BRIEF REPORT

Worsening Disparities in State-Level Uptake of Human Immunodeficiency Virus Preexposure Prophylaxis, 2014–2018

Samuel D. Powers,^{1,©} Elizabeth T. Rogawski McQuade,^{12,©} Amy Killelea,³ Tim Horn,⁴ and Kathleen A. McManus^{1,©}

¹Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA, ²Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA, ³Killelea Consulting, Arlington, Virginia, USA, and ⁴National Alliance of State and Territorial AIDS Directors, Washington, District of Columbia, USA

Retrospective analysis of human immunodeficiency virus (HIV) preexposure prophylaxis (PrEP) use among individuals with PrEP indications demonstrates worsening disparities in uptake between early- and late-adopting states from 2014 to 2018. To end the HIV epidemic, federal and state governments must close gaps by translating successful policies from early-adopting states to late-adopting states.

Keywords. healthcare disparities; health equity; HIV preexposure prophylaxis; HIV prevention; PrEP; public health.

Daily use of human immunodeficiency virus (HIV) preexposure prophylaxis (PrEP) is estimated to prevent >90% of infections in men who have sex with men and 70% of infections in people who inject drugs [1]. However, since its Food and Drug Administration approval in 2012, uptake among individuals with indications for PrEP has been low in the United States (US). Less than 20% of individuals who could benefit from PrEP are currently taking it [2]. Additionally, only 30% of total PrEP users live in the South despite 51% of new HIV diagnoses being made in the South each year [3].

The US "Plan to End the HIV Epidemic" (EHE) prioritizes state- and county-level partnerships to prevent >250 000 new HIV infections over 10 years [4]. A key EHE component is increasing access to PrEP. Statewide policy actions that increase awareness for PrEP and reduce economic barriers to access can foster an environment for increased uptake and contribute to

Open Forum Infectious Diseases[®]2021

EHE. We assess state-level and region-level trends in PrEP uptake from 2014 to 2018. Specifically, we examine if early adoption of PrEP is a predictor of more rapid year-to-year gains in uptake and discuss policies of states with successful uptake.

METHODS

We performed a descriptive retrospective study of PrEP uptake using data on individuals with PrEP prescriptions and individuals with indications for PrEP between 2014 and 2018. Statelevel PrEP uptake is defined as the ratio of individuals who receive a prescription for PrEP to the estimated number of individuals who have indications for initiating PrEP.

To calculate PrEP uptake, state-level numbers of individuals with PrEP prescriptions (the numerators) were obtained from AidsVu.org [5]. We obtained state-level estimates of individuals with indications for PrEP (the denominators) for 2015 from data published by the Centers for Disease Control and Prevention (CDC) [6]. The estimation procedure for these denominators combined the CDC indications for PrEP-those who do not have HIV and (1) have shared injection or drug preparation equipment in the last 6 months, (2) have condomless anal or vaginal sex with individuals of unknown HIV status, or (3) had a bacterial sexually transmitted infection (STI) within the last 6 months [7]—with state- and transmission group-level risk of HIV infection to obtain estimates of those at increased risk for HIV. To calculate state-level counts of individuals with indications for PrEP in 2014 and 2016-2018, we first calculated 2015 state-level rates of individuals with indications for PrEP per 100 000 state residents by dividing the 2015 estimates of individuals with indications for PrEP from the CDC by 2015 statelevel resident populations from the US Census. Assuming an equal rate of individuals with indications for PrEP per 100 000 state residents between 2014 and 2018, we multiplied state-level population estimates for 2014 and 2016-2018 by the 2015 rate of individuals with indications for PrEP to estimate state-level counts of individuals with indications for PrEP for those years.

PrEP uptake and change in PrEP uptake between 2014 and 2018 were estimated at the state and regional levels. To understand if the rate of uptake was dependent on prior levels of coverage, we estimated the association between current prevalence of PrEP use and the percentage point change in uptake into the following year using linear regression and controlling for year to account for overall secular changes. We also assessed whether uptake was associated with region using linear regression and whether the association between PrEP uptake and change in uptake into the following year was heterogeneous by region by including an interaction term and conducting a likelihood ratio test. Additionally, we estimated the disparity in PrEP

Received 8 April 2021; editorial decision 27 May 2021; accepted 3 June 2021.

