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Abstract: Standard tuberculosis (TB) management has failed to control the growing number of
drug-resistant TB cases worldwide. Therefore, innovative approaches are required to eradicate TB.
Model-informed precision dosing and therapeutic drug monitoring (TDM) have become promising
tools for adjusting anti-TB drug doses corresponding with individual pharmacokinetic profiles. These
are crucial to improving the treatment outcome of the patients, particularly for those with complex
comorbidity and a high risk of treatment failure. Despite the actual benefits of TDM at the bedside,
conventional TDM encounters several hurdles related to laborious, time-consuming, and costly
processes. Herein, we review the current practice of TDM and discuss the main obstacles that impede
it from successful clinical implementation. Moreover, we propose a semi-automated TDM approach
to further enhance precision medicine for TB management.

Keywords: personalized medicine; tuberculosis; therapeutic drug monitoring; model-informed
precision dosing; clinical decision support system

1. Introduction

Despite numerous efforts to end tuberculosis (TB) over the past several decades, TB
remains a major issue in global health and infectious disease-related mortality [1]. The
World Health Organization (WHO) estimated almost 10 million new cases of TB in 2020 [1].
Standard treatment has failed to control the disease efficiently. Its significance was high-
lighted by the enormous number of deaths in that year, approximately 1.5 million, which
was reported as the first increase in more than a decade [1]. Moreover, the 2019 coronavirus
(COVID-19) pandemic has interfered with patients’ ability to obtain sufficient treatment [2].
The pandemic may potentially contribute to the growing incidence of multi-drug resistant
(MDR) TB. Therefore, the elimination of TB requires more innovative approaches.

Precision medicine is an evolving approach to treating and preventing disease by
taking into account individual variability in genes, the clinical situation, demographics,
environment, and lifestyle [3,4]. The pillar of this approach is that different drug responses
to treatment are due to inter-individual variability (IIV) [4,5]. IIV in drug response is an
issue in clinical practice since it is difficult to predict who will be treated successfully and
who will suffer from an adverse drug reaction (ADR) and treatment failure [4,6]. Patients
who belong to edge populations, such as those with renal or hepatic impairments, criti-
cally ill patients, and patients taking concomitant drugs, will benefit more from precision
medicine [7]. Therefore, precision medicine is considered a promising approach regarding
optimizing current anti-TB drug dose regimens to ensure safe and effective treatment [8,9].
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Model-informed precision dosing (MIPD) has become a promising tool in implement-
ing precision medicine, particularly in TB treatment [4,10,11]. This tool can support the
adjustment of anti-TB drug doses to correspond with individual pharmacokinetic (PK)
profiles and to assist in therapeutic drug monitoring (TDM) implementation [8,12,13]. In ad-
dition, TDM may help generate essential data on the pharmacokinetics–pharmacodynamics
(PK/PD) of the treatment to better understand the underlying reasons for IIV in drug ex-
posures [10,14]. TDM is usually implemented only when the treatment fails or an ADR
appears in clinical practice [14,15]. Due to the rapid progression of the TB disease, it is
necessary to ensure effective treatment. Thus, TDM should be an indispensable part of
the treatment plan of TB patients and should be utilized in routine practice to optimize
drug exposure from the beginning of treatment [14,16]. Recently, many lines of evidence
have suggested a potentially important role of TDM for TB treatment in the era of precision
medicine [8,12,17,18]. For instance, a previous case-series study showed that patients with
delayed sputum conversion and complicated clinical situations had improved treatment
response following dose adjustment according to the TDM result [18]. The measured
concentration showed a low value compared to the target therapeutic range of at least
Rifampicin (RIF), the key drug of TB treatment [18]. This study has shown the clinical
advantage of TDM at the bedside, which can be helpful for TB eradication.

Conventional TDM is applied by taking the blood at the peak concentration and com-
paring this measured concentration with the therapeutic reference range [12,17]. Nonethe-
less, this approach has a disadvantage. The clinical outcome of anti-TB drugs is associ-
ated with drug exposure, rather than maximum concentration achieved [14,19]. Hence,
frequent sampling is required to calculate this observed exposure in order to obtain a
reliable measure of exposure to anti-TB drugs in conventional TDM practice [14,20]. This
method requires a lot of time and human resources [20]. Limited sampling strategies (LSS)
have been proposed to predict exposure with high precision while using fewer sampling
points [21,22]. This strategy will improve the convenience of PK sampling for patients.
A two-sampling-time scheme (2- and 6-h post-dose) for most anti-TB drugs is generally
considered [12,17]. However, this sampling scheme is not applicable for some anti-TB
drugs, such as rifabutin, which is better represented by a 3 h and 7 h post-dose scheme, and
rifapentine and para-aminosalicylic (PAS), which have better peak concentrations at 5 h and
6 h samples, respectively [12,17]. The integration of the observed drug concentration with
model-informed precision dosing in order to provide individual dosage using Bayesian
forecasting has made this approach more accessible [23,24]. Despite all the conveniences
that were recently established, the application of TDM remains limited to some central-
ized and high-standard facilities [16,25]. Several hurdles related to costly, laborious, and
time-consuming processes have restricted access to TDM for most TB patients, particularly
those in developing countries [14,16]. Recent developments in advanced technological and
computational approaches have shown potential in improving TDM to bring it closer to the
patient [4,10,25]. In this article, we review the current practice of TDM and discuss the main
obstacles that hamper it from successful clinical implementation. Moreover, we propose
a novel strategy to further enhance precision medicine for TB management through the
innovation of the TDM process.

