such as decreased oxygen consumption at
higher glucose level [similar to the Crabtree effect observed in
yeasts (Pfeiffer and Morley, 2014)], as well as osmotic effects
(Botolin and McCabe, 2006). In the environment of highly
glycolytic cancer cells, the ambient glucose levels would likely
decrease, reducing its availability for osteoclastogenesis. Thus,
decrease in glucose is unlikely to contribute to osteoclastogenic
effects of cancer cells.

Pyruvate
Several studies have investigated how pyruvate affects osteoclast
formation. Addition of small amounts of pyruvate to media
containing normal levels of glucose significantly increased
osteoclastogenesis (Kim et al., 2007; Fong et al., 2013), resulting
in formation of large osteoclasts that contained more nuclei
per cell (Fong et al., 2013; Tiedemann et al., 2017). Of interest,
only when added in relatively small amounts, between 1 and
2 mM (Fong et al., 2013; Tiedemann et al., 2017) and 5 mM
(Kim et al., 2007), pyruvate was effective in promoting osteoclast
formation. Addition of low pyruvate concentrations stimulated

osteoclast mitochondrial activity, leading to a metabolic shift
toward oxidative phosphorylation, and an increase in cellular
[ATP] (Kim et al., 2007; Fong et al., 2013). Pyruvate caused
an inhibition of AMPK and an activation of mTOR/raptor
complex leading to facilitated protein synthesis and cytoplasmic
growth (Fong et al., 2013; Tiedemann et al., 2017). MCT1, 2,
and 4 for lactate and pyruvate are expressed by osteoclasts
(Imai et al., 2019). MCT2 has the highest affinity for both
pyruvate (Km ∼0.1 mM) and lactate (Km ∼0.7 mM), compared
to MCT1 that has a Km value in millimolar range, and
MCT4, affinity of which is even lower (Halestrap, 2012). Low
concentration of MCT inhibitor or deletion of MCT1 were
shown to potentiate osteoclastogenesis, while high concentration
of MCT inhibitor or deletion of MCT2 prevented osteoclast
formation (Imai et al., 2019). Another important issue with the
interpretation of pyruvate effects was highlighted by Long and
Halliwell (2009), who demonstrated that addition of pyruvate
dramatically affects the media levels of hydrogen peroxide,
which in turn affects osteoclastogenesis (Le Nihouannen et al.,
2010). Nevertheless, no anti-oxidative effects were observed after
addition of small amounts of pyruvate (Fong et al., 2013).
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Increase in glycolysis due to Warburg effect in cancer cells can
lead to increased production of pyruvate that can in turn be
transported to the extracellular space (Doherty and Cleveland,
2013; Quek et al., 2016), and provide increased bioenergetic
support for osteoclast formation.

Krebs Cycle Metabolites
Krebs cycle occurs in the mitochondria, however, several of its
metabolites, including citrate, succinate, malate, oxaloacetate,
fumarate, and α-ketoglutarate can be transported through
the cell membrane by sodium-dependent SLC13 transporters
(Markovich and Murer, 2004; Pajor, 2014). Citrate in particular
gained a lot of interest, since its extracellular levels vary in
diseases (Huang et al., 2020). Of particular interest is reported
reduction in plasma citrate levels in prostate and lung cancers
that readily metastasize to bone (Rocha et al., 2011; Dittrich
et al., 2012), as well as in osteoporosis, in which citrate is
also reduced in bone (major citrate reservoir) (Chen et al.,
2018). Extracellular citrate affects osteoclastogenesis, however,
contradictory outcomes were reported. Similar to pyruvate, 1–
2 mM of sodium citrate was shown to enhance osteoclastogenesis
(Fong et al., 2013). However, potassium citrate dose-dependently
inhibited osteoclast formation at similar concentrations (Granchi
et al., 2017). Importantly, osteoclast inhibition was also observed
upon addition of potassium ion K+ (KCl) (Yeon et al., 2015),
suggesting that the effect of citrate may depend on media
composition. Another potentially important link to Krebs cycle
metabolites was proposed through glutamate metabolism. The
glutamine transporter from SLC family 1a5 and glutaminase-
1 converting glutamine to glutamate were shown to increase
during osteoclastogenesis, leading authors to speculate that
glutamate can be converted to α-ketoglutarate, which fuels energy
metabolism (Indo et al., 2013). However, actively secretion of
glutamate by osteoclasts was also demonstrated (Morimoto et al.,
2006; Seidlitz et al., 2010). Thus, while glutamate likely plays
an important role during osteoclastogenesis, it is difficult to
conclude if its main action is relevant to energy metabolism. No
information about other Krebs cycle intermediary is currently
available. Thus, while the decreased citrate levels associated
with cancer may affect osteoclastogenesis, the outcome of these
interactions is uncertain and likely influenced by the localized cell
microenvironment.