Correspondence: Kathleen A. McManus, MD, MSCR, Division of Infectious Diseases and International Health, University of Virginia, PO Box 801379, Charlottesville, VA 22908, USA (km8jr@virginia.edu).

[©] The Author(s) 2021. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/ by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com DOI: 10.1093/ofid/ofab293

uptake between early adopters (the 10 states with the highest initial PrEP uptake in 2014) and late adopters (the 10 states with lowest uptake in 2014) for all years between 2014 and 2018.

This study used public data and is not human subjects research.

RESULTS

The Northeastern US experienced the greatest increase in PrEP uptake between 2014 and 2018 at 16.6%, followed by the Midwest (9.2%), the West (7.1%), and the South (7.0%). Across all years, higher prevalence of PrEP use was significantly associated with greater increase in PrEP uptake in the following year. On average, every 5% of baseline usage was related to a 1.18% (95% confidence interval, .89%–1.46%) increase in uptake in the following year. Thus, disparities between high-uptake and low-uptake states increased between 2014 and 2018. The association between current PrEP uptake with change in PrEP uptake into the next year did not differ between regions (P = .29).

State-level uptake in 2014 ranged between 0.4% (Wyoming; Table 1) and 8.3% (Massachusetts) with a median uptake of 1.9% (Minnesota). State-level uptake in 2018 ranged between 2.4% (Wyoming) and 29.7% (New York) with a median uptake of 9.6% (California). Massachusetts, New York, and Connecticut remained among the 5 states with the highest prevalence for all years. Idaho, Montana, and Wyoming were consistently among the lowest 5 uptake states (Table 1, Figure 1). By 2018, only 2 lateadopter states had moved from being in the 10 lowest-uptake states (Oklahoma: 6th lowest to 14th; Tennessee: 7th lowest to 11th), indicating consistent stratification among states. In 2014, the average uptake difference between early and late adopters was 3.2 percentage points (4.3 compared with 1.1). By 2018, this difference increased to 12.0 percentage points (18.0 compared with 6.0). Being one of the 10 earlier adopting states as opposed to being one of the 10 late-adopting states in 2014 was associated with increased PrEP uptake in 2018.

DISCUSSION

Ideally, past performance on state-level PrEP uptake would not predict year-to-year capacity to increase usage. Alternatively, we would expect a negative trend with late adoption predicting larger gains as low-uptake states catch up to early adopters. Yet, in 2014–2018, we see greater prior PrEP use predicting increased growth. This results in increasing disparities in PrEP access between early- and late-adopting states, suggesting that underperforming states are not "catching up." The consequences of being a low uptake state could differ depending on HIV prevalence. Early-adopting states may have consistently focused PrEP programs/planning.

Recent work suggests the importance of social networks and peer effects in reducing PrEP stigma and increasing PrEP knowledge [8]. This potentially explains why greater PrEP EHE phase 1 focuses on providing resources, expertise, and technology to key states and counties across the US. Early adopter states' more significant diffusion of PrEP use may be due to the social and health policy environments in these states. For example, a recent study found that Medicaid expansion was associated with increased PrEP uptake. States that have not expanded Medicaid could see increased PrEP uptake with expansion [9].

In addition to providing resources, EHE should focus on facilitating local- and state-level policy environments that reduce barriers to PrEP, and any regulations or laws that can be enacted at the federal level should be considered. For example, we previously found that Affordable Care Act Qualified Health Plans (QHPs) in the South were almost 16 times as likely to require PrEP prior authorization compared with QHPs in the Northeast [10]. Increased federal- or state-level regulation of QHPs' prior authorization use may be necessary to remove this system-level barrier that disproportionately affects the South. Additionally, as PrEP's US Preventive Services Task Force grade A recommendation, which requires most private insurance plans to cover PrEP without cost sharing went into effect this year, states should consider regulations to ensure QHP compliance.

Best practices of PrEP early-adopter states should be identified and disseminated to states with lower PrEP uptake alongside necessary material support. For example, Iowa, an early adopter and Midwestern outlier, piloted a successful regional telehealth program in 2017 that connected individuals with indications for PrEP to telehealth PrEP navigators via referral from STI testing clinics or online advertisement. Patients were connected to infectious disease physicians, tele-PrEP pharmacists, and local clinics for laboratories, facilitating access for individuals with geographic barriers to care [11]. Tele-PrEP programs could prove effective in many of the more rural low-uptake states.

