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Aim: The present study aimed to investigate huperzine A as an anti-Alzheimer agent based
on the principle that a single compound can regulate multiple proteins and associated
pathways, using system biology tools.

Methodology: The simplified molecular-input line-entry system of huperzine A was
retrieved from the PubChem database, and its targets were predicted using
SwissTargetPrediction. These targets were matched with the proteins deposited in
DisGeNET for Alzheimer disease and enriched in STRING to identify the probably
regulated pathways, cellular components, biological processes, and molecular
function. Furthermore, huperzine A was docked against acetylcholinesterase using
AutoDock Vina, and simulations were performed with the Gromacs package to take
into account the dynamics of the system and its effect on the stability and function of the
ligands.

Results: A total of 100 targets were predicted to be targeted by huperzine A, of which 42
were regulated at a minimum probability of 0.05. Similarly, 101 Kyoto Encyclopedia of
Genes and Genomes pathways were triggered, in which neuroactive ligand–receptor
interactions scored the least false discovery rate. Also, huperzine A was predicted to
modulate 54 cellular components, 120 molecular functions, and 873 biological processes.
Furthermore, huperzine A possessed a binding affinity of −8.7 kcal/mol with AChE and
interacted within the active site of AChE via H-bonds and hydrophobic interactions.

Keywords: Alzheimer’s disease, huperzine A, system biology, donepezil, ligand–receptor interactions

Edited by:
Vijay Kumar,

Leiden University Medical Center,
Netherlands

Reviewed by:
Budheswar Dehury,

Regional Medical Research Center
(ICMR), India

Stylianos Chatzichronis,
National and Kapodistrian University of

Athens, Greece

*Correspondence:
Malarvili Selvaraja

malarvili@ucsiuniversity.edu.my
Yadu Nandan Dey

yadunandan132@gmail.com

†These authors have contributed
equally to this work and share first

authorship

‡ORCID:
Pukar Khanal

https://orcid.org/0000-0002-8187-2120
Farshid Zargari

https://orcid.org/0000-0002-0287-0013
Yadu Nandan Dey

https://orcid.org/0000-0003-4016-4379

Specialty section:
This article was submitted to

Neuropharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 29 September 2021
Accepted: 05 November 2021
Published: 13 December 2021

Citation:
Khanal P, Zargari F, Far BF, Kumar D,
R M, Mahdi YK, Jubair NK, Saraf SK,
Bansal P, Singh R, Selvaraja M and
Dey YN (2021) Integration of System
Biology Tools to Investigate Huperzine

A as an Anti-Alzheimer Agent.
Front. Pharmacol. 12:785964.

doi: 10.3389/fphar.2021.785964

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 7859641

ORIGINAL RESEARCH
published: 13 December 2021

doi: 10.3389/fphar.2021.785964

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.785964&domain=pdf&date_stamp=2021-12-13
https://www.frontiersin.org/articles/10.3389/fphar.2021.785964/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.785964/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.785964/full
http://creativecommons.org/licenses/by/4.0/
mailto:malarvili@ucsiuniversity.edu.my
mailto:yadunandan132@gmail.com
https://doi.org/10.3389/fphar.2021.785964
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.785964


INTRODUCTION

Alzheimer’s disease (AD) is one of the neurodegenerative
pathogeneses that majorly affect geriatric subjects,
characterized by increased confusion and impaired cognitive
function, and difficulty in learning and organizing thoughts
(Bondi et al., 2017). Compromised cholinergic function,
uplifted expression of β-amyloid, and unregulated oxidative
stress are considered as the major hypotheses (Bondi et al.,
2017; Grewal et al., 2021) via which the AD pathogenesis
propagates. Also, deregulation of multiple neurotransmitter
synapses and pathways has been traced for AD progression
(Francis, 2005). Also, AD pathogenesis has been categorized as
polygenic (Bird, 2008) due to the involvement of multiple genes
in its progression.

One of the well-accepted approaches to manage AD includes
acetylcholinesterase (AChE) inhibition, via which donepezil has
been developed. However, donepezil is associated with multiple
side effects like nausea, vomiting, weight loss, frequent urination,
and muscle cramps. Also, other anti-Alzheimer’s drugs like
N-methyl-D-aspartate antagonists, nicotine receptor agonists,
peroxisome proliferator-activated receptor-γ agonists, and 5-
hydroxytryptamine modulators are linked with multiple side
effects (Casey et al., 2010). This underlines the necessity of
identifying new therapeutic agents for the pharmacotherapy of AD.

