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Abstract: Ultraviolet A (UVA) radiation can pass through the epidermis and reach the dermal skin
layer, contributing to photoaging, DNA damage, and photocarcinogenesis in dermal fibroblasts.
High-dose UVA exposure induces erythema, whereas low-dose, long-term UVA exposure causes
skin damage and cell senescence. Biomarkers for evaluating damage caused by low-dose UVA in
fibroblasts are lacking, making it difficult to develop therapeutic agents for skin aging and aging-
associated diseases. We performed RNA-sequencing to investigate gene and pathway alterations in
low-dose UVA-irradiated human skin-derived NB1RGB primary fibroblasts. Differentially expressed
genes were identified and subjected to Gene Ontology and reactome pathway analysis, which revealed
enrichment in genes in the senescence-associated secretory phenotype, apoptosis, respiratory electron
transport, and transcriptional regulation by tumor suppressor p53 pathways. Insulin-like growth
factor binding protein 7 (IGFBP7) showed the lowest p-value in RNA-sequencing analysis and was
associated with the senescence-associated secretory phenotype. Protein–protein interaction analysis
revealed that Fos proto-oncogene had a high-confidence network with IGFBP7 as transcription
factor of the IGFBP7 gene among SASP hit genes, which were validated using RT-qPCR. Because of
their high sensitivity to low-dose UVA radiation, Fos and IGFBP7 show potential as biomarkers for
evaluating the effect of low-dose UVA radiation on dermal fibroblasts.

Keywords: ultraviolet A; low-dose UVA; biomarker; IGFBP7; Fos; differentially expressed gene;
senescence-associated secretory phenotype

1. Introduction

Solar ultraviolet (UV) radiation can be divided into UVA (320–400 nm), UVB (290–320 nm),
and UVC (200–290 nm). Because of their lower wavelength, most UVB and all UVC
radiation is absorbed by the ozone layer, making UVA the predominant source of radiation
and responsible for 95% of total residue solar UV radiation [1]. Moreover, UVA can
penetrate deeper into various media, such as water, the atmosphere, or clothing, than
UVB [2–4]. The average irradiances of UVA and UVB intensities at sea level are 5× 10−3 and
0.16 × 10−3 J/cm2/s, respectively [5]. UVA crosses the epidermis to penetrate the dermis
(Figure 1A) with slight but longer-lasting detrimental effects, including damage to DNA
and phospholipids and cellular thymidine incorporation, leading to skin senescence and
skin cell proliferation delay [5]. Additionally, UVB only reaches the epidermis, eventually
causing sunburn (Figure 1A). Thus, UVA is considered as the principal contributor to
photoaging and photocarcinogenesis [6]. Adaptive changes in skin cells are thought to
protect the skin in response to UVA radiation; however, skin pigmentation darkening and
potential detrimental effects that cannot be quickly recovered have also been observed,
even after low-dose UVA exposure (≤5 J/cm2) [7]. Therefore, low-dose UVA-induced
damage should be examined in detail. Numerous studies showed that exposure to UVA
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radiation at a total dosage higher than 30 J/cm2 for 24 h induces perceptible erythema
in humans, and doses of 10 and 20 J/cm2 reduced HaCaT cell viability [8].Lower doses
of UVA radiation (≤5 J/cm2) do not induce significant erythema but can induce reactive
oxygen species (ROS) generation and cellular immunosuppression [9,10]. Additionally, the
mechanisms of low-dose UVA radiation-caused damage are indirect, including cellular
chromophore disorder and the generation of DNA-damaging ROS that affect the normal
function of skin cells, making their effects difficult to evaluate and detect (Figure 1B) [11].
Thus, validated biomarkers for evaluating damage caused by low-dose UVA radiation
are lacking.
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Figure 1. Mechanism of UVA damage to the skin. (A) UVA penetration into the skin dermis layers.
(B) UVA-induced damage to cellular DNA, protein, and membrane via ROS production in skin
fibroblasts. (C) Schematic diagram of this study.