Mitochondria
The presence of highly proliferative cancer cells results in
hypoxic microenvironment (Al Tameemi et al., 2019), which
stimulates osteoclast differentiation and supports resorption
(Arnett, 2010; Knowles, 2015). Hypoxic environment leads
to a surprising improvement of mitochondrial function and
ATP production in osteoclasts (Knowles, 2015), which may be
due to reduction in proton leak and uncoupled respiration
noted in mitochondria exposed to low oxygen tension (Gnaiger
et al., 2000). Mitochondria activity is also linked to the
production of reactive oxygen species (ROS) such as peroxide
and superoxide (Knowles, 2015). ROS generate oxidative stress,
which is counteracted by cellular glutathione (GSH) producing its

oxidized form, glutathione disulfide (GSSG). Oxidative stress has
a bimodal effect on osteoclasts: while moderate stress resulting
in GSH/GSSG decrease is stimulatory for osteoclastogenesis,
severe stress leading to glutathione depletion inhibits resorption
and limits osteoclast lifespan (Kim et al., 2006; Le Nihouannen
et al., 2010; Domazetovic et al., 2017). Cancer cells also
actively modulate their oxidative microenvironment by secreting
antioxidants, such as peroxiredoxin 4 (Rafiei et al., 2015;
Tiedemann et al., 2019), suggesting tumor-associated oxidative
stress may differ for tumor types and stages of their growth.
Additionally, oxidative stress is also induced by chemotherapy,
such as doxorubicin (Rana et al., 2013). Thus, hypoxia and
potentially oxidative stress generated by cancer cells may provide
a microenvironment that supports osteoclastogenesis.

pH and Lactate
Changes in pH are integral to the metabolic glucose processing.
Anaerobic glycolysis results in acidification due to production of
two molecules of lactic acid per each glucose (lactic acidosis),
while complete mitochondrial oxidation of glucose generates
six protons per glucose. Active metabolism of proliferating
cancer cells is well recognized to produce acidic extracellular
environment (Corbet and Feron, 2017). Acidification is also
known to be a prerequisite of successful osteoclastogenesis
(Arnett, 2010; Yuan et al., 2016; Arnett and Orriss, 2018).
Osteoclasts sense extracellular acidosis through the G-protein
coupled receptors, including ovarian cancer G-protein-coupled
receptor 1 (OGR1) (Yang et al., 2006; Pereverzev et al., 2008;
Li et al., 2009; Yuan et al., 2014) and T cell death-associated
gene 8 (TDAG8) (Hikiji et al., 2014). In addition, osteoclasts
express acid-sensitive ion channels (ASIC) (Jahr et al., 2005;
Li et al., 2013). Acidosis was demonstrated to induce nuclear
translocation of key osteoclastogenic transcription factor, nuclear
factor of activated T cells 1c (NFATc1) (Komarova et al., 2005; Li
et al., 2013) resulting in improved osteoclast formation (Granchi
et al., 2017), resorptive activity (Komarova et al., 2005; Ahn et al.,
2016), and survival (Pereverzev et al., 2008). Lactate was shown
to be taken up by osteoclast precursors via MCT1 and to drive
oxidative phosphorylation thereby facilitating bone resorption
(Lemma et al., 2017). Thus, tumor-associated tissue acidosis
and increased extracellular lactate can be expected to promote
osteoclast differentiation and activity.

Metabolic Adaptation of Osteoclasts to
Cancer Microenvironment
Metastasizing cancer cells generate unique bioenergetics
microenvironment: while normal substrates, glucose and
oxygen, are consumed by cancer cells, and therefore not
available for osteoclasts, cancer cells generate alternative
substrates such as pyruvate and lactate. In addition, acidic,
hypoxic and potentially oxidative environment is uniquely
supportive for osteoclastogenesis. To successfully perform in
this altered microenvironment, osteoclasts need metabolic
sensors to adapt their energy metabolism (Figure 1). We
have shown that soluble factors produced by breast cancer
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cells induce a change in osteoclast mTOR signaling (Hussein
et al., 2012). Moreover, targeting mTOR with rapamycin in
the mouse model of experimental bone metastases resulted in
a significant attenuation of cancer-induced osteolysis (Hussein
et al., 2012; Abdelaziz et al., 2014), but had minimal effect
on osteoclasts in the cancer-free bones of the same animals
(Abdelaziz et al., 2015). These findings suggest that metabolic
sensors are central for osteoclast adaptation to the metastatic
microenvironment, and may represent therapeutic targets
reviewed in the following section.

