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Abstract Background/purpose: Staphylococcus aureus (S. aureus) has been suggested to be
an initiative pathogen in peri-implantitis because of the solid affinity to titanium. However,
the detail pathogenesis for the peri-implantitis initiation by S. aureus is still lacking. This study
aimed to in vitro examine the gelatinases’ activities of monocytic U937 cell and human gingival
fibroblast after challenges with S. aureus lipoteichoic acid (LTA) and peptidoglycan (PGN).
Materials and methods: Releases of gelatinases, including matrix metalloproteinase (MMP)-2
and �9, from cells were measured by zymography. The releases were further examined after
being given the S. aureus LTA/PGN. Roles of nuclear factor kappa B (NF-kB) and mitogen-
activated protein kinase (MAPK) pathways on the enzyme releases were examined by adminis-
trating inhibitors.
Results: S. aureus LTA and PGN increased the activities of pro-MMP-9 from U937 cells and pro-
MMP-2 and MMP-2 from gingival fibroblasts. By giving the NF-kB inhibitor, the enhanced gela-
tinase activities in both cells were attenuated. In U937 cells, the enhanced pro-MMP-9 could
further be attenuated by MAPK inhibitors, including extracellular signal-regulated kinase 1
and 2 (ERK1/2), P38 MAPK, and c-Jun N-terminal kinase (JNK) inhibitors; however, the atten-
uation by MAPK inhibitors could not be observed for MMP-2 in gingival fibroblasts. Nevertheless,
in gingival fibroblasts, the pro-MMP-2 could be attenuated by JNK inhibitor.
Conclusion: S. aureus could enhance gelatinase activities of gingival fibroblasts and
U937 cells, via NF-kB. The MAPK pathway was also involved in MMP-9 activity of
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U937 cells; however, the involvement of MAPK in MMP-2 activity of gingival fibroblasts
was questioned.
ª 2022 Association for Dental Sciences of the Republic of China. Publishing services by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Staphylococcus aureus (S. aureus) is a Gram-positive
opportunistic bacterium, which has a strong affinity to ti-
tanium surfaces, and is considered as a major pathogen
which is associated with medical device-related in-
fections,1 especially when they occur on implanted mate-
rials.2 For instance, S. aureus is a common infection source
related to metal-biomaterial, joint, bone, and soft tissue.3

Studies have also reported the association between the
presence of S. aureus and the peri-implantitis although it is
not considered to be the periodontal pathogen.4e9

The cell wall of S. aureus, unlike that of Porphyromonas
gingivalis (a common periodontal pathogen), does not
contain lipopolysaccharides (LPS) structure but has lip-
oteichoic acid (LTA) and multilayer peptidoglycan (PGN),
which can also activate a variety of signals, including nu-
clear factor kappa B (NF-kB) and mitogen-activated protein
kinase (MAPK) pathways.10e13 The activated NF-kB and
MAPK translocate to the nucleus and play an important role
in the production of varied cell mediators, including matrix
metallopeptidases (MMPs).14e19

MMPs, a family of zinc-containing endopeptidases, act as
the turnover of the extracellular matrix. Besides, they are
considered to play important roles in morphogenesis, tissue
remodeling, and diseases, including periodontitis.20,21

Gelatinases are members of MMPs, which have been mainly
associated with basement membrane degradation under
pathological conditions. There are two forms of gelatinase:
the type A (MMP-2) typically express in normal epithelial
cells, endothelial cells, and fibroblasts including gingival fi-
broblasts;22 the type B (MMP-9) mainly express in inflamma-
tory cells including monocytes and macrophages.23 The
special attention has been paid to the role of gelatinases,
released from the local gingival, periodontal and recruited
inflammatory cells, in periodontitis and peri-implantitis.24,25

Up todate, however, the knowledge related to thegelatinase
activities in gingiva after S. aureus infection is still lacking.