The skin is composed of two parts, the epidermis and dermis, which originate from
different locations in the embryo and have specific functions. Epidermal cells are often
used as an in vitro model to study skin damage caused by UVA [12–14], because the
epidermis is the first line of defense against UVA radiation. The epidermis is also the
most sensitive element of the antioxidant response to UVA-induced oxidative stress, DNA
damage, and photoaging [15]. In studies of UVA photoprotective products and sunscreen
development, the epidermis is the most common target [16]. However, the integral gene
alterations and potential effects of UVA radiation in dermal fibroblasts are unclear. A study
reported that FEK4 human fibroblasts receiving over 10 J/cm2 of UVA radiation led to an
increase in c-Fos mRNA levels [17]. Another study showed that human fibroblasts and KB
cancerous cells irradiated with the same intensity of UVA presented a significant increase in
expression of the AP-1 transcription factor at 1.5 h post-irradiation [18]. Additionally, UVA-
radiation-induced matrix metalloproteinases (MMPs) in an in vivo mouse model, such as
Swiss albino mice and SKH-1 hairless mice, which subsequently modulated epidermal
keratinocytes [19,20]. These studies showed that UVA radiation induces metabolic changes
in human dermal fibroblasts.

RNA sequencing (RNA-seq) technology has greatly progressed in recent decades and
become a crucial transcriptome profiling tool in many aspects of research and therapy [21],
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including biomarker discovery and characterization of disease progression and evolu-
tion [22]. Here, we performed genome-wide RNA-seq to analyze changes in transcription
factors and differentially expressed genes (DEGs) in NB1RGB normal human skin fibrob-
lasts irradiated with low-dose UVA (at a dose rate of 5 × 10−3 J/cm2/s for 18, 36, or 72 min
to achieve total doses of 5, 10, and 20 J/cm2, respectively) (Figure 1C). We also explored
changes in the biological processes (BPs), molecular functions (MFs), and cell components
(CCs) based on Gene Ontology (GO) enrichment analysis. Moreover, reactome pathway
and protein–protein interaction (PPI) network analyses were performed to identify altered
pathways. Candidate genes and potential damage-related biomarkers of low-dose UVA
radiation were validated using RT-qPCR based on selected hub DEGs.

2. Materials and Methods
2.1. Cell Culture and UVA Irradiation

NB1RGB, human skin-derived primary fibroblasts, were purchased from the RIKEN
BioResource Center (Ibaraki, Tsukuba, Japan). NB1RGB cells were cultured at 37 ◦C under
5% CO2 in minimum essential medium α containing 10% fetal bovine serum and 1%
penicillin and streptomycin (168-23191, Wako Pure Chemicals Ltd., Osaka, Japan). The cells
were maintained at a population doubling level of 30 to manage aging. The UVA apparatus
was purchased from Analytik Jena GmbH (UVP crosslinker CL-3000L; Jena, Germany).
The 365 nm wavelength bulb (8 W, 6 pieces) was set at a distance 15 cm from the bottom of
the UVA apparatus. The microprocessor can modulate the radiation quantity over time
to ensure sufficient UVA irradiation of the sample. UVA-treated cells seeded into a 6-well
plate (Wuxi NEST Biotechnology Co., Ltd., Wuxi, China) at a density of 1 × 105 cells were
pre-cultured for 24 h, covered with 2 mL phosphate-buffered saline (PBS), and irradiated
using the UVA apparatus at a dose rate of 5 × 10−3 J/cm2/s for 18, 36, or 72 min to achieve
total doses of 5, 10, and 20 J/cm2, respectively. The 6-well plate was placed in the center of
the apparatus during UVA irradiation. After radiation, the cells were cultured in minimum
essential medium α containing 10% fetal bovine serum for another 24 h. Control cells
covered with 2 mL PBS were wrapped in aluminum foil to block UVA irradiation, and then
treated as in the UVA irradiation groups.

