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Abstract

Central nervous system and visual dysfunction is an unfortunate consequence of systemic

hypoxia in the setting of cardiopulmonary disease, including infection with SARS-CoV-2,

high-altitude cerebral edema and retinopathy and other conditions. Hypoxia-induced inflam-

matory signaling may lead to retinal inflammation, gliosis and visual disturbances. We inves-

tigated the consequences of systemic hypoxia using serial retinal optical coherence

tomography and by assessing the earliest changes within 24h after hypoxia by measuring a

proteomics panel of 39 cytokines, chemokines and growth factors in the plasma and retina,

as well as using retinal histology. We induced severe systemic hypoxia in adult C57BL/6

mice using a hypoxia chamber (10% O2) for 1 week and rapidly assessed measurements

within 1h compared with 18h after hypoxia. Optical coherence tomography revealed retinal

tissue edema at 18h after hypoxia. Hierarchical clustering of plasma and retinal immune

molecules revealed obvious segregation of the 1h posthypoxia group away from that of con-

trols. One hour after hypoxia, there were 10 significantly increased molecules in plasma and

4 in retina. Interleukin-1β and vascular endothelial growth factor were increased in both tis-

sues. Concomitantly, there was significantly increased aquaporin-4, decreased Kir4.1, and

increased gliosis in retinal histology. In summary, the immediate posthypoxic period is char-

acterized by molecular changes consistent with systemic and retinal inflammation and reti-

nal glial changes important in water transport, leading to tissue edema. This posthypoxic

inflammation rapidly improves within 24h, consistent with the typically mild and transient

visual disturbance in hypoxia, such as in high-altitude retinopathy. Given hypoxia increases

risk of vision loss, more studies in at-risk patients, such as plasma immune profiling and in

vivo retinal imaging, are needed in order to identify novel diagnostic or prognostic biomark-

ers of visual impairment in systemic hypoxia.
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Introduction

Systemic hypoxia is a common cause of central nervous system (CNS) dysfunction in many

diseases, such as pulmonary hypertension, congestive heart failure [1], cardiac arrest [2, 3],

high altitude disease [4, 5], obstructive sleep apnea [6, 7], drowning [8, 9], and most recently

SARS-CoV-2 infection [10]. The CNS is particularly vulnerable to hypoxia because the brain

[11] and retina [12] consume high levels of oxygen. In humans exposed to high-altitude hyp-

oxia, it is common to experience visual disturbances, such as changes in color vision [13–15],

high altitude retinopathy [16, 17], optic disc edema [18, 19] and alterations in multiple electro-

retinography (ERG) parameters [20]. Rarely, high-altitude hypoxia can lead to irreversible

vision loss due to nonarteritic anterior ischemic optic neuropathy [21]. Fundus photography

of high altitude retinopathy and optic neuropathy revealed prominent retinal vascular changes

including retinal hemorrhages [17, 22], vascular engorgement and tortuosity and disc hyper-

emia [23, 24], consistent with a combination of hypoxia-induced ischemia and inflammation

[25]. CNS effects of systemic hypoxia outside the eye include headache and other symptoms of

acute mountain sickness (nausea, dizziness, fatigue) and high altitude cerebral edema, which is

a life-threatening stage [5, 26], memory disturbance and depression [7].

Consistent with symptoms of visual disturbance, electrophysiologic measurements at high

altitude or hypobaric hypoxia have shown retinal changes suggesting altered function of the

inner and outer retina [20, 27]. The retinal ganglion cells in the inner retina seem to be particu-

larly susceptible to transient hypoxia, as changes in the N95 component of the ERG (generated

by those cells) occur as soon as 5 min after inhalation of 12% O2 by healthy adults (20.9% O2 at

sea level) [28]. Unfortunately, electrophysiology is a complex technique to perform in experi-

mental settings and often uncomfortable for patients. However, advancement of noninvasive

ophthalmic imaging means techniques such as optical coherence tomography (OCT) can be

rapidly deployed to assess changes in the human eye as a result of hypoxia. Human OCT stud-

ies showed increased thickness of the retinal nerve fiber layer and ganglion cell layer after

ascent to high altitude [21, 29]. OCT is fast, non-invasive and easy to perform in humans and

animals, making it extremely useful to monitor changes in the retina, including at shorter

exposures to hypoxia [30].

In animal models, we have previously described that 48h systemic hypoxia caused limited

cell loss in the outer retina and no neuronal loss in the inner retina, but induced prominent

optic nerve glia response, endoplasmic reticulum stress and loss of oligodendrocytes [30],

which can lead to axonal dysfunction and visual disturbance due to impaired saltatory signal

transmission. In the cerebral cortex, hypobaric hypoxia leads to a progressive increase in the

levels of hypoxia-inducible factor 1-a, vascular endothelial growth factor (VEGF) and Angio-

poietin-2, all of which plateau or decrease after the first week in hypoxia [31], suggesting that

important molecular signaling occur in the CNS within one week of hypoxia. Hypoxia effects

in the CNS tissue are exacerbated by the release of pro-inflammatory mediators by glial cells

[32, 33], and systemic inflammation in the setting of hypobaric hypoxia leads to cerebral

edema facilitated by the interaction between astrocytes and microglia through toll-like recep-

tors, upregulation of Aquaporin-4 (AQP4) and water permeability [34, 35]. In the mouse ret-

ina, we have shown that 3-week systemic hypoxia leads to retinal angiogenesis [36], which

develops between 2 and 3 weeks in hypoxia [37] and is consistent with increased vascular den-

sity in brain striatum, hippocampus, cerebellum and medulla oblongata after 2 weeks of hyp-

oxia [38].