Huperzine A is a naturally occurring sesquiterpene alkaloid,
obtained from the extract of firmoss Huperzia serrata. In China,
H. serrata is used in treating fever, swelling, and blood disorders.
Additionally, it also exhibits neuroprotective properties and is under
investigation as a possible agent to deal with the AD (PubChem,
2004). Furthermore, huperzine A has been reported for its
neuroprotective effect (Wang and Tang 2005) and the possibility
of AChE inhibition (Pohanka 2014). However, it is yet to be
examined for its potentiality in regulating the multiple proteins
and pathways based on the principle “a single compound can
regulate multiple proteins and trigger various pathways related to
them” (Khanal et al., 2021). Thus, it becomes imperative to
investigate if huperzine A can trigger multiple proteins, so as to
reveal its complex pharmacological spectra linked to AD. Hence, the
present study aimed to investigate huperzine A as a possible
candidate against AD, via the concept of “multi-protein
pathways” interaction, by utilizing a series of system biology tools.

MATERIALS AND METHODS

Gene Ontology Analysis
Canonical SMILES of huperzine A and donepezil were retrieved
from the PubChem (https://pubchem.ncbi.nlm.nih.gov/) database
and queried in SwissTargetPrediction (Daina et al., 2019; http://
www.swisstargetprediction.ch/) to predict the possible targets. The
regulated targets were matched with the recorded AD targets
(DisGeNET entry: C0002395; https://www.disgenet.org/home/)
and visualized using venny 2.1 (Oliveros, 2007-2015; https://
bioinfogp.cnb.csic.es/tools/venny/). Furthermore, these targets
were enriched in STRING (Szklarczyk et al., 2019; https://string-
db.org/) to identify the possibly modulated cellular components,

molecular functions, and biological processes. Also, huperzine
A-regulated pathways were identified using the Kyoto
Encyclopedia of Genes and Genomes (KEGG; https://www.
genome.jp/kegg/) database.

Molecular Docking
In target prediction, huperzine A was predicted to possess the
highest probability to regulate AChE, at a probability >0.9.
Hence, it was considered further for molecular docking.

Ligand Preparation
The 3D structures of huperzine A and donepezil were retrieved
from PubChem database in .sdf format and converted into .pdb
format using Discovery Studio 2020 (Dassault Systèmes BIOVIA
(2020) Discovery Studio, 2020; Dassault Systèmes, San Diego;
https://discover.3ds.com/discovery-studio-visualizer-download).
The energy of both the ligands was minimized using mmff94
force field (Halgren 1996) under conjugate gradient algorithm,
using Open Babel at PyRx (https://pyrx.sourceforge.io/) ver. 0.8.
Then, the molecules were converted into .pdbqt format, which
was later used for docking as the ligand.

Macromolecule Preparation
The 3D crystallographic structure of AChE (PDB: 4EY7; Cheung
et al., 2012) was retrieved from the RCSB protein data bank
(https://www.rcsb.org/), which was in a complex with water
molecules and other hetero-atoms. These pre-complex hetero-
atoms or molecules were removed using Discovery Studio 2020
and saved in .pdb format, which was later used as the target for
docking.

Ligand–Protein Docking
Both the ligands were docked against AChE using AutoDock
Vina (Trott and Olson, 2010) by setting the grid box as center x, y,
z � −2.895, −40.11, 30.76 and size x � 59.75, 61.24, 72.51. After
docking, 10 different confirmations of both the ligands were
obtained. The ligand with the minimum binding energy was
chosen to visualize the ligand–protein interactions using
Discovery Studio 2020.