2.2. Cell Survival Assay

Cell survival measurement kits were purchased from Dojindo Laboratories (CCK-8;
Kumamoto, Japan). Cells were seeded into 96-well plates at a density of 5 × 103 cells/well,
pre-cultured for 24 h at 37 ◦C under 5% CO2, washed once with PBS, and covered with
200 µL PBS per well before exposure to UVA radiation and incubation for 24 h. Cell
viability was analyzed using a CCK-8 kit according to the manufacturer’s instructions.
Briefly, 100 µL of medium and 10 µL of CCK-8 reagent were added to each well and
incubated for 1 h at 37 ◦C. The absorbance of each well was measured at 450 nm using a
plate reader. The cell proliferation rate was calculated from optical density measurements
(corresponding to CCK-8 formazane metabolite) for UVA-exposed samples compared to in
control samples (set at 100%).

2.3. RNA Extraction and Sequencing

Samples extracted from 6 independent wells were pooled for RNA-seq analysis. Total
RNA was extracted using TRIzol™ reagent (Invitrogen, Carlsbad, CA, USA), according
to the manufacturer’s protocol. The extracted RNA was quantitatively evaluated prior
to cDNA library construction as follows: (1) the RNA purity was measured using a spec-
trophotometer (OD260/OD280), (2) 28S rRNA and 18S rRNA were analyzed using agarose
electrophoresis, and (3) RNA integrity was checked using an Agilent 2100 (Agilent Tech-
nologies, Santa Clara, CA, USA). The ratio of 28S rRNA/18S rRNA, an index of RNA
quality, was 2.0, and the RNA integrity number was 10, indicating high quality. mRNA
was enriched using oligo (dT) beads. A cDNA library was constructed using the NEB
Next® Ultra™ RNA Library Prep Kit for Illumina® (New England Biolabs, Ipswich, MA,
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USA) according to the manufacturer’s protocol. The final cDNA library was prepared
after several rounds of purification, terminal repair, A-tailing, sequencing adapter ligation,
size selection, and PCR enrichment. RNA sequencing was performed on the libraries by
Novogene (Beijing, China) on a NovaSeq 6000 System. Reads were mapped to reference
sequences using TopHat 2.

2.4. Bioinformatic Analysis

METASCAPE (https://metascape.org/gp/index.html#/main/step1, accessed on
5 December 2021) was used for systematic analysis. All raw data were submitted and
annotated using existing human gene databases. Predicted target genes were analyzed
using GO enrichment analysis of BPs, CCs, and MFs with the following criteria: p < 0.01,
minimum count = 3, and enrichment factor > 1.5. Genes coding for protein and process
pathways were evaluated in reactome pathway analysis.

2.5. Reverse Transcription and RT-qPCR

RNA was extracted using a ReliaPrepTM RNA cell Miniprep system (Promega, Madi-
son, WI, USA). The extracted total RNA was reverse-transcribed into cDNA using the
ReverTra Ace® qPCR RT Master Mix with a gDNA remover kit (TOYOBO, Osaka, Japan).
Three biological replicates were examined to ensure reproducibility. The RNA concentra-
tions used for cDNA synthesis were 527.0, 629.4, and 96.3 ng/µL in the control groups
and 524.8, 750.7, and 92.5 ng/µL in the UVA irradiation groups, respectively. IGFBP7 and
Fos expression was measured using RT-qPCR with the following reaction mixture: 12.5 µL
of TB Green® Premix Ex Taq II (Takara, Shiga, Japan), 2 µL of cDNA, 1 µL of 10 µM 1:1
forward and reverse target primers, and 8.5 µL of nuclease-free water. Using a Thermal
Cycler Dice® Real Time System III (Takara, Shiga, Japan), the thermal cycling conditions
were an initial denaturation step at 95 ◦C for 30 s, followed by 40 cycles at 95 ◦C for 5 s and
60 ◦C for 30 s. The primers for IGFBP7, Fos, and GAPDH are listed in Table 1. A single peak
was observed for all amplicons in melt curve analysis. Gene expression was normalized to
the geometric mean of GAPDH as an internal control, which was used as a representative
housekeeping gene along with ACTB and 18S ribosomal RNA [23].