Given the accessibility of the retina and optic nerve as part of the CNS and the ease of oph-

thalmic imaging using OCT to identify ophthalmic biomarkers of systemic hypoxia, we

induced severe systemic hypoxia for 1 week in adult mice and examined the posthypoxic OCT
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changes at 2 time points within 24h. To assess posthypoxic inflammation, we profiled retinal

and plasma inflammatory and other molecular changes using a Luminex 39-immune molecule

assay. Finally, we analyzed retinal and optic nerve histologic changes and compared them with

that of OCT and immune profiling, with focus on glial cells in the retina and optic nerve, since

we found that glial cells were most impacted after 48h hypoxia [30].

Results

Retinal edema during posthypoxic recovery

We induced severe systemic hypoxia by exposing adult C57BL/6 mice to one week of 10% O2

(Fig 1) and used optical coherence tomography (OCT) to assess structural changes of posthy-

poxic retinae. Curiously, 1h after hypoxia, there was a significant 5 μm decrease in total retina

thickness (TRT) on OCT compared to baseline. Layer-by-layer segmentation showed that sig-

nificant thinning was in the inner retina in the ganglion cell complex (GCC) but not outer reti-

nal layers (Fig 2 and Table 1). In contrast, after 18h, there was dramatic thickening of the TRT

(10.6 μm) relative to the 1h group (P = 0.0002) and 5.8 μm relative to baseline (P = 0.0320).

Again, the OCT changes were only significant in the inner retina in the GCC by 4.4 μm (P

<0.0001) but not the outer retina. There was significant correlation between TRT and GCC

(r = 0.8375, P<0.0001). There were no changes in the other layers in the 1h and 18h groups

compared with baseline. Thinning of the GCC on OCT may reflect selective vulnerability of

the inner retina in hypoxia, and then peripapillary edema developed, likely as a result of post-

hypoxic inflammation.

Increase in 10 inflammatory proteins in the plasma 1h after hypoxia

To determine whether hypoxia induced systemic inflammation, we asked whether there was

alteration of plasma 39 immune molecules 1h after exposure to hypoxia. Hierarchical cluster-

ing shows that all samples collected at 1h segregated away from that of controls and there was

obvious overlap between the control group and the samples collected 18h after exposure to

hypoxia (Fig 3A). In the 1h group, 10 molecules were significantly increased by up to 2 folds

compared with controls using permutation test (Table 2 and Fig 3B). Using Mann-Whitney

Fig 1. Experimental design. We housed adult mice in a hypoxia chamber (10% oxygen) [30, 93] for one-week and measured changes in optical

coherence tomography (OCT), plasma immune profiling using 39-molecule Luminex immune assay, and immunohistochemistry at two time

points: 1h and 18h after hypoxia. These 2 time points represented the median time of blood and retinae collection, and the 1h time point

represents the fastest possible time point after hypoxia. Assessment during hypoxia was not possible because animals would have to be removed

from the hypoxic chamber. Naïve animals housed at room air (20.9% O2) were used as control.

https://doi.org/10.1371/journal.pone.0246681.g001
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test, there were 7 additional molecules that were significantly different between the 1h and

control groups (S1 Fig and S1 Table). No molecules in the 18h group were significantly

changed compared to controls. Of the 10 molecules that were significantly increased in the 1h

group (Fig 3B), the 5 most increased were: interleukin- (IL) 6, IL-13, vascular endothelial

growth factor (VEGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and

macrophage inflammatory protein 1-alpha (MIP1α).

Increase in 4 immune proteins in the retina 1h after hypoxia

To determine whether plasma changes reflected inflammatory changes in the CNS, we per-

formed the same immune profiling in the retinae (S2 Fig) from the same animals as above. We

analyzed retina because retinal changes in systemic hypoxia are well documented and it is

arguably the most accessible part of the CNS. One hour after hypoxia, 4 inflammatory

Fig 2. Post hypoxic retina structural changes. (a) High magnification of circle scans acquired using optical coherence

tomography in vivo imaging at baseline, 1h and 18h posthypoxia. Colored arrows on the left indicate how retina was

segmented; arrow colors in a match label colors in b. (b) Bar graph of retinal thickness at baseline and after hypoxia.

For each region of the retina, side-by-side graphs show results for 1h and 18h groups. (c) XY plot of TRT versus GCC

for hyperacute and acute groups shows a separate clustering according to their retina thickness. TRT: total retinal

thickness, GCC: ganglion cell complex, INL: inner nuclear layer, RPE: retinal pigmented epithelium, IS/OS: inner and

outer segments of photoreceptors.

https://doi.org/10.1371/journal.pone.0246681.g002

Table 1. Optical coherence tomography measurements at baseline and at 1h and 18h posthypoxia.