2. Overview of Therapeutic Drug Monitoring in TB Treatment

Key aspects of successful TB treatment have been identified as patients’ adherence and
adequate drug exposure, particularly to the key drugs of treatment (INH, RIF, PZA) [26,27]. In
addition to direct observed therapy, short-course strategy (DOTs), the latest ATS guidelines
recommend TDM in patients infected with Mycobacterium tuberculosis with the possibility of
poor prognosis or at risk for altered drug exposure [27]. Nevertheless, TDM implementation
is seldom used in clinical settings, and guidelines do not specify PK/PD target ranges. The
potential for underdosing with the standard regimen has raised concerns regarding the
effectiveness of the current regimen. Many studies have reported that the current doses for
first-line anti-TB drugs used internationally provide low exposure to many patients [28].
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On the other hand, high concentrations of anti-TB drugs (such as linezolid (LZD), PZA,
INH, cycloserine (CS), bedaquiline (BDQ), clofazimine (CFZ), ethambutol (EMB), and
moxifloxacin (MFX)) were suggested to contribute to the increased risk of ADR [17,29,30].
Treatment interruptions, drug replacements, prolonged treatment length, hospitalization,
low compliance, and increased resistance to TB drugs may be caused by adverse events
during TB treatment [31]. The difference in exposure of the current standard dose among
TB patients is prominently caused by IIV [32]. We also present evidence regarding the
clinically relevant concerns regarding altered drug exposure in Table 1.

Table 1. Evidence of altered drug exposure and its clinical relevance.

Clinical Relevance Anti-TB
Drug Evidence

Inadequate drug levels
may lead to a delay in
culture conversion and

treatment failure

RIF

Current standard dose of RIF has shown inadequate levels of RIF and may contribute to
the treatment failure and relapse, high dose RIF has been evaluated and showed

promising results for shortening the treatment duration and obtaining early bacterial
conversion [28,33].

PZA Low concentration of PZA with a standard dose was associated with the delayed
culture conversion, even though the DOTs had been implemented [34].

Low drug levels may
acquire drug resistance

INH

NAT2 rapid acetylator has a faster clearance rate of INH from the liver, therefore
reducing the plasma concentration and exposure of INH and eventually decreased

sputum conversion rates and poorer microbiological outcomes [35,36].
Patients with rapid acetylator can mostly be found in patients with drug-resistant TB [37].

RIF Low exposure of RIF during the initial phase of therapy may put INH under
monotherapy, which will eventually emerge as drug resistance [32].

High drug levels may
cause adverse events

LZD

A previous study from China found that Cmin of LZD was significantly higher in the
patients with thrombocytopenia (Cmin = 8.81 mg/L, p < 0.0001) [38].

Another study from Taiwan reported that the Cmin and AUC0–24 h of LZD in patients
with thrombocytopenia were significantly higher (Cmin = 13 mg/L and

AUC0–24 h = 451 mg·h/L) [39].

PZA

Pyrazinoic acid, as an active metabolite of PZA, increases serum uric acid based on its
trans-stimulatory effect on URAT1, causing the reabsorption of urate from the luminal

side into tubular cells and eventually hyperuricemia [40,41].

The accumulated metabolite concentrations of pyrazinoic acid and
5-hydroxy-pyrazinoic acid have been linked to the PZA-induced liver injury [42].

INH
Although it remains arguable, high concentrations of INH also may increase the risk of
drug-induced liver injury in slow acetylator patients due to slow clearance rate of INH

from liver [43,44].

RIF: Rifampicin; PZA: Pyrazinamide; INH: Isoniazid; LZD: Linezolid; NAT2: N-acetyltransferase 2; DOTs: Direct
observed therapy, short-course; URAT1: human urate transporter 1; Cmin: minimum concentration; AUC0–24h:
area under curve from 0 to 24 h; TB: tuberculosis.

To overcome the problems mentioned above, TDM has been advised as a solution in
order to maintain the therapeutic concentrations of anti-TB drugs within a desired range. In
this section, we will discuss the currently available approaches to interpreting TDM data.

2.1. Conventional TDM

In conventional TDM, the drug concentration measured is interpreted by referring
to the therapeutic range [20]. The therapeutic range is defined as the concentration range
that can treat the disease safely and effectively [17,45]. Conventional TDM has several
advantages, including direct implementation and uncomplicated interpretation [20]. De-
spite these advantages, conventional TDM is a laborious process [16]. By monitoring the
drug concentration at a steady state, the contribution of PK variability to differences in
dose requirements can be evaluated [46]. Thus, the sample should be taken in a steady
state. Another weakness of conventional TDM is the use of one representative measured
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concentration as a surrogate for the overall drug exposure [47]. In anti-TB drugs, peak con-
centration (Cmax) is frequently used to interpret therapeutic range, or trough concentration
(Cmin) is associated with the exposure [45,48]. Sample timing is critical in conventional
TDM [20,49], and the sample should be taken within the time window in order to be
interpreted accurately [17,25,50]. Lastly, using therapeutic range as the target of treatment
monitoring may lead to suboptimal attainment of the PK/PD target. This is especially
true for drugs with a wide therapeutic range, such as RIF and PZA [12,15,17]. Moreover,
the dose adjustment performed in this approach has no clear guidelines [25,50,51]. The
dose adjustment is usually conducted according to the physician’s judgment [18,51,52]
or is generally made based on a mathematical “rule of three”, changing either the dose
or dosing interval (Dettli’s rule) [53]. The rule of three, known as Dettli’s rule, is the
rule for calculation of dose adjustment or dosing interval adjustment based on creatinine
clearance. It is mostly used in patients with renal impairment [20]. In Dettli’s rule, drug
half-lives are not taken into account and the possibility of nonrenal elimination changes
is not considered [53]. For drugs that are primarily eliminated through renal elimination,
Dettli’s rule allows for reasonable individualization of drug dosing [54]. Nevertheless, the
right rule cannot be chosen based on pharmacokinetic principles alone, but rather also on
pharmacodynamic principles [54].