Molecular Dynamics Simulations
To explore the part of the ligand responsible for layout within the
active site of AChE and potential inhibitory activity, the best
docking pose of both the ligands was chosen. Each of the selected
ligand pose was initially simulated for 150-ns molecular dynamics
(MD) simulations, in explicit water. The parameters for the
ligands were then extracted from the general amber force field
(Wang et al., 2004) using the Amber Tools package (https://
ambermd.org/AmberTools.php). The partial charge on each
atom was treated with a restrained electrostatic potential
charge (Vanquelef et al., 2011). The conversion of AMBER
topology and coordinate file was done with
AnteChamberPYthon Parser interfacE (Sousa da Silva and
Vranken, 2012; ACPYPE; https://www.bio2byte.be/acpype/).
All the systems were fully solvated in the TIP3P water model,
and ions were added to neutralize the net charge on the system. In
the present study, the Gromacs 2020.2 package was utilized for
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the MD simulations (Van Der Spoel et al., 2005; http://www.
gromacs.org/), and the Amber99sb-ildn force field was used to
treat AChE (Beauchamp et al., 2012). Furthermore, periodic
boundary conditions were applied in XYZ coordinate.
Additionally, the energy on each system was minimized using
steeped descent algorithm. The temperature equilibration of the
systems was conducted in NVT ensemble, with 0.1-ps coupling
constant, in a modified Berendsen thermostat (Berendsen et al.,
1984) for 500 ps to maintain the temperature at 300 K. Also, 1-ns
pressure equilibration was applied in NPT with the Berendsen
Barostat (Berendsen et al., 1984), with a 2.0-ps coupling constant
at 1 bar. The production was run in NPT, and a time step of 2 fs
was followed, till the restraint was removed. The Particle Mesh
Ewald (Darden et al., 1993) method interaction was used for the
long-range electrostatic study. Furthermore, a cutoff of 12 Å for
long-range and LINKS algorithms for H-bond constraints were
applied (Hess et al., 1997). The equilibration and production run
H-bond outlines between the ligand and AChE were calculated
using the g H-bond module of Gromacs, as detailed previously
(Zargari et al., 2018).

Principal Component and Dynamic Cross-Correlation
Map Analysis
Principal component analysis (PCA) reveals the dominant modes
in the motion of molecules by exploiting MD trajectories
(Amadei et al., 1993; Amadei et al., 1996). This includes the
elimination of the rotational and translational motion of the
molecule using the least square fit to the reference structure.
Furthermore, a covariance matrix is produced by a linear
transformation of Cartesian coordinate space and also
diagonalized to generate a set of eigenvectors to indicate the
direction of the motion of the molecule. The eigenvalue
corresponding to each eigenvector represents the energy
contribution of that particular component to the motion.
Projection of the trajectory on a particular eigenvector
highlights the time-dependent motions that the components
perform in a particular vibrational mode. The time average of
the projection shows the contribution of components of the
atomic vibrations to this mode of concerted motion (Van
Aalten et al., 1995).

Dynamic cross-correlation map (DCCM) is a correlation map
that identifies the correlated (positive or negative) motion
between pairs of atoms by examining the magnitude of all the
pairwise cross-correlation coefficients (McCammon & Harvey
1988). Herein, we have attempted to present each element of
DCCM, in which Cij � 1, where the fluctuations of atoms i and j
have the same period and same phase (positively correlated),
whereas Cij � −1 and Cij � 0, respectively, indicate that the
fluctuations of i and j are negatively correlated and not correlated.

Free Energy Calculations
One of the endpoint methods that possess an excellent ability to
estimate the binding free energy of ligands in the binding site of
receptors is the Molecular Mechanics Poisson–Boltzmann
Surface Area (MM-PBSA) method (Cheatham et al., 1998;
Kuhn & Kollman 2000), which calculates the binding free
energy as

ΔGbinding � Gcomplex − (Gprotein+Gligand) (1)

where the main form of interaction energy can be expressed as

G � EMM − TS + Gsalvation (2)

where EMM is the molecular mechanical energy and is defined as

EMM � Ebonded + Enon−bonded � Ebonded + (Evdw + Eelec) (3)

where Ebonded is a bond angle, is dihedral, and has improper
interactions. The non-bonded interactions, i.e., Enon-bonded
includes both electrostatic (Eelec) and van der Waals (Evdw)
interactions, which were modeled using a Coulomb function
and a Lennard–Jones potential function, respectively (Cullen
et al., 1999). In the MM-PBSA, the energy of transferring the
solute from vacuum into the solvent is solvation free energy,
which is calculated using an implicit solvent model (Gilson &
Honig 1988; Still et al., 1990) as

Gsalvation � Gpolar+Gnon−polar (4)

where Gpolar and Gnon-polar are the electrostatic and non-
electrostatic contributions to the solvation free energy,
respectively.

Furthermore, to obtain the binding free energy of the ligands
bound to AChE, g_mmpbsa package (Ma et al., 2002; Kumari
et al., 2014) was employed. To estimate the binding energy of each
ligand, 150 frames from the last 120-ns MD simulations were
extracted to calculate the binding energy and the contribution of
each residue in the active sites of AChE.