Baseline 1h

Segmentation Mean SEM n Mean SEM n P-value paired test Δ (18h-1h) %change

TRT 222.8 1.3 8 218.5 1.1 8 0.013 10.6 4.9

GCC 79.13 0.8 8 77 0.8 8 0.004 4.4 5.7

INL to RPE 143.6 0.7 8 141.5 1 8 0.093 6.2 4.4

IS/OS 46 1 10 44.1 1.5 8 0.234 1.8 4.1

Baseline 18h

Segmentation Mean SEM n Mean SEM n P-value paired test P-value Tukey�

TRT 223.3 2.6 10 229.1 0.7 10 0.032 0.0002

GCC 78.8 0.6 10 81.4 0.3 10 0.001 <0.0001

INL to RPE 144.6 2.3 10 147.7 0.7 10 0.199 0.1545

IS/OS 46.1 1.1 10 45.9 1.2 10 0.913 0.5596

TRT: total retinal thickness, GCC: ganglion cell complex, INL to RPE: inner nuclear layer to retinal pigmented epithelium, IS/OS: photoreceptors inner segments and

outer segments, SEM: standard error of the mean.

�Comparison between hyperacute and acute groups, different eyes.

https://doi.org/10.1371/journal.pone.0246681.t001
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Fig 3. Hierarchical clustering of 39 immune molecules (a) and box plots (b) of the 10 most significantly increased molecules

(P = 0.008) in the plasma 1h posthypoxia. Vertical dendrogram denotes 39 molecules, and horizontal dendrogram denotes

mouse plasma by ID number. The 10 significantly changed molecules in (b) are bolded and italicized in (a). Abbreviations:
IL1A: interleukin-1α, IL6: interleukin-6, LIF: leukemia inhibitory factor, RANTES (Regulated on Activation, Normal T Cell

Expressed and Secreted), MCP1: monocyte chemoattractant protein-1, IFNA: interferon alpha-A, GROA: Growth-regulated

alpha, IL9: interleukin-9, MCSF.CSF1: macrophage colony stimulating factor or colony-stimulating factor 1, IL13: interleukin-

13, IL31: interleukin-31, IL15.IL15R: interleukin-15 and interleukin-15 receptor, MIP1A: macrophage inflammatory protein 1-

α, IL3: interleukin-3, IL4: interleukin-4, GMCSF.CSF2: granulocyte-macrophage colony stimulating factor or colony-

stimulating factor 2, IFNG: interferon γ, MIP1B: macrophage inflammatory protein 1-β, GCSF.CSF3: granulocyte colony-

stimulating factor or colony stimulating factor 3, IL12P70: interleukin-12, MIP2: macrophage inflammatory protein 2, IL2:

interleukin-2, IL27: interleukin-27, IL5: interleukin-5, IL17A: interleukin-17A, TNFA: tumor necrosis factor-alpha, IL18:

interleukin-18, TGFB: transforming growth factor beta, IP10: interferon γ-induced protein 10, VEGF: vascular endothelial

growth factor, IL23: interleukin-23, IL22: interleukin-22, IL1B: interleukin-1β IL28: interleukin-28, IL10: interleukin-10, MCP3:

monocyte chemotactic protein-3.

https://doi.org/10.1371/journal.pone.0246681.g003
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molecules were significantly increased in the retina. After 18h, no molecules were changed

compared with controls. Hierarchical clustering of these 4 proteins shows obvious clustering

of the 1h group eyes away from the controls and the 18h group (Fig 4A). Comparing retina

and plasma, VEGF (2.1 x increased) and IL-1β (1.9x) were increased in the plasma (Table 2),

while IL-22 (1.5x) and monocyte-chemotactic protein 3 (MCP3) (1.2x) were not (Fig 4A–4C

and Table 2). Overall, we found nice similar pattern in both retina and plasma immune profil-

ing; there was increased inflammatory molecules 1h after hypoxia but this normalized after

18h.

Retinal glial changes in water and ion transport during posthypoxic

recovery

We used immunohistochemistry to determine whether retinal tissue edema observed with

OCT reflected alterations in cellular processes. There was significant increase in the expression

of aquaporin-4 (AQP-4), a water channel protein expressed by retinal Müller cells and astro-

cytes [39, 40] at both 1h and 18h after hypoxia, compared with controls (Fig 5A–C and 5m,

control: 1066 ± 158 mean gray value, n = 4 animals; 1h: 2009 ± 56, n = 5 animals each,

P = 0.0005; 18h: 1627 ± 131, n = 5 animals, P = 0.018). The water flow through AQP-4 is cou-

pled to the osmotic gradient regulated by Kir4.1, an inwardly rectifying potassium channel

that prevents glial swelling after osmotic stress in the CNS [41]. Consistent with loss of glia

buffering capacity [42], there was a significant decrease in Kir4.1 after 1h, which normalized

after 18h (Fig 5D–5F and 5N, control: 471.5 ± 27.3 mean gray value, n = 4, 1h: 381.3 ± 19.7,

Table 2. Molecular changes one hour after exposure to 1w hypoxia.