2.2. Model-Informed Precision-Dosing-Based TDM

Model-informed precision dosing (MIPD) is a concept that covers the application of
mathematical models and simulation to predict individual tailored doses [55,56]. Applying
MIPD in TDM aims to improve drug therapy and achieve better patient care by considering
the patient’s characteristics and IIV [20,56]. MIPD in TDM was associated with imple-
menting population PK models [4,10]. A population PK model has several components:
a structural model describing the typical PK value, covariates defining the relationship
between individual PK parameters and specific covariates, the mathematical value of IIV,
and residual variability of the model [57]. It is worth mentioning that the population PK
model can comprehensively evaluate the magnitude of the covariates’ influence on the PK
parameter, consider multiple covariates during the analysis, and estimate PK parameters
such as the area under concentration (AUC) [14,58]. The model can predict the dosing
regimen that enhances the possibility of achieving the PK/PD or toxicity targets using
the individual PK parameters [59–61]. Bayesian forecasting is widely recognized as the
best conceptual framework for implementing TDM and is available via various computer
tools [56,62]. Bayesian forecasting can be used to derive the individual PK parameters from
the measured concentration and estimated the appropriate drug exposure for each individ-
ual, even if only using one single point [20,59,63]. The samples can be taken anytime, and a
steady state may not be required [20]. MIPD and the individual PK parameter estimates’
precision typically increase as more drug concentration samples are added [64,65]. Lastly,
via the gradual improvement of medical technology systems, it is possible that in the near
future MIPD will be directly implemented into electronic medical record systems [66].
Thus, the possible errors and time-consuming processes will be removed during data input
into the MIPD software. Semi-automated TDM is a thorough approach that includes MIPD
as a key step. Although the approach still requires some earlier steps to be conducted by
human resources, MIPD will be integrated into an algorithm for generating automated
result interpretation, dosing recommendations, and TDM reports for each patient. The
outline of the comparison between conventional TDM and semi-automated TDM is shown
in Figure 1.
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3. TDM Implementation in Clinical Practice

The implementation of TDM should become a part of routine TB treatment monitoring,
as recommended by WHO [67]. However, the usage and customs of performing TDM have
not yet been standardized in clinical practice. In order to apply TDM in routine clinical
practice, a proper understanding of its entire process, principles, and benefits is required.
In this section, we discuss the following four steps in performing TDM:

1. Defining the case;
2. Obtaining the blood samples;
3. Measuring drug concentrations;
4. Interpreting the results.

3.1. Defining the Case

Before performing TDM, it is imperative to define the most beneficial case. Patients
with the possibility of low or high exposure to drugs should receive TDM during their
TB treatment [68,69]. The general indications for TDM are widely known as suspected
dose-related toxicity, suspected noncompliance, acute drug overdose, chronic drug abuse,
reduced kidney or liver function, potential interaction with other drugs, evaluation of
absorption, diagnosing undertreatment, guiding withdrawal of therapy, and optimalization
of treatment during early therapy or dosage changes [70]. Although the benefit of TDM
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remains arguable in TB treatment, several lines of evidence have indicated the importance
of TDM for TB treatment, particularly the MDR-TB [19,67]. Furthermore, the new practical
guidelines of the American Thoracic Society (ATS) include TDM for TB treatment [27]. The
guideline specifically mentions the following clinical situations as those that may require
determining plasma concentrations:

1. Poor response to tuberculosis treatment despite adherence and fully drug-susceptible
Mycobacterium tuberculosis strain;

2. Severe gastrointestinal abnormalities: severe gastroparesis, short bowel syndrome,
chronic diarrhea with malabsorption;

3. Drug–drug interactions;
4. Impaired renal clearance: renal insufficiency, peritoneal dialysis, critically ill patients

on continuous renal replacement;
5. HIV infection;
6. Diabetes mellitus;
7. Treatment using second-line drugs.

Looking closely into the suggested clinical situations that require TDM, TDM should
not be implemented only for patients with MDR-TB. DS-TB patients with uncommon clinical
situations, relapse or even delay converters should be evaluated through TDM [71,72]. In
short, patients with complex clinical conditions that may alter the PK characteristics of
drugs, the elderly, and children, are subjects for TDM application [66,69]. To consider the
contribution of age, comorbidities, ethnic group, and other covariates of IIV in PK and PD,
the patient demographics, indications for TDM, dose regimens, and comedications should
be collected accurately.

3.2. Obtaining the Blood Samples

After selecting the target patient for TDM, the second step is to decide which sample is
to be collected for analysis. Current clinical practice is mainly based on plasma samples [69].
To obtain blood samples, it is important to note that time points are adequately selected to
enable accurate optimization of the dose [20,21,73]. Different optimal sampling strategies
to obtain adequate exposure according to specific anti-TB drugs have been developed in
numerous studies [12,15,17,72]. However, 2-point schemes will typically be used (2 and 6 h
after dose) [12,17]. The 2 h post-dose is used to obtain the peak concentration, while the
6 h post-dose is required to portray the possibility of delay absorption [15,17]. Importantly,
both samples should be measured at a steady state.

3.3. Measuring Drug Concentrations

In measuring drug concentration, the selection of instrumentation is considered criti-
cal [14,20]. Several options are available, yet liquid chromatography coupled with mass
spectrometry (LC-MS) is the ideal assay machine to measure drug concentration [14,20]
due to its high sensitivity and specificity. Since the TB treatment regimen contains a com-
bination of several drugs, first- or second-line anti-TB drugs can be measured in a single
run, reducing the cost needed [74,75]. However, developing the method and running the
LC-MS assay requires a highly skilled experimenter [76].

3.4. Interpreting the Results

After the drug concentrations are generated, the clinical pharmacologists/pharmacist
will interpret the PK parameters and PD results. The dose will be adjusted by proportionally
increasing or decreasing the dose as per the reference target range [18,45,73]. In anti-TB
drugs, dose adjustment should be made based on both drug exposure and the minimum
inhibitory concentration (MIC) of the Mycobacterium tuberculosis strain, in order to attain
the optimal PK/PD target [12,14,20,77]. Nonetheless, in practice, MIC measurement is
sometimes not performed. In this case, the therapeutic range using Cmax was used as
the target of evaluation [12,17]. Performing a follow-up of TDM at 1–2 weeks after dose
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adjustment is recommended to ensure that the PK/PD targets are reached, and that the
patient’s condition is improved [69].