The aim of this study was to in vitro evaluate the effect
of cell wall components from the S. aureus (LTA and PGN)
on the gelatinase activities, as well as the involvement of
NF-kB and MAPK pathways, in monocytic U937 cells, a
human histiocytic lymphoma cell line, and in human
gingival fibroblasts.
Materials and methods

U937 cells and gingival fibroblasts

In this study, the human monocytic U937 cells used were
purchased from American Type Culture Collection, whereas
1322
the gingival fibroblasts were gained from three systemically
healthy patients of 40e70 years of age. Biopsies were taken
during crown lengthening surgeries and the fibroblasts were
harvest as described previously.26 Briefly, the epithelium of
collected gingiva specimens were removed after being
immersed in Leibovitz medium (Invitrogen, Grand Island,
NY, USA) containing 10% fetal bovine serum (FBS) (Invi-
trogen) and 2 mg/mL Dispase II (Roche Diagnostics, Indi-
anapolis, IN, USA) for 48 h. Gingival fibroblasts migrated
from the explants which were incubated in Dulbecco’s
modified Eagle medium/Nutrient Mixture F-12 (Invitrogen)
containing 10% FBS with the pre-treatment in medium
containing type I bacterial collagenase (SigmaeAldrich, St
Louis, MO, USA) and 10% FBS at 37 �C for 24 h. Fibroblasts
between passages 2 and 6 were selected. All procedures
were approved by IRB of Taipei Tzu Chi Hospital, New Tai-
pei City, Taiwan (No. 10-X-013). For all the following
experimental procedures, the U937 cells and fibroblasts
were maintained in Roswell Park Memorial Institute 1640
medium (Invitrogen), pH 7.4, supplemented with 10% FBS
and incubated at 37 �C in a humidified atmosphere of 5%
CO2.

Cell viability by MTS assay

U937 cells and gingival fibroblasts were seeded in 96 well
plates, with a density of 5000 cells/well, respectively. Cells
were treated with the concentrations of S. aureus LTA
(0e10 mg/ml) and PGN (0e100 mg/ml) (InvivoGen) for 24hr
and 48hr. The MTS reagent (20 ml) (Promega, Madison, WI,
USA) was added to each well, and cells were incubated at
37 �C for a further 2hr. The absorbance was detected at
490 nm with a Microplate Reader.

Gelatin zymography

Using the zymography, the gelatinase releases in culture
supernatants were examined. Gelatin zymography was
performed using sodium dodecyl sulfate-polyacrylamide
gels (SDSePAGE, 10%) copolymerized with 0.1% gelatin.
After being measured with the BCA protein assay (Pierce,
Rockford, IL, USA), the protein was loaded into the gel
lane. Gels were subjected to electrophoresis at 90 V for
120 min and then washed twice for 20 min in renaturing
buffer (2.5% Triton X-100) at room temperature, followed
by 16e18 h at 37 �C in developing buffer. The resulting gels
were stained with 0.5% Coomassie Brilliant Blue (Sigma-
eAldrich). The enzymatic activities of gelatinases (pro-
MMP-9, pro-MMP-2, and MMP-2) were detected as 92, 72,
and 66 kDa bands over the dark background respectively.
The gel images were then scanned directly and quantified
by densitometric analysis with software ImageJ.
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Experimental design

U937 cells, with a density of 106 cells/ml, were put in each
well of the 48 well plates. In the experiment of gingival
fibroblasts, a density of2x104 cells was selected. Before
studies, the starvation was accomplished in a serum-free
medium for 24hr. After being treated with different con-
centrations of S. aureus LTA and PGN for 48hr, the super-
natants were collected, centrifuged, and stored at �80 �C
for later analysis. The ranges of 0e10 mg/ml and 0e100 mg/
ml were selected for LTA and PGN, respectively, according
the previous report.27 In the experiment treated with NF-kB
inhibitor (100 mM PDTC) (SigmaeAldrich) and MAPK in-
hibitors (10 mM SCH7 72984 for extracellular signal-
regulated kinase 1 and 2, ERK 1/2; SB203580 for P38
MAPK; and SP600125 for c- Jun N-terminal kinase, JNK)
(TargetMol, Boston, MA, USA), cells were pretreated with
inhibitor 1e2 h prior to stimulation. Then, S. aureus LTA or
PGN (10 mg/ml in each) was added for 48 h. The superna-
tants were collected, centrifuged and stored at �80 �C for
later zymography.