Plasma 1h

Protein Ratio to control P-value permutations
IL6 2.192 0.008

IL13 1.898 0.008

VEGF 1.891 0.008

GMCSF.CSF2 1.628 0.008

MIP1A 1.549 0.008

IL9 1.526 0.008

IL4 1.499 0.008

GCSF.CSF3 1.399 0.008

IL17A 1.303 0.008

IL1B 1.263 0.008

Retina 1h

Protein Ratio to control P-value permutations
VEGF 2.107 0.008

IL1B 1.898 0.008

IL22 1.456 0.008

MCP3 1.244 0.008

There were 10 immune molecules that were significantly increased in the plasma and 4 molecules that were

significantly increased in the retina (P = 0.008, permutations test). Abbreviations: IL6: interleukin-6, IL13:

interleukin-13, VEGF: vascular endothelial growth factor, GMCSF.CSF2: granulocyte-macrophage colony-

stimulating factor or colony-stimulating factor 2, MIP1A: macrophage inflammatory protein 1-alpha, IL9:

interleukin-9, IL4: interleukin-4, GCSF.CSF3: granulocyte colony-stimulating factor or colony-stimulating factor 3,

IL17A: interleukin-17A, IL1B: interleukin-1-beta, IL22: interleukin-22, MCP3: monocyte chemotactic protein-3.

https://doi.org/10.1371/journal.pone.0246681.t002
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Fig 4. Increased inflammatory molecules in the retina 1h and 18h posthypoxia. (a) Dendogram showing the hierarchical clustering

of 4 significantly increase proteins in the retina of 1h (blue), 18h (orange) and control (black) groups. Samples of the 1h group are

clustered on the left side of the dendogram, and samples of the 18h group are mixed with control samples on the right side. (b)

Box plots of the 4 molecules that were significantly increased (P = 0.008) in the 1h retina and then returned to control levels in the 18h

group. Each sample is identified by an ID number, and the samples with same ID across retina and plasma (see Fig 1) are from the

same donor. (c) Venn diagram showing how significantly changed molecules are compared between plasma and retina. VEGF and

IL1B are the only molecules that are significantly changed in both groups, and they are both upregulated. IL22: interleukin-22, IL1B:

interleukin-1β, VEGF: vascular endothelial growth factor, MCP3: monocyte chemotactic protein-3.

https://doi.org/10.1371/journal.pone.0246681.g004
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n = 5, P = 0.04 vs. control; 18h: 527.3 ± 23.9, n = 4, P = 0.28 vs. control and P = 0.003 vs. 18h).

Given that Kir4.1 is mostly expressed by retinal Müller glia [39, 40, 43], we investigated Müller

cell activation following hypoxia. There was a dramatic increase in the number of GFAP+

Müller cell processes in the 1h group retinae (Fig 5H, arrows), which normalized in the 18h

group (Fig 5G–5I and 5O, control: 10.2 ± 2.5 processes/0.5mm, n = 5, 1h: 45.1 ± 10.9, n = 5,

P = 0.04, 18h: 27.9 ± 10.8, n = 5). Despite these prominent changes in glial activation and

water regulation, there was little evidence of cell death. We found rare TUNEL+ cells in the

outer retina in the 1h and 18h retinae (Fig 5J–5L and 5P) but not cell death in the inner retina

(Fig 5J–5L). Overall, increased inflammatory molecules 1h after hypoxia were primarily associ-

ated with changes in glia, which are important in regulating retina homeostasis, leading to reti-

nal tissue swelling/edema.

Fig 5. Posthypoxic effects in retinal water/ion channels, gliosis and cell death. (a) AQP-4 immunostaining of retina in control (a), 1h (b) and 18h (c)

animals. (d-f) Kir4.1 immunostaining. (g-i) GFAP immunostaining (green) and DAPI nuclei labeling (blue). (j-l) TUNEL (red, arrows) and DAPI (blue). (m,

n) Bar graph of quantification of AQP-4 (m) and Kir4.1 (n) expression levels in the retina and correlation with retinal thickness. (o) Bar graph of quantification

of GFAP+ processes across the IPL and correlation with retinal thickness. (p) Bar graph of quantification of the number of TUNEL+ cells in each retina layer

per retinal section. GCL: ganglion cell layer; INL: inner nuclear layer; IPL: inner plexiform layer; OPL: outer plexiform layer, ONL: outer nuclear layer.

https://doi.org/10.1371/journal.pone.0246681.g005
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Discussion

Previous studies in systemic hypoxia in humans and animals, including from our laboratory,

have shown that hypoxia is associated with retinal and optic nerve structural changes consis-

tent with edema and inflammation and that retinal and optic nerve glial changes predominate

after 48h hypoxia [30], while retinal vascular changes are common after 3-week hypoxia [36].

In this study, we examined the retinal, optic nerve, and plasma changes after 1-week hypoxia–

a clinically relevant time point–and found that by 18h of posthypoxic recovery, serial OCT

revealed significant new thickening of the peripapillary retina consistent with posthypoxic reti-

nal edema. This was preceded by posthypoxic systemic and CNS inflammation, with 10 signifi-

cantly elevated molecules in plasma and 4 in retina, with IL-1β and VEGF increased in both.