RESULTS

Target Prediction of Huperzine A
A total of 100 different proteins were predicted as targets of
huperzine A, of which 42 were identified to be regulated at a

FIGURE 1 | Venn diagram representing huperzine A-regulated proteins
count concerning targets related to Alzheimer’s disease (C0002395).

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 7859643

Khanal et al. Huperzine A as Anti-Alzheimer Agent

http://www.gromacs.org/
http://www.gromacs.org/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


minimum probability of 0.05 in which AChE was considered to
be primarily targeted with the probability of 1. Similarly, a total
of 49% of the regulated proteins were matched with the
reported AD targets (DisGeNET entry: C0002395), with a
total interaction of 1.4% (Figure 1). Similarly, the
huperzine A-regulated targets were under seven different
categories, i.e., hydrolase, kinase, protease, family A G
protein-coupled receptor, ligand-gated ion channel,
electrochemical transporter, and enzyme. Among these,
family A G protein-coupled receptors were higher
categories, i.e., 33.3% (Figure 2).

Gene Ontology Analysis
A total of 3 Gene Ontology (GO) terms, i.e., cellular components,
molecular function, and biological processes, including KEGG
pathway(s), were evaluated. The protein–protein interactions of
huperzine A-regulated targets are presented in Figure 3, which
are based on known interactions (curated databases and
experimentally determined), predicted interactions (gene
neighborhood, gene fusions, and gene co-occurrence), and
miscellaneous (text mining, co-expression, and protein
homology).

Furthermore, pathway neuroactive ligand–receptor
interaction (KEGG entry: hsa04080) was predicted to be
primarily modulated via regulation of 33 genes (DRD4,
KISS1R, F2RL3, CHRND, HTR2B, CHRNA1, CHRNB4,
GABRB2, HTR2C, HTR5A, HTR6, TACR1, CHRNB1, DRD5,
CHRNA3, HTR1A, HTR1F, HTR7, CHRNB2, HTR1B,
CHRNA4, HTR1D, DRD3, CHRNG, DRD1, HRH1, ADRA2C,
GABRA1, CHRNA7, GABRG2, HTR2A, GRIN2B, and SSTR3)
under 272 background genes, at a false discovery rate of 3.18E−32
among the 101 predicted pathways. Also, a total of 573 genes were
modulated in which AKT 1 and 2 appeared in 68 different

pathways. The top 20 huperzine A-regulated KEGG pathways
are presented in Figure 4.

Similarly, 54 cellular components were predicted to bemodulated
via the regulation of 41 genes (DRD4, LNPEP, KISS1R, FLT3,
F2RL3, PDGFRA, CHRND, HTR2B, CHRNA1, SLC6A4,
CHRNB4, KCNH2, SLC6A3, GABRB2, HTR2C, HTR5A, HTR6,
TACR1, CHRNB1, DRD5, CHRNA3, HTR1A, HTR1F, EPHB3,
HTR7, CHRNB2, ADORA3, HTR1B, CHRNA4, HTR1D, DRD3,
CHRNG,DRD1, HRH1, ADRA2C, GABRA1, CHRNA7, GABRG2,
HTR2A, GRIN2B, and SSTR3) under 1,564 background genes at a
false discovery rate of 3.10E−16. Furthermore, 120 molecular
functions were identified in which ammonium ion binding was
majorly modulated via the regulation of 26 (DRD4, CHRND,
HTR2B, CHRNA1, SLC6A4, CHRNB4, BCHE, SLC6A3, HTR2C,
HTR5A, ACHE, CHRNB1, DRD5, CHRNA3, HTR1A, HTR1F,
HTR7, HTR3A, CHRNB2, HTR1B, CHRNA4, HTR1D, DRD3,
DRD1, CHRNA7, and HTR2A) genes under 66 background
proteins, at a false discovery rate of 4.70E−36. Additionally, a
total of 873 biological processes were predicted to be regulated by
huperzine A, in which the chemical synaptic transmission was
primarily modulated via the regulation of 32 genes (DRD4,
CHRND, CHRNA1, SLC6A4, CHRNB4, SLC6A3, GABRB2,
HTR2C, HTR6, ACHE, TACR1, CHRNB1, DRD5, BRSK1,
CHRNA3, HTR1F, GSK3B, HTR7, CHRNB2, HTR1B, CHRNA4,
HTR1D, DRD3, CHRNG, DRD1, GABRA1, CHRNA7, GABRG2,
HTR2A, AKT1, GRIN2B, and SSTR3) against 402 background
genes, at a false discovery rate of 1.67E−24. The 25 hits of GO
terms under each category are presented in Figure 4.