4. Evidence of Benefits

Ideally, TDM can provide a meaningful benefit if the results are available and in-
terpreted within days [14,20]. Accordingly, the therapies can be adjusted efficiently. A
previous prospective study reported the benefit of TDM [52]. In this trial, TB patients with
comorbidities had low anti-TB drug levels and a longer time to culture conversion. There-
fore, TDM was conducted by taking the samples 2 h after the dose. Low concentrations
of RIF and INH were observed. A dose adjustment was made based on the physician’s
discretion, after which the patients showed good improvement. This trial emphasized the
importance of TDM in TB treatment. Not only does it improve the patient’s condition, but
it also captures the evidence of underdosing of current anti-TB drugs [78,79]. A recent pop-
ulation PK study from our group also looked at INH dose and NAT2 acetylator status and
highlighted that the current dose is not enough for rapid acetylators, but it is considerably
high for slow ones [59]. These findings have strengthened the importance of individual
dosing in order to reduce the development of drug resistance and avoid the risk of ADR.
In this section, we summarized the studies that show how TDM was applied to the man-
agement of TB patients, the number of cases analyzed, countries usually performing TDM,
characteristics of populations, and clinician responses to drug concentrations (Table 2).
The presented studies clearly demonstrate the improvement of treatment outcome after
dosage adjustment following TDM results for both normal and special populations. The
previous studies took samples at 2 h after dose (C2hr), which in most anti-TB drugs can be
assessed as Cmax. The concentrations were compared to the well-known therapeutic range
of each drug, depending on how each study defined therapeutic range. INH and RIF were
identified as the most frequent drugs with subtherapeutic concentrations. These results
potentially contributed to patients having slow response to TB treatment, as both drugs
are the backbone of therapy. Even though most of the studies adjusted the dose for each
patient, a clear explanation of how the physicians corrected these doses is unavailable.
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Table 2. Studies showing benefits of TDM in TB management.

Author Country Study Design Population
Characteristics Cases (n) Drugs Measured TDM Results Conclusion

Heysell et al.
(2010) [51] USA Retrospective

cohort

DS-TB,
42 slow response

patients
269 normal patients

311

RIF: 600mg
INH: 300 mg

PZA and EMB: weight based
daily dose.

Median C2hr [IQR],
µg/mL

INH: 1.9 (1.1–3.5)
RIF: 7.4 (2.5–11.4)
PZA: 2.5 (1.7–3.2)

EMB: 28.1 (26.5–33.2)
Proportion of patients
with low C2hr, (lower
limit of therapeutic

range, µg/mL):
INH: 33% (<3)
RIF: 33% (<8)
PZA: 0% (<20)
EMB: 31% (<2)

Subtherapeutic concentrations of RIF, INH, and EMB
were frequently observed, dosage adjustment for INH
and RIF from 300 mg and 600 mg daily to 450 mg and
900 mg daily. For intermittent INH interval, the dose

was increased from 900 mg to 1200 mg.
DM was associated with slow response and low RIF

concentrations.
Patients with TDM have 2 months shorter therapy.

Babalik et al.
(2011) [52] Canada Retrospective

case-control

DS-TB,
20 cases (TDM done)
20 controls (no TDM)
8 with HIV (all cases)

40

INH: 5 mg/kg, max 300 mg
RIF: 10 mg/kg, max 600 mg

PZA: 20 mg/kg
EMB: 15 mg/kg

RFB: 0.8 ± 0.3 mg/kg

Mean C2hr ± SD,
(µg/mL)

INH: 2.0 ± 1.3
RIF: 9.1 ± 4

RFB: 0.2 ± 0.1
PZA: 32.9 ± 11.3

Proportion of patients
with low C2hr, (lower
limit of therapeutic

range, µg/mL):
INH: 87% (<3)
RIF: 67% (<8)

RFB: 89% (<0.3)
PZA: 15% (<20)

Subtherapeutic concentrations of RIF, RFB, and INH
were frequently observed. Mean dosage adjustment

± SD, (mg/kg):
INH: 8.1 ± 1.8
RIF: 13.5 ± 1.7
RFB: 2.5 ± 0.9

PZA: 25.5 ± 12.6
Low concentration was found mostly in HIV patients.
Subtherapeutic concentrations associated with longer

therapy duration.
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Table 2. Cont.

Author Country Study Design Population
Characteristics Cases (n) Drugs Measured TDM Results Conclusion

Kayhan et al.
(2011) [80] Turkey

Prospective
observational

cohort

DS-TB,
patients excluded: HIV

and DM
49

INH: 300 mg RIF: 600 mg
PZA: 1500 mg or 2000 mg

(weight adjusted)
EMB: 1000 or 1500 mg (weight

adjusted)

Mean C2hr ± SD,
(µg/mL)

INH: 3.83 ± 2.09
RIF: 6.13 ± 4.27

PZA: 32.2 ± 16.96
EMB: 3.68 ± 2.41

Proportion of patients
with low C2hr, (lower
limit of therapeutic

range, µg/mL):
INH: 29% (<3)
RIF: 74% (<8)

PZA: 20% (<20)
EMB: 18% (<2)

Subtherapeutic concentrations of RIF and INH were
frequently observed, dosage adjustment was
performed in low serum drug concentrations.

Magis-
Escurra et al.
(2012) [18]

Netherlands Retrospective
case series

Relapse TB,
delayed converter 4 RIF, INH, PZA, EMB (doses

were not described clearly)

Patient 1 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: 5.6 (<8)

INH: <0.025 (<3)
PZA: 8.3 (<20)

Patient 2 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: 4.1 (<8)

Patient 3 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: 4.0 (<8)

PZA: 10.0 (<20)
Patient 4 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: 2.3 (<8)

Subtherapeutic concentration of RIF associated with
delayed conversion, dosage adjustment of:

Patient 1:
RIF from 600 mg to 1200 mg

INH and PZA also were adjusted.
Patient 2:

RIF from 600 mg to 1200 mg
Patient 3:

INH from 200 to 250 mg, RIF from 450 to 600 mg, PZA
from 1250 to 2000 mg

Patient 4:
RIF from 600 to 900 mg (not enough to reach the target

concentration) then increased to 1200 mg
The dose adjustment for all patients improved the

treatment outcomes and increased the C2h of RIF to
achieve therapeutic target.
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Table 2. Cont.