Molecular changes were most prominent immediately after hypoxia, at the 1h time point,

where there was peak plasma and retinal immune molecules and significant upregulation of

retinal AQP-4 and downregulation of Kir4.1 –both expressed by retinal glial cells and impor-

tant for regulation of water transport. Although we do not know the origin of those immune

molecules or whether some immune molecules migrated to the retina from blood, we did

demonstrate that severe systemic hypoxia leads to prominent posthypoxic retinal changes.

Our data support a future of imaging and molecular diagnostics in patients with CNS or sys-

temic diseases where ophthalmic imaging and molecular profiling can help elucidate the

inflammatory landscape of individual patients, which helps with disease diagnosis, monitor-

ing, and targeting of therapeutics using a precision health-based approach [44]. Our findings

on hypoxia-induced inflammation and CNS changes tracked by ocular imaging can contribute

to the understanding and monitoring of cardiopulmonary conditions as well as in COVID-

19-associated pneumonia and acute respiratory distress syndrome [45, 46].

We applied a targeted proteomics technique using Luminex xMAP technology to profile,

for the first time, changes in 39 plasma and retinal inflammatory molecules within 24h after

exposure to severe hypoxia for 1 week. This approach has been applied effectively to under-

stand the large scale immune changes in pathogen infection [47] and has been used to study

human health such as in aging [48], exercise [49] and cardiopulmonary disease [50]. In the

immediate posthypoxic period, we found 10 significantly increased inflammatory proteins in

the plasma including IL-6, IL-13, VEGF, and IL-1β. By profiling a large number of immune

molecules using Luminex array, we identified multiple molecular changes associated with sys-

temic hypoxia, some of which have been previously reported in humans and animals exposed

to hypoxia. For example, elevated blood levels of IL-6, TNF-α and IL-1β have been reported in

high-altitude-associated hypoxia [35] and in experimental hypoxia [51–58] using enzyme-

linked immunosorbent assay (ELISA) to measure a small number of cytokines. In the retina,

we found that 4 molecules were upregulated in systemic hypoxia: VEGF, IL-1β, IL-22, and

MCP3. Retinal immune profiling for systemic hypoxia has not previously been reported prior

to our study, but upregulation of immune molecules such as VEGF and IL-1 has been well-

reported in retinal vascular diseases associated with hypoxia, such as proliferative diabetic reti-

nopathy [59, 60], macular edema associated with branch retinal vein occlusion [61] and central

retina vein occlusion [62–64]. IL-6, TNF-α and IL-1β upregulation and evidence of CNS

inflammation have been well-reported in animal models of systemic hypoxia [65–67].

These immune proteins may be protective or detrimental. Some of these changes may be

adaptive, leading to increased blood flow and tissue oxygenation [68, 69]. In our study, we

found evidence of a robust inflammatory response in the post-hypoxic period after only 1

week in hypoxia. However, evidence of retinal angiogenesis such as increased retinal vessel

area and branching was only found after 2 to 3 weeks of hypoxia, as described by previous

studies from our group and others [36, 37]. Hypoxia-induced angiogenesis is a hallmark of
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ocular diseases such as diabetic retinopathy and vascular occlusion, although vessel

hemorrhaging, which is common in these diseases, is not observed in whole-body hypoxia,

suggesting different disease mechanisms [37]. This is consistent with an adaptive role of angio-

genesis in whole-body hypoxia, however, hypoxia and the subsequent hyperoxia during the

post-hypoxia recovery may lead to an exacerbated inflammatory response and negative conse-

quences such as mitochondrial dysfunction, oxidative stress and increased levels of pro-

inflammatory cytokines [54, 55].

In addition to inflammatory changes immediately after hypoxia, we found evidence of

retinal glial reactivity and altered levels of AQP-4 and Kir4.1. This early glial activation in

the retina is consistent with optic nerve glia vulnerability after short exposure to hypoxia

[30] and with the important role of glia in spatial buffering through modulation of AQP-4

[39, 41]. Despite normalization of inflammatory proteins, there was retina edema, which

was relatively delayed and observed at 18h. The role of AQP-4 and Kir4.1 in the regulation

of water transport and edema formation has been well-described in retinal ischemia-

reperfusion, ocular inflammation, retinal detachment and diabetes [42, 70, 71]. Consistent

with increased glial reactivity after hypoxia, we found evidence of activation of retinal

Müller glia [39, 72, 73], a typical response to retinal disease and injury. Müller glia

increased expression of AQP-4 and consequent cell swelling may have contributed to the

retinal edema observed in OCT. Although our findings support a predominant glial

response to hypoxia, there was significant cell death in the outer nuclear layer, consistent

with photoreceptor vulnerability to hypoxia [74, 75] and inflammation [76]. Increased

AQP-4 and CNS edema have been described after hypoxic or inflammatory stimulus [35,

66, 77–79] and associated with increased VEGF and IL-1β [80, 81]. This is consistent with

our findings in the plasma and retina and with a role of hypoxia in inducing first inflam-

matory protein and glial changes, followed by tissue edema in the CNS that can be moni-

tored by ocular imaging.