Table 1. Primer sequences for real-time qPCR.

Genes Primer Sequence (5′-3′) Size (bp)

GAPDH
Forward 5′-GAAGGTGAAGGTCGGAGTCA-3′

290Reverse 5′-TGGACTCCACGACGTACTCA-3′

IGFBP7
Forward 5′-TTGAGCTGTGAGGTCATCGG-3′

188Reverse 5′-TCCTTACTTAGAGGAGATACCAGCA-3′

Fos
Forward 5′-TGTGAAGACCATGACAGGAGG-3′

181Reverse 5′-TTGGTCTGTCTCCGCTTGG-3′

2.6. Statistical Analysis

The results are expressed as the mean ± standard error of the mean (SEM). Significant
differences between treatments were analyzed using two-tailed Student’s t-tests. Significant
differences (p < 0.05) are indicated using asterisks.

3. Results
3.1. Morphology and Proliferation Rate of NB1RGB Fibroblasts Irradiated with UVA

Excessive UVA radiation induces notable changes in cellular morphology and causes
cell death [24,25]. Therefore, we measured the proliferation rate of NB1RGB fibroblasts
irradiated doses of 5, 10, and 20 J/cm2, respectively. The cell proliferation rate was mea-
sured using the CCK-8 colorimetric assay. Data for irradiated samples are expressed as
normalized values (corresponding control values set at 100%) and represent the SEM. Al-
though cells treated with 5 J/cm2 UVA showed no morphological changes, those irradiated
with 10 and 20 J/cm2 UVA exhibited a longer spindle shape (Figure 2A). Similarly, cell

https://metascape.org/gp/index.html#/main/step1
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proliferation did not significantly differ between control cells and those irradiated with
5 J/cm2 UVA (p > 0.05; Figure 2B) but was significantly lower in cells irradiated with 10
and 20 J/cm2 UVA (p < 0.05).
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Figure 2. (A) Morphological characteristics of NB1RGB fibroblasts irradiated with 5, 10, or 20 J/cm2

ultraviolet A (UVA). Inset scale bar, 50 µm. (B) Optical density of NB1RGB fibroblasts irradiated with
5, 10, or 20 J/cm2 UVA. The mean ± SEM of a representative result from independent experiments
performed in quadruplicate. Asterisks indicate significant differences analyzed with Student’s t-test,
** p < 0.01 vs. UVA non-irradiation group as a control at different UVA doses.

3.2. RNA-seq Analysis of DEGs

To detect alterations in gene expression induced by 5 J/cm2 UVA radiation, we ex-
tracted total RNA from cells following the 5 J/cm2 and control treatments, and then
performed RNA-seq analysis and gene annotation in comparison with published human
gene databases (Metascape). In total, 12,239 clear reads were successfully filtered from
the 24,172 sequenced genes and mapped onto the human genome. The annotated genes
are displayed in a volcano plot (Figure 3A) to identify upregulated (blue) and downregu-
lated (red) genes. We identified 771 DEGs (p < 0.05, |log2 fold-change| > 0.8; Figure 3B),
of which 535 and 236 genes were up- and downregulated, respectively. DEGs for long
or short noncoding RNAs were excluded, and the remaining 370 upregulated and 111
downregulated protein-coding DEGs were further analyzed.



Genes 2022, 13, 974 6 of 13

Genes 2022, 13, x FOR PEER REVIEW 6 of 14 
 

 

3.2. RNA-seq Analysis of DEGs 
To detect alterations in gene expression induced by 5 J/cm2 UVA radiation, we ex-

tracted total RNA from cells following the 5 J/cm2 and control treatments, and then per-
formed RNA-seq analysis and gene annotation in comparison with published human 
gene databases (Metascape). In total, 12,239 clear reads were successfully filtered from the 
24,172 sequenced genes and mapped onto the human genome. The annotated genes are 
displayed in a volcano plot (Figure 3A) to identify upregulated (blue) and downregulated 
(red) genes. We identified 771 DEGs (p < 0.05, |log2 fold-change| > 0.8; Figure 3B), of which 
535 and 236 genes were up- and downregulated, respectively. DEGs for long or short 
noncoding RNAs were excluded, and the remaining 370 upregulated and 111 downregu-
lated protein-coding DEGs were further analyzed. 