Molecular Docking
Molecular docking revealed that huperzine A possessed
binding affinity with AChE (binding energy of −8.7 kcal/
mol) via 2 H-bond interactions with Tyr382 (22.69) and

FIGURE 2 | Category of huperzine A-regulated targets in SwissTargetPrediction.
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Ala528 (26.88). Similarly, donepezil showed a binding affinity
of −9.4 kcal/mol and had no H-bond interaction but possessed
Pi-Pi stacked with Tyr341 (4.35) and Pi-alkyl with Trp286
(5.40) of the benzene and heterocyclic rings, respectively. The
interactions of donepezil and huperzine A with AChE are
presented in Figure 5.

Molecular Dynamics Simulations
Structural Analysis
In the present study, the root-mean-square deviation (RMSD)
of Cα atoms of protein backbones was monitored throughout
150-ns MD simulations (Figure 6). The RMSD analysis
showed that both ligands, i.e., donepezil and huperzine A,
which were bound with AChE, began to relax at ∼20 ns. The

RMSD values of AChE-bound ligands fluctuated within 0.5 Å
as compared with the docking pose. The root-mean-square
fluctuation (RMSF) is defined as the change in the position of
every single atom from its average position. The RMSF of MD
systems (130-ns simulations) as a function of protein is
presented in Figure 7.

One of the descriptive plots obtained from molecular motion is
DCCM. This can address the structural motions of an enzyme in its
bound and unbound states. However, the PCA is used to construct
the correlation matrix for all Cα atoms. It can also be used to assess
required eigenvectors to describe themost essential motion of AChE.
In our model for DCCM, the first 2 principal components (PCs)
were used to generate correlationmotion for each structure. Figure 8
illustrates the DCCMs for the unbound state of AChE as well as the

FIGURE 3 | Protein–protein interaction of huperzine A-regulated targets. Node color; colored nodes: query proteins and first shell of interactors, white
nodes: second shell of interactors, Node content; empty nodes: proteins of unknown 3D structure, filled nodes: some 3D structure is known or predicted,
Known Interactions; from curated databases, experimentally determined, Predicted Interactions; gene neighborhood, gene
fusions, gene co-occurrence and Others; text mining, co-expression, protein homology.
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bound state with donepezil and huperzine A. In Figure 8, different
forms of motions can be observed for the naked state of the enzyme
as compared with its bound states. Both donepezil and huperzine A
changed the fluctuations of the first 300 residues, including the active

site of the enzyme, but donepezil changed all correlatedmotions into
anticorrelated ones when it binds. Huperzine A, on the other hand,
changes the anticorrelated motions observed in the apostate into
correlated ones, especially in residues 100–300 (Figure 8).

FIGURE 4 | Top 20 huperzine A-regulated (A)Kyoto Encyclopedia of Genes andGenomes (KEGG) pathways, (B) cellular components, (C)molecular function, and
(D) biological processes along with their false discovery rate.

FIGURE 5 | Interaction of (A) huperzine A and (B) donepezil with acetylcholinesterase (AChE).
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Besides the correlation map analysis, which depicts the
movements of every atom of the protein, one needs to inspect
the overall collective motions that are responsible for the dominant
protein’s conformational changes. This can be achieved via the
projection of conformations onto the orthogonal collective motions
(eigenvectors) output of PCs. In Figure 9, the first main PC (PC1)
for protein bound to the inhibitors and its apo form is presented. The
vector field representation in PyMOL was used to present the
direction and magnitude of each Cα atom in PC1. In the enzyme
apo form, the large-magnitude motions were observed within the
amino acid residues of the active site of the protein (depicted as
rectangles in Figure 9A), primarily belonging to the loops. However,
these collective motions vanished in the presence of donepezil and
huperzine A, indicating the role of loops in the overall movement of
the protein and its function. In Figures 9 (D–F), the contribution of
each residue to the PC1 (red) and PC2 (blue) for protein in bound

and unbound states is depicted. As depicted in Figure 9D, protein
adopts a large magnitude of motion within the active site to the
protein wherein donepezil and huperzine A are predicted to bind
(residues 70–90 and 360–400). However, these movements were
drastically diminished when donepezil (Figure 9E) and huperzine A
(Figure 9F) bound to the enzyme. In addition, dominant
interactions to stabilize donepezil were within the active site of
AChE H-bonds, through the phenolic and piperidine moieties with
Tyr449, Tyr337, and Gly342 (Figure 10A). Also, huperzine A
seemed to act within the active site of AChE to have an H-bond
withAsp74 and 2 hydrophobic interactions with Thr337 and Tyr124
(Figure 10B).