Curiously, immediately after removal from the chamber, the OCT measurements showed

significant retinal thinning. Although we do not know why, this was a very consistent find-

ing [30] and may reflect a decrease in metabolic activity during hypoxia. As posthypoxic

inflammation develops, this thinning of retina evolved to swelling, and future study to more

finely delineate the hour-by-hour time course of retinal OCT changes and histologic corre-

lation is needed. Ocular imaging studies have been done in hypoxia associated with pulmo-

nary or cardiac disease, but they have mostly described retinal vascular changes [36] and

oxygen levels [82], but not assessed retinal edema. OCT is a non-invasive technique that

does not require pupil dilation, has high resolution and fast image acquisition [83, 84].

While OCT is not currently used in the Emergency Department and hospital, where hyp-

oxia patients are, it could be useful for hypoxia assessment. For instance, routine assessment

of whether hypoxia induces acute OCT changes and if these normalize over time would

help predict long term CNS outcome. Our study supports natural history plasma and OCT

studies in individuals at risk of systemic hypoxia. Given the importance of vascular changes

in systemic hypoxia, which we have shown in patients with chronic pulmonary hyperten-

sion [36], future hypoxia studies should include OCT angiography (OCTA), which can be

performed rapidly at the same time as OCT typically without pupillary dilatation. OCTA

imaging can provide high-resolution vascular imaging to analyze capillary changes at differ-

ent retinal layers in vivo. We have shown that using custom MATLAB script we can analyze

the superficial capillary plexi around the optic nerve and macula with large vessel removal

to measure 6 parameters per image, including vessel area density, vessel skeletal (or length)

density, vessel complexity index (a measure of vascular tortuosity), vessel perimetric index,

and flux [85].
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Limitations

Limitations of our study include the inability to perform in vivo imaging without affecting the

results while the animals were inside the hypoxia chamber. We only used female young adult

mice in our study due to the predominance of diseases like pulmonary hypertension in

women and the desire to compare the 1-week study with our previous study of 48h hypoxia,

which was done in female mice [30]. Further study will be needed to assess the changes in

male or older adult mice. Although we only focused on the period less than 24h after hypoxia,

the changes in the acute hypoxic period may be particularly important determinants of long-

term outcome and posthypoxic neurodegeneration. For instance, retinal hypoxia and treat-

ment in the immediate posthypoxic period have been known to be critical for visual prognosis

in retinopathy of prematurity [86]. Although we did not perform functional measurements of

vision in our study, this will be an important future assessment during hypoxia to determine

whether systemic hypoxia model replicates the electrophysiological changes seen in humans.

We anticipate that changes in the oscillatory potentials of the ERG of healthy individuals

exposed to 15 min of hypobaric hypoxia [27] may be consistent with inner retinal dysfunction

and with retinal edema and gliosis in our study. Using a combination of OCT and, potentially,

electrophysiology after hypoxia for 2 days, 7 days, or 2–4 weeks or longer, we will be able to

determine whether longer hypoxic exposure increases the risk of visual dysfunction and

whether physiological adaptation occurs after certain duration of hypoxic exposure leading to

relative normalization of retinal and optic nerve changes. Concomitant OCTA in addition to

OCT in the same animals can help assess retinal capillary plexi in all layers of the retina in

order to determine the earliest time point of hypoxia-induced retinal and optic nerve struc-

tural and vascular changes and whether angiogenesis occurs in association with evidence of

inflammation and VEGF elevation.

Conclusion

Severe systemic hypoxia leads to systemic and retina inflammation characterized by increased

levels of several proteins including VEGF and IL-1β in both tissues and retinal structural

changes, glial reactivity and imbalanced osmotic and water regulation. This posthypoxic

response evolved into retinal edema observed using non-invasive ophthalmic imaging with

OCT, supporting that more OCT studies are performed in patients at risk for systemic hypoxia

to monitor CNS involvement. The significance of tissue-specific protein changes should be

further investigated in disease-modelling studies, but our findings suggest that there may be

consideration of treatment targeting inflammation in the posthypoxic period. This may be

unwarranted in patients with self-limited retinal edema and little visual symptoms but worthy

of consideration, such as what has been seen in severe SARS-CoV-2 infection [87, 88]. By per-

forming a large inflammatory array of plasma and retina after systemic hypoxia, we can start

to profile the myriad of immune molecules, how they may be connected, and which pathways

are critical in posthypoxic CNS insult.

Methods

Animals

Animal care and experiments were carried out with approval from the Stanford University

Administrative Panel on Laboratory Animal Care and all experiments were conducted in

accordance with the guidelines and regulations of the approved animal use protocol. Adult

wild-type C57BL/6 female mice (Charles River Laboratories, Inc., Hollister, CA, USA) were

housed in cages at constant temperature, with a 12:12h light/dark cycle, with food and water
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ad libitum. Female mice were used because pulmonary hypertension, a form of systemic hyp-

oxia, is more prevalent in females [89–91]. All efforts were made to minimize animal suffering.