Author Country Study Design Population
Characteristics Cases (n) Drugs Measured TDM Results Conclusion

Heysell et al.
(2013) [81] USA Retrospective

cohort

TB-DM: 21 patients
TB-slow responders: 14

patients
35

RIF: 600 mg
INH: 300 mg

INH (intermittent): 900 mg

Mean C2hr ± SD,
(µg/mL):

Daily
INHDM: 2.0 ± 1.3
INHslow: 3.1 ± 1.1
RIFDM: 6.6 ± 4.3
RIFslow: 8.2 ± 6.2

Intermittent
INHDM: 6.0 ± 3.0

INHslow: 11.3 ± 2.5
Proportion of patients
with low C2hr, (lower
limit of therapeutic

range, µg/mL):
Daily

INHDM: 65% (<3)
INHslow: 63% (<3)
RIFDM: 60% (<8)
RIFslow: 41% (<8)

Intermittent
INHDM: 75% (<9)
INHslow: 17% (<9)

Subtherapeutic concentrations of RIF and INH were
frequently observed, dosage adjustment for INH and

RIF from 300 mg and 600 mg daily to 450 mg and
900 mg daily. For intermittent INH dose from 900 mg

was increased to 1200 mg. DM is associated with
subtherapeutic concentration of RIF and INH.

Early dose correction using TDM decreased the number
of slow responders.
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Table 2. Cont.

Author Country Study Design Population
Characteristics Cases (n) Drugs Measured TDM Results Conclusion

Mehta et al.
(2001) [82] USA Retrospective

case series

DS-TB, slow response to
treatment

HIV: 1 patient
6

RIF: 600 mg
INH: 300 mg

PZA: 25 mg/kg
EMB: 25 mg/kg

Patient 1 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: 1.5 (<8)

Patient 2 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: 5.9 (<8)

Patient 3 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: <1.0 (<8)

Patient 4 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: <1.0 (<8)

Patient 5 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: <1.0 (<8)

Patient 6 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: 3.54 (<8)

Subtherapeutic concentrations of RIF were observed in
all patients, dosage adjustment was performed from
600 mg to 900 mg, one patient adjusted to 1500 mg

(Patient 4). Dose adjustment improved the response of
the patients.

Ray et al.
(2003) [83] Australia Prospective

cohort DS-TB 90

RIF: 150, 300, 450, 600 and 750
mg, daily or 3 times weekly
INH: 150, 200, 300, 350, 400,

450, 500, 600, and 750 mg daily
or 3 divided-dose, weekly

Mean C2hr ± SD,
(µmol/L)

INH: 11.1 ± 7
RIF: 28.5 ± 20.4

Proportion of patients
with low C2hr, (lower
limit of therapeutic

range, µmol/L):
INH: 46% (<22)
RIF: 48% (<10)

Proportion of patients
with high C2hr, (upper

limit of therapeutic
range, µmol/L):
INH: 29% (>37)
RIF: 2% (>29)

High concentration of INH related to ADR and low
concentration related to therapeutic failure.

A case report of a slow converter that needed dosage
adjustments of INH and RIF from 300 mg and 450 mg
to 400 mg and 600 mg was presented. Sputum smear

was improved after dose adjustment.
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Table 2. Cont.

Author Country Study Design Population
Characteristics Cases (n) Drugs Measured TDM Results Conclusion

Heysell et al.
(2015) [84] USA Retrospective

cohort

MDR-TB,
DM: 1 patient
HIV: 1 patient

10

CAP: 15 mg/kg dose
(maximum 1 g)

MFX: 400 mg daily
CS: 250 mg daily
LZD: 400–600 mg

AMK, PAS, EMB, PZA, ETA
(doses were not described

clearly for these drugs)

Mean C2hr ± SD,
(µg/mL):

Daily
CAP: 21.5 ± 14.0
AMK: 35.3 ± 3.7
MFX: 3.2 ± 1.5
CS: 16.6 ± 10.2

PAS: 65.0 ± 29.1 (C6hr)
LZD: 11.4 ± 4.1
EMB: 1.8 ± 1.85
PZA: 39.9 ± 1.8

ETA: 1.5
Proportion of patients
with low C2hr, (lower
limit of therapeutic

range, µg/mL):
CAP: 60% (<35)

AMK: 50% (< 35)
MFX: 20% (<3)
CS: 57% (<20)

PAS: 0
LZD: 33% (<12)
EMB: 33% (<2)
PZA: 0% (<20)
ETA: 0% (<1)

Subtherapeutic concentrations were frequently
observed in CAP, AMK, and CS. The doses were

adjusted in CAP, MFX, CS, LZD, EMB (increased), and
PZA (decreased). The outcome resulted in patients

being cured or clinically improved.

Prahl et al.
(2014) [85] Denmark

Prospective
observational

study

DS-TB,
HIV: 2 patients 32

INH: 5 mg/kg, max 300 mg
RIF: 10 mg/kg, max 600 mg

PZA: 30 mg/kg, max 2000 mg
EMB: 20 mg/kg, max 1200 mg

Median C2hr (range),
µg/mL

INH: 2.1 (0.5–12.1)
RIF: 6.5 (0–31)

PZA: 31.3 (14.9–110.2)
EMB: 2.2 (0.5–5.9)

Proportion of patients
with low C2hr, (lower
limit of therapeutic

range, µg/mL):
INH: 71% (<3)
RIF: 58% (<8)

PZA: 10% (<20)
EMB: 46% (<2)

Subtherapeutic concentrations of RIF and INH were
frequently observed, dosage adjustment for the low

concentration drugs.
Low INH and RIF C2hr associated with poor outcome.



Pharmaceutics 2022, 14, 990 13 of 23

Table 2. Cont.