Statistics

All data were presented as mean � standard deviation. The
normality of the distribution of variables was assessed with
the KolmogoroveSmirnov test. One-way ANOVA with
Tukey’s HSD/Fisher’s protected LSD test, or KruskaleWallis
test was applied for intergroup comparisons. A P
value < 0.05 was considered statistically significant. All
data were obtained from at least 3 independent
experiments.
Figure 1 Viability of U937 cells and gingival fibroblasts after tr

LTA or PGN. Data represent the percentage of cell viability relativ
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Results

Cell viability (MTS assay)

The cell viabilities of U937 cells and gingival fibroblasts in
different concentrations of S. aureus LTA (0e10 mg/ml) and
PGN (0e100 mg/ml) were evaluated. All stimulants showed
no cellular toxicity to U937 cells or gingival fibroblasts in
24hr and 48hr (Fig. 1).

Gelatinase activities in U937 cells/fibroblasts after LTA or
PGN treatment
In U937 cells, S. aureus LTA and PGN significantly increased
the activities of pro-MMP-9 if the concentration was over
10 mg/ml (Fig. 2A). Similar findings were also observed in
gingival fibroblasts for pro-MMP-2 and MMP-2 activities
(Fig. 2B).

Role of NF-kB pathway on enhanced gelatinases in
U937 cells or gingival fibroblasts
The pro-MMP-9 activities were significantly increased in
U937 cells after LTA and PGN treatments; however, the
increased activities were reduced after being given the NF-
kB inhibitor of PDTC (Fig. 3A). In gingival fibroblast, the
pro-MMP-2 and MMP-2 activities presented similar: they
increased after LTA or PGN treatment but reduced after NF-
kB inhibitor (Fig. 3B).

Role of MAPK pathway on stimulated MMPs in U937 cells
or gingival fibroblasts
In U937 cells, the LTA or PGN treatment significantly
enhanced the pro-MMP-9 activity (Fig. 4A). However,
eatment with Staphylococcus aureus cell wall components of

e to that of the control, and are given as mean � SD (n Z 5).



Figure 2 Effect of Staphylococcus aureus LTA or PGN on activities of gelatinases released from U937 cells and gingival fi-

broblasts. Effect of LTA (left) and PGN (right) on pro-MMP-9 activities released from U937 cells (A), and on pro-MMP-2/MMP-2
activities released from gingival fibroblasts (B). The gel images showed the enzyme activities released from the cells after 48 h
treatment by zymography, whereas the underneath plots represented the statistical results. Data represent the relative intensity
of enzyme activities, and the statistical results are given as mean � SD (n Z 3) (*: significance at P < 0.05).

Y.-H. Chang, C.-Y. Chiang, E. Fu et al.
the enhanced activities could be reduced by any of the
MAPK inhibitors, despite that for ERK1/2, P38 MAPK, or
JNK.
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In gingival fibroblasts, LTA-enhanced pro-MMP-2 activity
could be attenuated after being given any of the MAPK in-
hibitors (statistically indifferent noticed for ERK1/2)



Figure 3 Role of NF-kB in the LTA- or PGN-enhanced gelatinases released from U937 cells or gingival fibroblasts. Role of NF-
kB inhibitor (PDTC) in the enhanced pro-MMP-9 released from U937 cells (A), and in the enhanced pro-MMP-2/MMP-2 released from
gingival fibroblasts (B). The gel images showed the enzyme activities released from the cells after 48 h treatment(s) by zymog-
raphy, whereas the underneath plots represented the statistical results. Data represent the relative intensity of enzyme activities,
and the statistical results are given as mean � SD (n Z 4) (* and #: significant different vs media and vs LTA/PGN treatment,
respectively, at P < 0.05).
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Figure 4 Role of MAPK in the LTA or PGN enhanced gelatinases released from U937 cells or gingival fibroblasts. Effect of
MAPK inhibitors, including the inhibitors for ERK1/2 (SCH7 72984), P38 MAPK (SB203580), and JNK (SP600125), in the enhanced pro-
MMP-9 released from U937 cells (A), and on the enhanced pro-MMP-2/MMP-2 released from gingival fibroblasts (B). The gel images
showed the enzyme activities released from the cells after 48 h treatment(s) by zymography, whereas the underneath plots
represented the statistical results. Data represent the relative intensity of enzyme activities, and the statistical results are given as
mean � SD (n Z 4) (* and #: significant different vs media and vs LTA/PGN treatment, respectively, at P < 0.05).
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(Fig. 4B). For PGN-increased activity, however, the reduc-
tion was observed only for JNK. Moreover, the LTA/PGN-
enhanced MMP-2 activities were not attenuated by any of
MAPK inhibitors (Fig. 4B).