Similarly, a handful of states, many of them early adopters, implemented PrEP drug assistance programs (DAPs) modeled after AIDS DAPs for HIV treatment [12]. PrEP DAPs, funded by state and local dollars, target uninsured and underinsured individuals and provide assistance accessing medication as well as clinic visits, laboratory services, and other PrEP support services. Future work should be done to investigate tele-PrEP and PrEP DAPs at the state level.

	PrEP Uptake Rank ^d	21	46	36	14	26	42	4	24	5	35	33	47	48	12	4	e	13	45	6	25	20	2	23	30	19	22	49	1	28	9	8	29	-	37
	PrEP Uptake ^c	10.01%	6.27%	8.15%	13.20%	9.59%	7.30%	18.48%	9.78%	15.97%	8.43%	8.89%	6.21%	5.66%	13.66%	7.27%	21.63%	13.47%	7.17%	14.08%	9.77%	10.14%	23.05%	9.98%	9.11%	10.37%	10.00%	4.97%	13.70%	9.31%	14.94%	14.23%	9.16%	29.68%	8.15%
2018	Estimate of People With PrEP	11 925	2360	26604	4665	158632	25396	9600	4120	14377	121324	36886	4883	4100	50 749	23777	4226	4403	12 307	13376	3274	27646	22 232	27716	22332	5006	18092	2577	2519	10271	2690	26723	5614	72 170	30862
	HIV Prevalence	330	118	277	228	396	265	343	404	2361	607	625	204	82	335	206	106	128	196	541	138	653	349	189	184	381	246	72	137	403	107	464	205	765	364
	PrEP Uptake Rank ^d	20	48	36	16	17	40	ß	22	4	33	27	45	47	∞	44	e	14	46	18	30	26	2	32	29	28	25	49	12	19	13	10	31	-	37
	PrEP Uptake ^c	7.56%	3.72%	5.98%	8.41%	8.09%	5.65%	12.64%	7.51%	13.13%	6.36%	7.27%	4.94%	4.58%	10.62%	5.22%	16.10%	8.88%	4.85%	8.04%	6.89%	7.31%	17.20%	6.56%	7.21%	7.24%	7.35%	3.72%	9.35%	7.60%	9.30%	9.97%	6.58%	23.78%	5.89%
2017	Estimate of People With PrEP	11 894	2367	26 149	4648	157 999	25 040	9603	4077	14 238	119487	36513	4896	4017	50929	23664	4210	4402	12 267	13 407	3266	27 565	22 107	27 662	22 161	5012	18 039	2555	2504	10 061	2677	26663	5609	72349 2	30527
	HIV Prevalence	319	118	271	225	390	259	338	404	2400	605	612	208	81	326	201	102	125	190	527	135	646	346	186	179	377	240	69	135	386	101	464	195	759	358
	PrEP Uptake Rank ^d	27	49	45	17	14	39	5	18	°	35	20	37	46	7	42	4	13	47	29	31	26	2	33	22	23	21	48	16	25	∞	12	36	-	34
	PrEP Uptake ^c	5.33%	2.70%	3.90%	6.29%	6.61%	4.24%	9.87%	6.06%	11.18%	4.80%	5.99%	4.30%	3.79%	8.62%	4.05%	11.04%	7.25%	3.66%	5.28%	5.16%	5.46%	15.66%	4.90%	5.87%	5.79%	5.98%	3.21%	6.35%	5.47%	8.49%	7.40%	4.39%	17.49%	4.88%