H-Bond Analysis
To evaluate quantitatively the firmness of H-bonds between
donepezil and huperzine A with AChE, MD analysis of

FIGURE 6 | RMSD of acetylcholinesterase (AChE) with donepezil and huperzine A via least-square fit to the backbone of starting structure.

FIGURE 7 | Root-mean-square fluctuation (RMSF) of all molecular dynamics systems throughout 130 ns of simulation as a function of protein residue number. The
active site of the protein is depicted as vertical regions.
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ligand–AChE stability was monitored during the 150 ns of the
trajectory period. The threshold for H-bond was 3.5 Å with
30 ∠ (different from the PLIP server mentioned above), as
summarized in Table 1. Furthermore, huperzine A possessed
strong H-bonds with the amino acid residues within the active
site of AChE. The higher occupancies regarding O1 and N2
atoms in huperzine A involved H-bonds with Asp74 and
Ser125. The percent of occupancy showed the number of
frames in which the particular H-bond had been monitored,
out of all the processed frames. Also, donepezil interacted with
residues in the active site of AChE occupying Tyr124, Tyr337,
and Ser198.

Binding Free Energy and Energy Decomposition
Analysis
The binding affinity of both the ligands was evaluated based on
the binding free energy using the MM-PBSA method. Table 2
summarizes the details of the contribution in terms of the binding

free energies for the inhibitors as defined by Eqs 1–4. The binding
affinity of donepezil with AChE was observed to be higher as
compared with huperzine A.

Furthermore, it was observed that Van der Waals’s energy
strongly favored the stability of donepezil within the active site of
AChE. The electrostatic energy favored just the huperzine A
ligand in AChE protein, while the SASA energy asserted almost
the same effect on both ligands.

Another practical statistic is that the g_mmpbsa tool helps
to discover the reciprocal contribution of each residue to the
binding free energy of AChE–ligand complexes, based on the
dynamic of systems, as depicted in Figure 11. In the case of
donepezil, decomposition analysis revealed that Tyr341,
Phe338, Trp286, Glu202, and Asp74 had a considerable
contribution to the binding energy of this ligand within the
active site of AChE. Also, Glu202, Tyr341, Glu450, Glu452,
Glu334, and Phe338 favored the binding energy of
huperzine A.

FIGURE 8 | Dynamic cross-correlation map (DCCM) for acetylcholinesterase (AChE) in (A) apo state, (B) AChE/donepezil, and (C) AChE/huperzine A complexes.
The positive regions, which are colored in red, are indications of strongly correlated motions of Cα atoms (Cij �1), while the negative regions, which are colored blue, are
associated with the anticorrelated movements (Cij � −1).
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DISCUSSION

The present study utilized a series of system biology tools to
evaluate the efficacy of huperzine A against AD. Initially,
huperzine A-modulated targets were identified, which were later
enriched in STRING. Furthermore, huperzine A was also docked
against AChE, as it was predicted to bemajorly modulated with the
highest probability, followed by MD simulations.

AChE has been identified as the major target against AD,
on which multiple selective or non-selective AChE
inhibitors have been established (Russ and Morling,
2012), which check the hydrolysis of acetylcholine. Also,
AChE deregulation has been demonstrated in multiple
neurodegenerative pathogeneses (Mushtaq et al., 2014).
Thus, AChE inhibition may help in managing the
pathogenesis of AD. Therefore, the present study

FIGURE 9 | Visualizations of first principal component (PC1) for (A) apo state, (B) donepezil and, (C) huperzine A bound to acetylcholinesterase (AChE). The Q20
residue-wise plots for PC1 (red) and PC2 (blue) for (D) AChE in Q20 apo state. (E) AChE–donepezil and (F) AChE–huperzine A are also represented.
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investigated the probability and potential of huperzine A to
act over AChE.