Discussion

To elucidate the possible role of S. aureus on peri-
implantitis, the effect of bacterial components of LTA and
PGN on the gelatinase activities in gingival fibroblast and an
inflammatory cell of monocytic U937 cell was evaluated
in vitro. According to the cell wall structure and the reac-
tion to the Gram stain, bacteria can be classified into two
categories, including the Gram-positive or the Gram-nega-
tive.28 The main structure of the bacteria cell wall is PGN,
which maintains the shape and provides protection. Gram-
positive bacteria contain thick layers of PGN, which
enable to retain of the crystal violet dye during Gram
staining. However, the Gram-negative bacteria have only a
single thin layer of PGN with an outer membrane and LPS
(endotoxin). S. aureus, as one of the Gram-positive bacte-
ria, does not contain LPS but possesses LTA, which physi-
ochemical properties similar to LPS.29 These cell wall
components including LTA, PGN, and LPS, can be recognized
by toll-like receptor 2.30,31 In the present study, we found
that, after the treatment of S. aureus LTA or PGN, the
gelatinase activities increased in U937 cells and gingival fi-
broblasts (Fig. 2). Similar to our results, Souza et al. showed
that S. aureus LTA and PGN increase the MMP-9 activity of
RAW 264.7 macrophages.32 Kumar et al. also presented that
intraocular injection of S. aureus LTA and PGN increased
MMP-2 and -9 gelatinases expression in rat retina.33

Our results further showed, in U937 cells and gingival
fibroblasts, the S. aureus LTA- or PGN-enhanced gelatinase
activities could be regulated by the NF-kB pathway (Fig. 3).
Besides, the MAPK pathway, including ERK1/2, p38 MAPK,
and JNK subfamilies, were also involved with the enhanced
pro-MMP-9 activity in U937 cells (Fig. 4). However, in
gingival fibroblasts, the enhanced MMP-2 activities were not
associated with the three MAPK sub-pathways, although the
enhanced pro-MMP-2 activities were consistently regulated
by JNK (Fig. 4). Our findings might indicate that the two
different cell types of the U937 cells and the gingival fi-
broblasts examined in this study exhibited different
mechanisms in reacts to the stimulants from S. aureus LTA
and PGN. Tsai et al. showed that S. aureus enhanced MMP-9
level in human aortic endothelial cells via activation of NF-
kB, ERK1/2, p38 MAPK, but not JNK pathway,34 whereas
Souza et al. revealed that S. aureus LTA increased MMP-9
expression on ERK rather than p38 MAPK or JNK pathway
in RAW 264.7 macrophages.32

Besides, MMP activity could be regulated by several
growth factors and cytokines. Studies have shown that the
membrane-type I-matrix metalloproteinase (MMP-14) and
the tissue inhibitors of metalloproteinase-2 (TIMP-2)
participate in the pro-MMP-2 activation,35 which reveal the
complexity of mechanisms. These may partially explain the
unexpected results in the experiment treated with MAPK
inhibitors in LTA or PGN stimulated gingival fibroblasts. For
instance, the LTA- and PGN-enhanced MMP-2 activities
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could not be attenuated by any of the MAPK inhibitors
(Fig. 4B). Recent studies have further indicated a cross-talk
between gingival fibroblasts and monocytes,26,36 which may
further affect the MMP activities observed in the present
study. In the current experiment, two types of cells
(U937 cells and the primarily cultured gingival fibroblasts)
were selected and used. The U937 cells are a monocytic
cell line derived from histiocytic lymphoma;37 however, this
cell line has been widely used to study MMP expression and
activity.22,38 In gingival fibroblasts, this is the first study
that showed the MMP-2 activities could be enhanced after
challenging S. aureus via the NF-kB pathway, while that via
MAPK was still uncertain. Further detailed investigation is
still indicated.

In conclusion, the present in vitro study indicated that
the cell wall structures of S. aureus could enhance the
gelatinase activities released from the monocytic
U937 cells and the gingival fibroblasts, via the up-regulation
of NF-kB. Our results further suggested that the MAPK
pathway might involve in the S. aureus enhanced MMP-9
activities from U937 cells; however, the involvement of
MAPK in the enhanced MMP-2 from gingival fibroblasts might
still be questioned. A further detailed investigation is
indicated.
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