Author Country Study Design Population
Characteristics Cases (n) Drugs Measured TDM Results Conclusion

Hammi et al.
(2016) [86] Morocco Retrospective

case series
DS-TB,

Delayed converter 4

Patient 1:
RIF: 600 mg
INH: 300 mg

PZA: 1600 mg
EMB: 1100 mg

Patient 2:
RIF: 450 mg
INH: 225 mg

PZA: 1200 mg
EMB: 825 mg

Patient 3:
RIF: 450 mg
INH: 225 mg

PZA: 1200 mg
EMB: 825 mg

Patient 4:
Unknown doses of

RIF/INH/PZA/EMB

Patient 1 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: 2.9 (<8)

Patient 2 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: 4.8 (<8)

Patient 3 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: 3.85 (<8)
INH: 0.59 (<3)

Patient 4 C2h, (lower
limit of therapeutic

range, µg/mL):
RIF: 1.79 (<8)

Subtherapeutic concentration of RIF associated with
delayed conversion, dosage adjustment of:

Patient 1:
RIF from 600 mg to 855 mg.

Patient 2:
RIF from 450 mg to 750 mg.

Patient 3:
INH from 225 to 300 mg, RIF from 450 to 600 mg,

Patient 4:
RIF dose was increased.

The dose adjustment for all patients improved the
treatment outcomes and increased C2h of RIF to

achieve therapeutic target.

DS-TB: drug susceptible tuberculosis; MDR-TB: multi-drug resistant tuberculosis; RIF: Rifampicin; INH: Isoniazid; EMB: Ethambutol; PZA: Pyrazinamide; RFB: Rifabutin; CS:
Cycloserine; ETA: Ethionamide; CAP: Capreomycin; AMK: Amikacin; LZD: Linezolid; MFX: Moxifloxacin; PAS: Para-aminosalicylic acid; HIV: human immunodeficiency virus; C2h:
Concentration at 2 h after dose; C6hr: Concentration at 6 h after dose; DM: Diabetes Mellitus; IQR: inter quartile range; SD: standard deviation; TDM: therapeutic drug monitoring.
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5. Barriers of Implementation in Clinical Practice

The application of TDM in the management of TB continues to face several barriers,
such as the cost of analysis and shipping, laborious human resources, availability of TDM
laboratories, and the availability of expert interpretation [9,16,47,67]. Therefore, we divided
the current hurdles in TDM interpretation into four main categories.

5.1. Sampling Strategy

To successfully perform TDM, it is critical to collect the appropriate sample at the
appropriate time. The LSS used for targeting anti-TB drugs should be assessed based on
available population PK data. The PK/PD target index for most anti-TB drugs is based
on overall drug exposure (AUC) to the bacterial MIC [12,17]. Therefore, the application of
TDM that only compares measured peak concentration and the therapeutic range should
be discouraged. The integration of LSS with the population PK model or multiple linear
regression can estimate reliable exposure for TDM practice [10,20,87]. This widely used
LSS still has some obstacles in actual clinical settings. Patients often show up late to the
clinic. Thus, the peak concentration time is often missed, and staying in the clinic for a
long time in order to obtain serial sampling for TDM is inconvenient for patients. The
sampling strategy for TDM should be flexible during actual clinical situations in order to
be implemented successfully [58,88]. Another hurdle in terms of sampling strategy is the
steady-state sampling required in conventional TDM [20]. Due to previous requirements,
TDM is conducted after several days of treatment to enable the drug to obtain steady-state
conditions, such as CFZ, EMB, PZA, and BDQ [12,15,68]. This delays the whole process
significantly. In the case of infectious diseases, especially TB, the PK/PD target should be
attained as early as possible [20]. In addition, plasma has been the most studied matrix over
the past few decades in terms of TDM practice [17,50]. Nonetheless, it has disadvantages
regarding the invasive techniques required, the instability of some drugs, and differences
in drug concentrations in the target organ [20,72].

In our center (Center for Personalized Medicine of Tuberculosis (cPMTb)), we routinely
perform TDM for TB patients. We employ MIPD-based TDM. A single point can be taken
from patients while still allowing for precise exposure prediction before and after dose
adjustments. We have successfully established the population PK model of INH, including
NAT2 as the covariate, based on data taken using flexible sampling times [59,63]. The
model can adequately predict the INH PK in each specific population. Moreover, the model
can provide the recommended initial dose stratified by the NAT2 acetylator status [59].
These models show the proof-of-concept that the population PK model established using a
convenient sampling strategy still shows reliable results in PK parameter prediction.

5.2. Logistic and Storage

Plasma and serum are the most widely used samples when measuring drug concentra-
tions [69]. Most reference values for TDM have been established according to these matrices.
The plasma or serum samples should be immediately harvested, frozen, and stored at
−80 ◦C for subsequent analyses [69]. INH and ETA concentrations are widely affected by
temperature [72]; they are not stable at room temperature and are prone to degradation [72].
As the highest-burden countries regarding TB are primarily located in resource-limited
settings, this situation will be the main hurdle for logistical and transportation issues.
Therefore, many methods have been developed to measure TDM samples in other body
matrices, such as dried blood spots (DBS), interstitial space fluid (ISF), and saliva [89–91].
Of note, DBS has become the most recognizable alternative in the application of TDM [89].
DBS samples do not need to be frozen, as drug stability is usually much higher in the DBS
than in a plasma sample [89].

5.3. Bioanalysis Process

Determining the concentration of drugs in biological samples can be accomplished
via several different bioanalytical methods such as immunoassays, LC with fluorescence
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or ultraviolet detection, and LC-MS [14,20]. The application of LC-MS for quantifying
drug concentrations has offered opportunities in sufficiently conducting TDM [14,20].
Nevertheless, the set-up and running of a dedicated TDM laboratory and the development
of the analytical methods are expensive, time-consuming, complex, and require a high level
of expertise [25,76]. Furthermore, most TB high-burden countries have limited access to
costly equipment [67]. In our center, the bioanalysis of more than 22 anti-TB drugs can
be measured simultaneously [74], reducing the cost and time needed to attain all drug
concentrations for one TB patient.