Though the concept of “lock and key” is an established
approach to develop new therapeutic agents against various
diseases, it is to be understood that a “single compound may
regulate multiple proteins” with the concept of “master key can
unlock multiple locks” (Patwardhan 2014; Duyu et al., 2021;
Khanal & Patil 2021), in which the master key can be
conceptualized for its broad-spectrum pharmacological
activity. Based on this theory, huperzine A-regulated targets
were enriched, which identified a total of 101 different

pathways. Among them, neuroactive ligand–receptor
interaction was predicted to be majorly modulated, with the
least false discovery rate. Overall, two main proteins, i.e., Akt
1 and 2, were identified to be common in a total of 68 multiple
pathways.

KEGG pathway classifies neuroactive ligand–receptor
interaction (KEGG entry: hsa04080; https://www.genome.jp/
dbget-bin/www_bget?hsa04080) as an environmental
information processor and also contributes to the interaction
of signaling molecules, based on which multiple centrally acting
drugs over serotonin, dopamine, adrenergic, and cell surface
glycoproteins are established. Furthermore, its ortholog
presents the association of this pathway (KEGG entry:
ko04080; https://www.genome.jp/dbget-bin/www_bget?
ko04080) with muscarinic, adrenergic, dopamine, histamine,
serotonin, gamma-aminobutyric acid (GABA), nicotinic, and
glutamine receptors, which have a direct or indirect
contribution in various neurodegenerative pathogeneses. Thus,
it may be assumed that the efficacy of huperzine A to modulate
these surface receptors can be utilized against AD, as the
approach has been approved to target the above-mentioned
proteins in dealing AD. Additionally, serotonergic synapse
(KEGG entry: hsa04726; https://www.genome.jp/dbget-bin/
www_bget?pathway+hsa04726), cholinergic synapse (KEGG
entry: hsa04725; https://www.genome.jp/entry/
pathway+hsa04725), and nicotine addiction (KEGG entry:
hsa05033; https://www.genome.jp/dbget-bin/www_bget?
hsa05033) are also identified, which are directly involved in
the progression of AD pathogenesis.

Furthermore, GO analysis outlined the multiple terms
concerning the various neurodegenerative diseases, including
AD. In the cellular components, it was identified that the
acetylcholine-gated channel complex (GO:0005892) and the
GABA-A receptor complex (GO:1902711) may get regulated
via huperzine A-regulated protein–protein interaction. In AD,
there is a malfunction of the surface receptor(s) and an increase in

FIGURE 10 | 3D representation of representative structures of (A) donepezil and (B) huperzine A in the active site of acetylcholinesterase (AChE). Hydrophobic
interaction is depicted as lime dash lines, whereas the H-bond is illustrated as a red dash line.

TABLE 1 | H-bond analysis of donepezil and huperzine A with AChE.

Compounds H-Bonds

Acceptor atom Donor atom % Occupancy

Donepezil Donepezil @ O1 Tyr124 @ OH 6.42
Donepezil @ O27 Tyr337 @ OH 1.41
Donepezil @ O1 Ser198 @ OG 0.57

Huperzine A Huperzine A @ O1 Asp74 @ N 33.11
Asp74 @ OD1 Huperzine A @ N2 23.49
Asp74 @ OD2 Huperzine A @ N2 18.19
Huperzine A @ O1 Ser125 @ OG 9.33

Note. AChE, acetylcholinesterase.

TABLE 2 | Free energy of donepezil and huperzine A with AChE.

AChE

Donepezil Huperzine A

Van der Waals −42.06 ± 7.06 −26.47 ± 1.97
Electrostatic −2.10 ± 1.48 −7.89 ± 3.53
Polar salvation 21.92 ± 5.76 18.73 ± 4.92
SASA energy −4.85 ± 0.81 −3.21 ± 0.17
Binding energy −27.13 ± 4.52 −18.85 ± 3.76

Note. All energies in the table are in kcal/mol.
AChE, acetylcholinesterase.
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β-amyloid deposition (Murphy and LeVine, 2010). In the present
study, huperzine A-regulated proteins showed efficacy to trigger
the neurotransmitter receptor activity (GO:0030594),
neurotransmitter binding (GO:0042165), G protein-coupled
serotonin receptor activity (GO:0004993), acetylcholine binding
(GO:0042166), G protein-coupled neurotransmitter receptor
activity (GO:0099528), and β-amyloid binding (GO:0001540)
and could thus ameliorate AD.