For procedures that required anesthesia, animals were monitored and warmed by a heat pad

until they recovered.

Hypoxia and experimental design

We induced normobaric hypoxia in adult (6–8 weeks old) C57BL/6 female mice using a hyp-

oxia chamber where animals were acclimated over 20 min from 20.9% to 10% oxygen as

described previously [92, 93]. This percentage of oxygen is consistent severe hypoxia in

humans [94] and mice [95]. Mice were exposed to hypoxia for 1w and monitored daily without

opening the chamber so the hypoxic exposure was unaffected. They appeared healthy, calm,

and exhibited no change in behavior. After 1w hypoxia, animals were removed from the cham-

ber, transferred to the lab, anesthesized, underwent pupillary dilation, analyzed with OCT, and

then sacrificed in order to collect blood, retinae, and optic nerves (see more below). Animals

in the 1h group had OCT and tissue collection as quickly as possible after removal from cham-

ber, including OCT measurements at 20–60 min and tissue collection at 30–90 min posthy-

poxia. We designated this group as the 1h group because 1h was the median time of tissue

collection (the last step) for each cage. Animals in the 18h group was removed from the cham-

ber for 17h before starting OCT measurements and tissue collection. The 18h is the approxi-

mate median time for tissue collection for each cage. Normoxic control mice were kept

outside the chamber in the same animal facility.

Optical coherence tomography (OCT) and segmentation

To measure retinal structural changes over time, we performed spectral-domain optical coher-

ence tomography (OCT) analysis using Spectralis™ HRA+OCT instrument (Heidelberg Engi-

neering, GmbH, Heidelberg, Germany) [96–98]. Briefly, we dilated the eyes with 1%

tropicamide (Alcon Laboratories, Inc., Fort Worth, TX) and 2.5% phenylephrine hydrochlo-

ride (Akorn, Inc., Lake Forest, IL) and covered the cornea with lubricating eye drops and cus-

tom-made contact lens. To measure retinal thickness, we performed a circular retinal nerve

fiber layer (RNFL) scan around the optic nerve head and manually segmented a) the total reti-

nal thickness (TRT), which included RNFL to retinal pigmented epithelium (RPE) [99], b) the

ganglion cell complex (GCC), which included RNFL to inner plexiform layer (INL) [100, 101],

c) the INL to RPE, which was calculated by subtracting b from a, and d) the inner and outer

segments (IS/OS) of photoreceptors [99]. All segmentation was performed in a masked fash-

ion, and every effort was made to standardize the segmentation process, which was performed

by one well-trained individual and confirmed by a second investigator.

Fresh tissue collection and plasma isolation

Animals were deeply anesthetized with ketamine and xylazine and thoracotomy was per-

formed to expose the heart. Using a syringe coated with EDTA, the blood was drawn from the

right ventricle and collected into EDTA-coated tubes (BD Microtainer1 Tubes, K2 EDTA,

BD 365974, BD Biosciences, San Jose, CA) and immediately placed on ice. Blood tubes were

spun at 1,000–2,000xg for 10min at 4˚C. Plasma was collected and stored at -80˚C. Retinas

were dissected and flash frozen in dry ice and then stored at -80˚C. Retina lysates were pre-

pared using RIPA buffer (ab156034, Abcam) and protease inhibitor (Mini EDTA-free protease

inhibitor tablets, Roche, Basel, Switzerland).
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Immune profiling

Plasma or retinal (lysates at 0.6μg/μl) immune molecules were simultaneously measured

using Luminex xMAP1 Technology using microbeads (Luminex, Austin, Texas, USA) and

processed by the Stanford University Human Immune Monitoring Center. We used mouse

39-plex Procarta kits (eBiosciences/Affymetrix/Thermo Fisher, Santa Clara, California,

USA) and measured mean fluorescence intensity for best accuracy [102], which allowed us

to compare the amount of immune molecule in each sample. All samples were run at the

same time with controls, and average fluorescence intensity was calculated for each mole-

cule and sample. For quality control, each well included 4 Chex internal control beads

(Radix Biosolutions, Georgetown, Texas). Briefly, we first prepare the microbeads contain-

ing antibodies against 39 molecules (one antibody type per bead, 50–100 beads per anti-

body) by adding them to a 96-well plate and washing them in a Biotek ELx405 washer.

Plasma or retinal samples were then added onto the plate and incubated (room temperature

for 1 h then overnight at 4˚C with orbital shaking at 500-600rpm). The next morning, we

washed the plate with a Biotek ELx405 washer and then added biotinylated detection anti-

body and incubated for 75min at room temperature with shaking. The plate was washed

again as above, and streptavidin-phycoerythrin (fluorescence label) was added and incu-

bated for 30min at room temperature. Finally, we washed the plate, added reading buffer to

each well, and measured fluorescence intensity using a FM3D FlexMap instrument. Lumi-

nex results are expressed as mean fluorescence intensity averaged between duplicates for

each sample and normalized against Chex #4 values.

Luminex data analysis

We performed a permutation test and selected the proteins with the smallest possible p-

value, which is equivalent to having no overlap between post hypoxic groups and controls.