2016	Estimate of People With PrEP ^a Indications ^b	11 868	2373	25765	4629	157 237	24706	9616	4043	14 052	117511	36134	4909	3933	51 091	23 569	4194	4403	12 224	13 428	3257	27472	21 987	27 594	21 983	5009	17 976	2525	2489	9883	2662	26621	5607	72 537	30187
	HIV Prevalence	306	114	266	217	383	257	331	390	2435	601	597	207	79	321	196	86	122	184	515	132	638	342	181	174	371	235	66	132	367	100	459	189	753	351
	PrEP Uptake Rank ^d	34	49	43	17	15	37	e	28	9	35	18	41	46	∞	45	ß	7	44	27	25	24	-	31	30	19	20	48	12	33	7	6	39	2	29
	PrEP Uptake ^c	3.72%	2.42%	2.92%	4.79%	5.18%	3.44%	9.53%	4.19%	7.41%	3.54%	4.63%	3.19%	2.54%	6.72%	2.87%	8.01 %	6.11%	2.90%	4.20%	4.25%	4.26%	15.71%	3.95%	4.00%	4.53%	4.52%	2.44%	5.99%	3.77%	7.17%	6.33%	3.39%	12.55%	4.08%
2015	Estimate of People With PrEP	11840	2360	25350	4610	156210	24310	9640	4010	13820	115200	35700	4890	3860	51 240	23 480	4180	4400	12 190	13 390	3250	27 390	21 890	27 540	21820	5010	17 930	2500	2470	9710	2650	26610	5600	72610	29820
	HIV Prevalence [®]	297	108	262	208	374	245	331	389	2454	599	584	210	76	316	191	93	117	178	498	123	648	339	172	169	366	231	65	129	354	66	460	184	743	346
	PrEP Uptake Rank ^d	41	49	40	17	14	38	e	16	∞	37	18	42	47	6	48	9	10	43	24	22	23	-	31	25	20	29	50	13	39	വ	7	34	2	28
	PrEP Uptake [°]	1.48%	0.93%	1.55%	2.29%	2.49%	1.61 %	4.99%	2.32%	3.13%	1.62 %	2.24%	1.32 %	1.23%	3.07%	1.09%	3.55%	2.89%	1.32 %	1.92 %	2.03%	1.95%	8.29%	1.78%	1.88%	2.21%	1.82 %	0.81%	2.57%	1.56%	4.12%	3.17%	1.64%	5.86%	1.84%
2014	Estimate of People With PrEP ^a Indications ^b	11814	2356	24980	4593	154895	23860	9660	3972	13 5 5 9	113 127	35307	4864	3813	51338	23 428	4164	4387	12158	13331	3256	27259	21786	27534	21697	5013	17 884	2479	2454	9542	2644	26598	5600	72 591	29525
	HIV revalence	300	103	256	203	366	241	326	389	2486	592	568	206	74	309	183	06	119	175	482	121	619	334	174	164	355	225	63	126	340	104	460	177	738	338
	State P	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Connecticut	Delaware	DC	Florida	Georgia	Hawaii	Idaho	Illinois	Indiana	lowa	Kansas	Kentucky	Louisiana	Maine	Maryland	Massachu- setts	Michigan	Minnesota	Mississippi	Missouri	Montana	Nebraska	Nevada	New Hamp- shire	New Jersey	New Mexico	New York	North Carolina