EFFECT OF BIOENERGETICS
TARGETING THERAPIES ON BONE
METASTASIS

Therapeutics targeting metabolic sensors, such as metformin for
AMPK and rapamycin for mTOR, have been successfully used
for many years in a number of conditions including diabetes
(Kezic et al., 2018) and organ transplantation (Augustine et al.,
2007; Nguyen et al., 2019). In this section we attempted to
review available evidence for the effectiveness of metformin and
rapamycin and their analogs in preventing and/or controlling
bone metastases.

Metformin
Metformin is an anti-diabetic drug that activates AMPK (Faubert
et al., 2015). In cancer cells, loss of AMPK induced a typical
Warburg effect in transformed and non-transformed cells
(Faubert et al., 2013), and promoted unchecked mTORC1 activity
(Inoki et al., 2003). Activation of AMPK has multiple anti-tumor
effects (Schulten, 2018), particularly in colorectal and prostate
cancer patients (Coyle et al., 2016). In bone, in addition to
its role in osteoclastogenesis, AMPK reduced the expression
of osteoclastogenic cytokine RANKL (Lee et al., 2010; Wang
et al., 2013; Cuyàs et al., 2017). While reports of treatment
of bone metastases with metformin are sparse (Wang et al.,
2013), a reduction in growth of primary tumor and metastases
was demonstrated in a model of castration-resistant prostatic
carcinoma upon treatment with metformin and simvastatin
(Babcook et al., 2014). Limited number of reports regarding
the effectiveness of metformin can be explained by the study
that demonstrated that metformin looses its ability to activate
AMPK in hypoxic conditions, which are commonly associated
with growing tumor (Garofalo et al., 2013).

Rapamycin and Its Analogs
In preclinical models of breast cancer bone metastases,
rapamycin reduced osteolysis and bone pain, and improved
animal survival (Hussein et al., 2012; Abdelaziz et al., 2014).
Everolimus, a rapamycin analog more selective toward mTORC1
pathway, was also effective in preventing or treating experimental
bone metastases from breast (Simone et al., 2015; Browne
et al., 2017), prostate (Morgan et al., 2008), and lung (Yu
et al., 2014) cancers. Several clinical trials evaluated the

effectiveness of everolimus therapy in the treatment of hormone-
receptor positive, Her2/Neu negative advanced breast cancer
patients. A phase III, double-blind, randomized international
BOLERO-2 trial compared the combination of anti-estrogen
aromatase inhibitor exemestane with everolimus or placebo
in postmenopausal women with advanced breast cancer. In
addition to increasing progression-free survival (Yardley et al.,
2013), everolimus markedly decreased levels of bone resorption
biomarkers in patients with or without bone metastases (Gnant
et al., 2013). RADAR clinical trial reported the effectiveness of
everolimus in increasing the time to progression in a phase
II double-blind, placebo-controlled, randomized discontinuation
study in advanced breast cancer patients with bone metastases
only (Maass et al., 2013). Thus, targeting mTOR appears
promising in preclinical and clinical studies.

OVERALL CONCLUSION

The presence of cancer cells in the bone microenvironment likely
results in local hypoglycemia and hypoxia. However, an increased
glycolysis due to the Warburg effect in cancer cells may provide
alternative metabolic substrates such as superfluous pyruvate
and lactate. Adaptation of osteoclasts to such environment
likely require the activity of metabolic sensors AMPK and
mTOR. Importantly, osteoclasts are known to successfully adapt
their mitochondrial function to conditions of hypoxia, which
in osteoclasts stimulates ATP production, differentiation and
function (Knowles, 2015). Acidification is another cancer-driven
change in the microenvironment that is known to be specifically
stimulatory for osteoclast formation and function (Arnett and
Orriss, 2018). Thus, osteoclasts formed in the osteolytic tumor
lesions are likely different from physiologically formed in their
reliance on alternative metabolic substrates, adjusted activity
of metabolic sensors, and unusual mitochondria function. Of
interest, the combination of syrosingopine-mediated inhibition
of MCT1 and 2 with metformin was recently demonstrated to
result in synthetic lethality for cancer cells (Benjamin et al., 2018).
We suggest that such drug combinations may target both cancer
cells and cancer-supportive osteoclasts alleviating destructive and
painful bone metastasis.
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