We also performed a Mann-Whitney test using Benjamini-Hochberg multiple hypothesis

correction with target false discovery rate (FDR) 0.1. Venn diagrams were generated using

Venny (https://bioinfogp.cnb.csic.es/tools/venny/index.html) and edited to include rele-

vant information.

Tissue preparation and sectioning

Tissue preparation and sectioning was performed as previously described [30]. Animals were

deeply anesthetized and perfused through the heart with ice-cold saline followed by 4% para-

formaldehyde in phosphate buffered saline (PBS). Eyes and optic nerves were removed, cryo-

protected with10-30% increasing sucrose gradient in PBS, and frozen in O.C.T. compound

(Sakura Fineteck USA, Inc., Torrance, CA) with dry ice. Tissue blocks were sectioned using a

cryostat (Leica) into 12μm thick slices and placed on frosted microscope glass slides (Fisher

Scientific, Hampton, NH).

Retina immunostaining

Retinae were immunostained with primary antibodies to detect and AQP-4 (1:50, mouse; cata-

log number sc-32739, Santa Cruz Biotechnology, Inc. Dallas, Texas, USA), Kir4.1 (1:200, rab-

bit, catalog number APC-035, Alomone Labs, Jerusalem, Israel) and glial fibrillary acidic

protein (GFAP) (1:1000, rabbit; catalog number ab7260; Abcam, Cambridge, MA, USA). Sec-

ondary antibodies used were Alexa 488 goat anti-rabbit and Alexa 568 goat anti-mouse (all

from Invitrogen Inc., Carlsbad, CA, USA). Slides were mounted using Vectashield with

40,6-diamidino-2-phenylindole (DAPI) (Vector Laboratories, Burlingame, CA, USA).
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TUNEL assay

We investigated cell death in the retina as previously described [30]. We performed Terminal

deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay for the detection

of apoptosis in situ. The nucleotide-labeling mix was used in combination with the TUNEL

enzyme to prepare a TUNEL reaction mixture (all from Sigma-Aldrich, city, State, USA) and

the assay was performed according to the manufacturer’s instructions. The number of

TUNEL-positive cells was counted in 3–5 cross-sections of the retina per animal. Results are

expressed as the average number of TUNEL-positive cells per section ± SEM.

Fluorescence microscopy and image acquisition

Sections were imaged under a Nikon Eclipse TE300 microscope (Nikon Corp., Tokyo, Japan)

for morphometric analysis or under a Zeiss inverted LSM 880 laser scanning confocal micro-

scope (Carl Zeiss, Oberkochen, Germany) for representative figures.

We performed image quantification as previously described [30]. we took standard images

of the retinae using a 40x (numerical aperture 0.95) objective lenses. To standardize the region

of interest of the retinae quantified, we acquired 3–5 images per retina using the same objective

lens, located within 1.0 mm away from the optic nerve head.

Morphometric analysis of retina

To quantify the fluorescence intensity associated to AQP-4 or Kir4.1, slides were immunos-

tained at the same time and imaged using the same settings. For quantification, we used Ima-

geJ (http://rsbweb.nih.gov/ij/; provided in the public domain by the National Institutes of

Health, Bethesda, MD, USA) to measure the mean gray value inside the retina. DAPI and

GFAP staining were used as references to draw an outline of all retinal layers from the RNFL,

including GFAP+ Müller cell endfeet, to the ONL. The results were expressed as mean gray

value ± SEM and all morphometric analyses were performed under masked condition.

To quantify Müller glia activation, the number of GFAP+ processes per retina cross-section

was counted across ~0.5 mm of the IPL in 3–5 sections per animal using a 40x lens with a field

of ~0.5 mm of diameter, as previously described [72, 73]. Results are expressed ad

Mean ± SEM.

Statistics for OCT and histology

For OCT and histology data, we performed statistical analysis using Prism (GraphPad Inc.).

We calculated statistical significance, which was defined as P<0.05. We used paired t-tests to

compare OCT measurements at baseline and after hypoxia, One-Way ANOVA to compare 3

experimental groups for OCT measurements and immunostained retinas and two-way

ANOVA to compare TUNEL+ cells across different retinal layers between 3 groups. To correct

for multiple comparisons, we used Tukey’s posthoc test for all ANOVA analysis. Correlations

between OCT measurements and immunostaining data were assessed by the Pearson r coeffi-

cient and P values obtained by correlation analysis. All in vivo and histological data are pre-

sented as mean ± S.E.M.

Supporting information

S1 Fig. Box plots showing the levels of proteins (mean fluorescence intensity average) in

the plasma. Significantly changed proteins (P = 0.008, permutations test) are bolded and itali-

cized. Significant proteins found using Mann-Whitney (P<0.05) are marked with a star.

(TIF)
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S2 Fig. Box plots showing the levels of proteins (mean fluorescence intensity average) in

the retina. Significantly changed proteins (P = 0.008) are bolded and italicized.

(TIF)

S1 Table. Luminex raw data for 39 immune molecules for plasma (top) and retina (bot-

tom). All values shown are average mean fluorescence intensity (50–100 beads per molecule).

(XLSX)
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