Table 1. Human Immunodeficiency Virus Prevalence, Estimate of People With Preexposure Prophylaxis (PrEP) Indications, PrEP Uptake, and PrEP Uptake Rank by State, 2014–2018

BRIEF REPORT • OFID • 3

Table 1. Continue		
Table 1. Continu	e	
Table 1. Contin	-	
Table 1. Conti	-	
Table 1. Con	÷	
Table 1. Co		
Table 1. C	•	
Table 1.		
Table 1.	0	
Table 1	0	
Table		
Tabl	1.	
Tab	e 1. C	
La	le 1. C	
	ble 1. C	
	able 1. C	
	Table 1. C	

	PrEP Uptake Rank ^d	34	15	38	31	9	~	27	39	41	40	17	50	43	16	18	32	51	olor.
	PrEP Uptake ^c	8.64%	12.72%	8.11 %	9.04%	13.75%	14.86%	9.59%	8.10%	7.70%	7.72%	11.22%	4.60%	7.28%	12.38%	10.80%	8.94%	2.35%	light red c
2018	Estimate of People With PrEP ^a Indications ^b	1331	38345	9218	17610	36110	4885	9395	1333	23 502	122360	7239	2695	32979	32 768	3000	12 290	2003	hlighted with a
	HIV Prevalence ⁶	71	228	192	198	331	284	406	85	305	393	118	130	322	215	122	129	73	olded and hig
	PrEP Uptake Rank ^d	35	15	43	24	თ	9	34	38	39	41	11	50	42	7	21	23	51	ke rank b
	PrEP Uptake ^c	6.28%	8.75%	5.23%	7.42%	10.56%	11.06%	6.36%	5.76%	5.74%	5.33%	9.74%	3.13%	5.32%	10.69%	7.55%	7.48%	1.44%	PrEP uptal
2017	Estimate of People With PrEP Indications ^b	1322	38 262	9193	17 425	36 063	4881	9278	1319	23 290	120744	7106	2687	32 7 76	32 289	3019	12 245	2007	ake have their
	HIV Prevalence ⁶	65	223	186	195	325	279	398	80	296	383	113	127	315	212	116	127	67	es for PrEP up
	PrEP Uptake Rank ^d	44	15	38	24	11	9	30	28	41	43	10	50	40	6	32	19	51	10 state
	PrEP Uptake ^c	4.01%	6.50%	4.30%	5.49%	7.61%	8.95%	5.17%	5.29%	4.07%	4.04%	7.75%	2.27%	4.19%	8.49%	5.03%	6.03%	1.28%	the bottom
2016	Estimate of People With PrEP ^a Indications ^b	1321	38 166	9180	17 193	36 044	4884	9162	1304	23 068	119 101	6968	2683	32 566	31720	3042	12 2 04	2025	For each year, .
	HIV Prevalence	60	216	182	193	327	264	393	76	291	374	114	121	307	208	112	123	64	nt green color.
	PrEP Uptake Rank ^d	47	22	40	32	14	4	23	16	42	88	13	50	36	10	26	21	51	ith a ligh vlaxis.
	PrEP Uptake ^c	2.50%	4.32%	3.30%	3.90%	5.72%	8.11%	4.28%	5.04%	3.01%	3.44%	5.97%	2.34%	3.51%	6.26%	4.22%	4.47%	0.84%	yhlighted w
2015	Estimate of People With PrEP ^a Indications ^b	1320	38 110	9140	16880	36050	4880	9040	1290	22880	117 180	6830	2690	32 380	31 150	3060	12 180	2030	c bolded and hig s: PrEP, preexpo
	HIV Prevalence	53	208	177	192	308	256	389	75	296	368	114	118	302	206	108	120	58	uptake rank ficiency viru:
	PrEP Uptake Rank ^d F	36	33	46	26	12	4	19	30	45	35	15	44	32	11	21	27	51	their PrEP mmunode
	PrEP Uptake ^c	1.63%	1.77%	1.25%	1.88%	2.62%	4.18%	2.22%	1.79%	1.27%	1.64 %	2.33%	1.30%	1.78%	2.77%	2.21%	1.88%	0.40%	otake have V. human ii
2014	Estimate of People With PrEP ^a Indications ^b	1291	38061	9066	16658	36059	4879	8913	1283	22706	115 007	6727	2690	32 183	30667	3072	12160	2019	ites for PrEP up of Columbia; HI
	HIV Prevalence ^é	48	201	173	184	303	254	386	72	290	360	112	117	298	202 r	110	119	53	; the top 10 sta : DC, District o
	State	North Dakota	Ohio	Oklahoma	Oregon	Pennsyl- vania	Rhode Island	South Carolina	South Da- kota	Tennessee	Texas	Utah	Vermont	Virginia	Washingtor	West Virginia	Wisconsin	Wyoming	For each year Abbreviations

^a+IV prevalence reported as rate of people with HIV per 100000 state residents from the Centers for Disease Control and Prevention (CDC) AtlasPlus Database, available at https://www.cdc.gov/nchhstp/atlas/index.htm.

^TEstimate of people with PfEP indications is an estimate of state residents with indications for PFEP. The estimation procedure combined the criteria of CDC indications for PfEP—those who do not have HIV and (1) have shared injection or drug preparation equipment in the last 6 months, (2) have condornless anal or vaginal sex with individuals of unknown HIV status, or (3) had a bacterial sexually transmitted infection within the last 6 months [7]—with state- and transmission group–level risk of HIV infec-tion to obtain estimates of those at increased risk for HIV.

^oPrEP uptake is the ratio of individuals who receive a prescription for PrEP to the estimated number of individuals with indications for initiating PrEP.