Owing to the complex pathogenesis of AD, attributed to the
deregulation of multiple signaling pathways (Calabrò et al.,
2020), it has been categorized as a polygenic pathogenesis
(Bird 2008). Previously, decreased memory (Jahn 2013),
altered β-amyloid response (Rauch et al., 2011), and
deregulated serotonin (Ouchi et al., 2009), dopamine (Pan
et al., 2019), and choline pathways (Whiley et al., 2014) had
been linked with AD. In the present study, we observed the
regulation of serotonin receptor signaling pathway (GO:
0007210), cholinergic synaptic transmission (GO:0007271),
memory (GO:0007613), dopamine metabolic process (GO:
0042417), acetylcholine receptor signaling pathway (GO:

0095500), and response to β-amyloid (GO:1904645) as the
multiple biological spectra against AD.

AChE has been reported to be the major target to manage AD,
based on which multiple cholinesterase inhibitors, including
donepezil, were established (Mushtaq et al., 2014). Inhibitors
of these enzymes monitor the AChE function (Nordberg et al.,
2013; Mushtaq et al., 2014) and regulate the hydrolysis of
acetylcholine. In target prediction, huperzine A was identified
to act primarily over AChE. Hence, the independent action of
huperzine A over AChE was evaluated via molecular docking,
which showed that the binding affinity of huperzine A was almost
nearer to a clinically practiced gold standard cholinesterase
inhibitor (donepezil). Thus, it was further corroborated with
MD simulation evaluation.

Structural analyses, such as RMSD and RMSF, are efficient
tools to examine the molecular interaction effectiveness of
molecules (Khanal et al., 2021). In the MD simulations, the
dynamics of AChE in apo forms were altered, as compared with
the bound states, due to the binding site occupation by the
ligands whose illustrations reflected the swinging of the docking

FIGURE 11 | Per-residue binding energy decomposition of predicted (A) donepezil/acetylcholinesterase (AChE) and (B) huperzine A/AChE. The energy
contribution larger than ±1 kcal/mol is displayed. The blue bars show the residues with an absolute binding free energy. Energy decomposition of each ligand versus
energy terms depicted for (C) donepezil and (D) huperzine A, where MM, polar, nonpolar, and total energies of ligand contribution to the binding free energies are colored
as dark-blue, red, green, and yellow, respectively.
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pose within 0.5–0.7 Å for the complex indicating the docking
poses to be reliable. Furthermore, clustering analysis is chiefly
used to discover protein conformations by diminishing the size
of the problem of conformational analysis by dividing the
conformations gathered into separate groups (Knaggs et al.,
2007). The mid-point structure is commonly used to establish
the conformations, within a specific cluster to secure the cluster
representative, which is a physically sensible structure (Knaggs
et al., 2007). Conformational clustering was performed on the
trajectories obtained from the MD simulations of the
ligand–AChE complex to select the representative
conformations for further experimentation. Clustering was
performed using Cα backbone atoms, least-squares
alignment, and the Gromos algorithm (Daura et al., 1999), at
a cutoff of 0.15 nm, by the g_cluster module as implemented in
Gromacs 2020.2. However, the center structures were the most
populated. Hence, the more stable clusters of each complex were
considered to be representatives of the binding mode
conformations.

It was observed that two factors, i.e., H-bond and hydrophobic
forces, were important for the stabilization of ligands within the
active sites of AChE, as showed by the donepezil–AChE stabilization
via the hydrogen and hydrophobic interactions. Similarly, the
huperzine A–AChE complex was also observed within the same
active site, stabilized via hydrogen and hydrophobic interactions.

Further, it was observed that the binding energy in molecular
docking and MD simulations of both the ligands showed that
donepezil had a higher binding affinity as compared with
huperzine A. However, not limiting to AChE inhibition,
huperzine A was predicted to be involved with regulating
multiple pathways, and biological processes and functions that
are related to AD.

CONCLUSION

The study revealed that huperzine A regulated the multiple
proteins and pathways concerning AD. Also, it revealed the
probability to act over various neurotransmitter synapse and
metabolic pathways, other than the direct action over the
AChE. Since the present outcomes are derived from multiple
computational approaches, the findings need to be validated via
the in vitro and in vivo experimental approaches. Thus, the study
not only establishes the potential of huperzine A in AD through
in silico studies but also provides a lead to the modification of the
structure of huperzine A to enhance its binding affinity
with AChE.
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