5.4. Human Resources

The most crucial aspect of any TDM service is the expert clinical interpretation of
drug concentration measurements from individual patients, whose doses will be adjusted
accordingly [50,70,88]. To interpret TDM results, a clinical pharmacologist/pharmacist or
clinician with further training in pharmacology is a prerequisite [73,88]. TDM encompasses
consideration of plasma’s drug level, as well as the patient’s clinical outcome, drug char-
acteristics, and medical history, to determine if a dose adjustment is necessary [70,88]. In
addition, a clinical pharmacologist/pharmacist or clinician has to treat patients, not the
plasma/serum levels [92]. However, highly skilled experts in this field remain scarce. In
conventional TDM, the clinical pharmacologist/pharmacist needs to comprehensively eval-
uate the results of analysis for each patient following the therapeutic target of the specific
drug. This process, of course, is enormously laborious and time-consuming. Additionally,
many human resources are needed to conduct the TDM process, such as nurses to take the
samples from the patient, laboratory workers to process the blood samples, and experts in
bioanalysis [49].

6. Semi-Automated TDM Process

The semi-automated TDM process promises to implement personalized interven-
tions by providing rapid, straightforward, and affordable clinical evaluations, which can
immediately be translated into clinical decisions near the patient. This approach can be
considered a bridge between MIPD and the clinical setting and can thus improve pharma-
cotherapy. This approach is called semi-automated TDM because earlier steps still need
to be performed by human resources (defining the case, taking blood/plasma, and the
genetic/bioanalysis process). However, the interpretation of analysis results, estimation
of the individual PK, and dose recommendation are generated through the developed
and validated system. Importantly, the PK interpretation allows for the evaluation of the
overall exposure of drugs, not just Cmax evaluation. Advanced technology could promote
more accurate results and facilitate the development of a more holistic approach to anti-TB
treatment. Thereafter, a dose recommendation is provided following the individual PK
parameters and the therapeutic target reference. Based on the MIPD algorithm integrated
into the central workstation, the patient’s data (demographic characteristics, genetic re-
sults, drug concentration results, and dose) are added; then, the previously established
population PK model (incorporated with the significant covariate) is used for Bayesian
forecasting. The Bayesian forecasting generates the PK profile for each individual and the
models used are integrated into the user-friendly interface. Subsequently, a TDM report
for each patient can be obtained from direct access to the workstation by the physician.
The users (e.g., physicians) can select a particular drug to simulate the provided drug
concentration. After the simulation process, a table with individual PK profiles and a figure
containing the result of all simulated drug exposures is displayed. A basic interpretation of
the result is also generated. Physicians can adjust the dose and dosing interval accordingly,
corresponding with the results from the initial simulation (Figure 2). Users can navigate
between the different results for comparison. All the results can be compiled into a report
that the physicians can easily access at any time.
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Figure 2. Overview of the semi-automated TDM workflow. TDM for TB treatment from bench to
bedside application using integrated MIPD and clinical information within one central platform.
The bold line for population PK modelling represents the current implementation of population PK
based TDM in our workstation. The dashed line for PBPK shows the future perspective of PBPK
implementation in a MIPD-based TDM approach. MIPD algorithm development shows that the
developed model can be used in specific clinical situations. The pink line in clinical application
represents the flow to provide the initial dose in our workstation. The black line in clinical application
represents the semi-automated TDM process on our website. TDM: therapeutic drug monitoring; PK:
pharmacokinetics; PBPK: physiologically based pharmacokinetics modelling; MIPD: model-informed
precision dosing.

The goal of MIPD is to improve drug treatment outcomes in patients by achieving the
optimal balance between efficacy and toxicity for the individual patient [4]. The approach
is based on the available information about the patient and the disease that they are
being treated for, comorbid diseases afflicting the patient, and the medications they are
receiving [14]. The power of MIPD, especially in population PK modelling, depends on the
number of patients included during model establishment [64]. It is also worth mentioning
that the model developed based on a specific population provides a more precise result
when implemented in the representative population [10]. The values of our proposed
program and the models incorporated into the user interface were built on a large dataset
and are available for first- and second-line anti-TB drugs. Indeed, it is not easy to collect
thousands of datapoints in order to develop a more accurate model to make a prediction
with a small margin of error. Subsequently, the covariate selected is more meaningful, since
covariate identification is based on a large sample size, and the models evaluate both genetic
and non-genetic covariates comprehensively. Therefore, the result adequately represents
the whole population, especially the Korean one. To the authors’ knowledge, models
developed using a large sample size remain scarce. Furthermore, our platform is callable
and will eventually be cost-effective, considering its wide-reaching target populations. In
addition, this is potentially helpful regarding introducing such an advanced technology
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to clinicians in high-TB-burden countries. Most available models for Bayesian forecasting
were established based on Western countries, which usually have different characteristics to
other populations [10,57]. By using this semi-automated TDM approach, the geographical
barriers can be removed. In addition, our model has successfully demonstrated clinically
relevant dose recommendation through the use of a time-flexible sampling strategy [59,63].
The strategy proposed may be one way to obtain cost-effective TDM by removing the
necessity of expert validation and interpretation of the results. The scarcity of skillful
clinical pharmacologists is an obstacle and one reason why TDM seems unpracticable
in resource-limited countries [88]. In addition, this can encourage the cost effective drug
prescription. By providing the initial dose before drug administration in complex situations,
it can provide safe therapy. Moreover, therapy monitoring through MIPD does not need
to wait until the drug reaches the steady state and can allow the adjustment of the dose
at the earliest possible instance. Inadequate doses of anti-TB drugs create a financial
burden for both individuals and governments due to the long period of treatment needed
and expensive treatment of drug-resistant TB [14,19]. Therefore, personalized medicine
facilitated through TDM is aimed at reducing the costs related to clinical management in the
near future. However, it does not reduce the cost of the technical implications. Nonetheless,
it still provides high-burden countries, such as Indonesia, with the ability to adapt to the
concept of personalized medicine through the nation’s collaboration in developing a model
based on their own ethnicity. The estimated PK, the identified significant covariate, and
the suggested dose will be more accurate and clinically beneficial. Furthermore, our center
also developed a method to measure the drug concentration from a DBS sample. The
involvement of DBS in TDM has been considered a game-changer [69] and will provide
easier methods for sample shipment, yield reasonable concentrations, and reduce the cost
of sampling.