^dPrEP uptake rank is an annual ranking of states by PrEP uptake.

Figure 1. State-level preexposure prophylaxis (PrEP) uptake, as a percentage of individuals in the state with indications for PrEP who received a PrEP prescription, by state in regional categories, 2014–2018. Figure is paneled by region (Northeast, Midwest, South, and West; see https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf for a list of states and state abbreviations). The green and red lines demonstrate the top 10 states and bottom 10 states, respectively, for PrEP uptake in each year. There was consistent stratification as states saw little change in relative rank.

This analysis was limited by using PrEP data from AIDsVu, which is based on prescriptions written as opposed to filled for PrEP, and could over- or underestimate actual PrEP use. Additionally, AIDsVu does not account for records from closed health system networks and other health maintenance organizations (HMOs), leading to systematic underestimation of PrEP uptake in areas with higher HMO penetration such as California. Furthermore, both data on PrEP prescriptions and PrEP indications are calculated at the state level and do not refer to individuallevel outcomes. Finally, the assumption of a stable rate of individuals with indications for PrEP per 100 000 state residents, while necessary, may not hold, although we do not find substantial reason to believe it is systematically increasing or decreasing.

With disparities in PrEP uptake worsening, federal and state health policies must align with broader EHE goals to ensure the plan's success for all communities. Further research on PrEP uptake should be conducted to target these policy proposals.

Notes

Disclaimer. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health (NIH).

Financial support. This work was supported by the National Institute of Allergy and Infectious Diseases of the NIH (grant number K08AI136644 to K. A. M.).

Potential conflicts of interest. K. A. M. reports an investigator-initiated research grant from Gilead Sciences and stock ownership in Gilead Sciences. All other authors report no potential conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

- 1. Riddell J 4th, Amico KR, Mayer KH. HIV Preexposure prophylaxis: a review. JAMA 2018; 319:1261–8.
- Harris NS, Johnson AS, Huang YA, et al. Vital signs: status of human immunodeficiency virus testing, viral suppression, and HIV preexposure prophylaxis— United States, 2013-2018. MMWR Morb Mortal Wkly Rep 2019; 68:1117–23.
- Sullivan PS, Mena L, Elopre L, Siegler AJ. Implementation strategies to increase PrEP uptake in the south. Curr HIV/AIDS Rep 2019; 16:259–69.
- 4. Fauci AS, Redfield RR, Sigounas G, et al. Ending the HIV epidemic: a plan for the United States. JAMA **2019**; 321:844–5.

- Emory University, Rollins School of Public Health. AIDSVu. aidsvu.org. Accessed 22 July 2019.
- Smith DK, Van Handel M, Grey J. Estimates of adults with indications for HIV pre-exposure prophylaxis by jurisdiction, transmission risk group, and race/ethnicity, United States, 2015. Ann Epidemiol 2018; 28:850–7.e9.
- US Public Health Service and Center for Disease Control and Prevention. Preexposure prophylaxis for the prevention of HIV infection in the United States—2017 update: a clinical practice guideline. https://www.cdc.gov/hiv/ pdf/risk/prep/cdc-hiv-prep-guidelines-2017.pdf. Accessed 17 March 2020.
- Ransome Y, Zarwell M, Robinson WT. Participation in community groups increases the likelihood of PrEP awareness: New Orleans NHBS-MSM cycle, 2014. PLoS One 2019; 14:e0213022.
- 9. McManus KA, Powers S, Killelea A, et al. Regional disparities in qualified health plans' prior authorization requirements for HIV pre-exposure prophylaxis in the United States. JAMA Netw Open **2020**; 3:e207445.
- Karletsos D, Stoecker C. Impact of Medicaid expansion on PrEP utilization in the US: 2012-2018. AIDS Behav 2021; 25:1103–11.
- Hoth AB, Shafer C, Dillon DB, et al. Iowa TelePrEP: a public-healthpartnered telehealth model for human immunodeficiency virus preexposure prophylaxis delivery in a rural state. Sex Transm Dis 2019; 46: 507–12.
- 12. National Alliance of State and Territorial AIDS Directors. PrEP cost resources. **2021**. https://www.nastad.org/prepcost-resources/prep-assistance-programs. Accessed 23 March 2021.