7. Future Perspectives

Precision medicine through TDM has shown that clinical characterization and treat-
ment monitoring at the patient-level has the potential to reform TB treatment. For almost a
decade, TB has remained the leading cause of mortality in infectious diseases [1]. COVID-19
has occupied recent global concern and funding due to its rapid spread [2] and has reversed
the progress made in controlling TB globally [93]. All resources (hospital care, physicians,
rapid testing devices) have been concentrated on fighting COVID-19. Therefore, this global
pandemic has led to a substantial delay in TB treatment access for both outpatients and
inpatients and has affected their care, including treatment monitoring and evaluation,
which are essential in chronic disease [2,93].

MIPD has evolved as an important tool to streamline the TDM process and ensure
effective treatment [20]. Typically, population PK is the most well-known tool in the practice
of MIPD [14,68]. Population PK/PD models are based on direct measurement of drug
exposure or efficacy obtained from the patient, recognized as real-time MIPD (data-driven
approach) [4]. Many population PK models have been established for various anti-TB
drugs [10,23,61,94]. Apparently, many of these models are assembled on limited datasets
and their applicability is confined to patients with similar characteristics as the base model,
such as ethnicities or disease states. Moreover, a model created directly from the subset
edge population usually has a dataset with a small sample size. Population PK/PD models
established using vulnerable populations such as pregnant women and children remain
scarce [10]. In other words, population PK reaches its limits when specific patient popula-
tions are under-represented in the dataset and the simulations created for these populations
will become biased. Another possible approach known as mechanistic MIPD has been
proposed [4]. In recent years, the capacity of physiologically based pharmacokinetics
(PBPK) modeling to evaluate physiological covariates associated with variability in drug
exposure has gained attention [95,96]. PBPK models can be used for various purposes and
applications and present numerous advantages compared to other methods [96,97]. PBPK
models incorporate physiological data from preclinical species, aid in allometric scaling,
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can be parametrized for specific individuals or populations, and account for sequential
metabolism- and permeability-constrained processes [95,97,98]. PBPK is a promising tool
that may help apply more precise MIPD to edge populations. A previous study in PBPK
of INH has suggested the need for acetylator-specific dose adjustments for optimal treat-
ment outcomes [99]. Patients with slow acetylators should have their dose reduced to
avoid the risk of ADR. This study showed that PBPK has the potential to eventually be
adapted in the clinical use of TDM. In advance, PBPK and population PK have been used
as a combined approach in several complimentary confirmation studies [95,100,101]. As
far as we are concerned, PBPK can also be combined with population PK to implement
Bayesian forecasting (middle-out approach). The capability of PBPK to generate data on
virtual edge populations following specific clinical scenarios can be integrated into the
two-stage approach/population PK model process to generate the typical PK value of those
populations. This result is used to develop the MIPD algorithm for edge populations and
is further included in Bayesian forecasting (Figure 2). Internal and external validation is
used to validate the developed models. Likewise, in our cohort, the developed model
is used to generate the PK parameters of anti-TB drugs and is further validated using
prospective incoming TB patients by measuring the model’s predictive error. Thereafter,
the full MIPD algorithm provides both initial doses, depending on the clinical situation,
and dosage recommendation, following the result of semi-automated TDM. In cases where
a physician is uncertain and may prescribe the initial dose (complex clinical conditions),
they may select a model developed based on a similar clinical situation, fill in the patient’s
characteristics, and obtain the result of individual estimation PK along with the initial dose.

Although the semi-automated TDM concept that we utilized is not first-time [55],
this review underlines the importance of shifting the TDM approach from a complex and
time-consuming strategy toward an advanced yet applicable integrated system, in order to
support clinical decision-making. This novel strategy can be achieved by maximizing the
capacity of available technological solutions, thus extending TDM benefits to anti-TB drugs
that are not currently covered by routine monitoring. MIPD integrated into the clinical deci-
sion support system (CDSS) should be an indispensable tool to help clinicians adjust doses
more easily. Our workstation for the personalized medicine of TB, named the cPMTb Smart
R&D Workstation, stores patient information separately from the web interface for security
reasons. Data come from different sources: patient demographics from clinicians/nurses,
dose adjustments, PK/PD interpretation from clinical pharmacologists/pharmacists, and
drug concentrations and genetic results from laboratory scientists. The cPMTb Smart R&D
Workstation allows for the comprehensive evaluation of the patient’s condition within
clinical teams. Therefore, practitioners can access the database and input and manage
data according to their specific roles. Semi-automated TDM will gradually become fully
automatic with more advanced technologies. It is possible that, in the future, TDM will
be performed on portable devices, and the data will be transferred into a central database
without human intervention (integration with electronic medical records) [25,49,102]. The
COVID-19 pandemic has shown us the importance and benefits of telehealth [103]. During
the last few years, telehealth has become a prominent tool regarding access to healthcare
and this is anticipated to continue. Telehealth opens up opportunities to improve patient
care and monitoring while minimizing the burden of logistics, cost, time consumed, and
more importantly, removing geographical barriers [103]. Previously identified as strate-
gies to end COVID-19, adequate infrastructure, healthcare systems, and funds to rapidly
contain the outbreak were critical but primarily infeasible in developing countries [93].
This strategy should not be implemented only in the context of COVID-19, but also in
TB management. Furthermore, we also would like to emphasize that the contribution of
a single nation or center cannot aid in reaching the goal of “a world without TB” set by
the WHO. The collaboration of multiple nations or centers, technical transfer, and data
standardization and sharing are required to facilitate the eradication of TB. The proposed
novel strategy has provided new hope for equality in accessing advanced technology to
end the global issue of TB.
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