 
Figure 3. (A) Volcano map of 771 differentially expressed genes (DEGs) (p < 0.05, log2 fold-change > 
0.8). Significantly upregulated and downregulated DEGs are represented as blue and red dots, re-
spectively. (B) Distribution of DEGs. 

3.3. GO Enrichment and Reactome Pathway Analysis 
To investigate differences in the BPs, MFs, and CCs between the 5 J/cm2 UVA-treated 

and control cells, we conducted GO enrichment analysis. The most enriched BPs were 
oxidative phosphorylation, proton transmembrane, and regulation of neuron projection 
development (Figure 4, Table 2), whereas the most enriched CCs were the mitochondrial 
membrane, inner mitochondrial membrane, and mitochondrial envelope. The most en-
riched MFs were proton transmembrane transporter activity and oxidoreductase activity. 
We also performed reactome pathway analysis to identify pathways most strongly corre-
lated with the significant BPs. As shown in Figure 5 and Table 3, the upregulated DEGs 
were significantly enriched in the senescence-associated secretory phenotype (SASP), 
apoptosis, respiratory electron transport, and transcriptional regulation by TP53. Because 
the DEGs associated with the SASP were the most abundant, they were selected for fur-
ther analysis. 
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change > 0.8). Significantly upregulated and downregulated DEGs are represented as blue and
red dots, respectively. (B) Distribution of DEGs.

3.3. GO Enrichment and Reactome Pathway Analysis

To investigate differences in the BPs, MFs, and CCs between the 5 J/cm2 UVA-treated
and control cells, we conducted GO enrichment analysis. The most enriched BPs were
oxidative phosphorylation, proton transmembrane, and regulation of neuron projection
development (Figure 4, Table 2), whereas the most enriched CCs were the mitochondrial
membrane, inner mitochondrial membrane, and mitochondrial envelope. The most en-
riched MFs were proton transmembrane transporter activity and oxidoreductase activity.
We also performed reactome pathway analysis to identify pathways most strongly corre-
lated with the significant BPs. As shown in Figure 5 and Table 3, the upregulated DEGs were
significantly enriched in the senescence-associated secretory phenotype (SASP), apoptosis,
respiratory electron transport, and transcriptional regulation by TP53. Because the DEGs
associated with the SASP were the most abundant, they were selected for further analysis.
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Table 2. Gene Ontology (GO) analysis of low-dose UVA-related differentially expressed genes.

Go Number Description Log p Value

Biological processes

GO: 0006119 oxidative phosphorylation −3.91
GO: 1902600 proton transmembrane transport −3.53

GO: 0099151 regulation of postsynaptic
density assembly −3.06

GO: 0099150 regulation of postsynaptic
specialization assembly −2.95

GO: 0009060 aerobic respiration −2.90

GO: 0010975 regulation of neuron
projection development −2.89

GO: 0042572 retinol metabolic process −2.86
GO: 0034330 cell junction organization −2.86

Cellular components

GO: 0005743 mitochondrial inner membrane −4.51
GO: 0031966 mitochondrial membrane −3.95
GO: 0098984 neuron to neuron synapse −3.92
GO: 0005740 mitochondrial envelope −3.86
GO: 0019866 organelle inner membrane −3.79

Molecular functions

GO: 0015078 proton transmembrane
transporter activity −3.50

GO: 0031386 protein tag −2.95

GO: 0015453 oxidoreduction-driven active
transmembrane transporter activity −2.91

GO: 0032813 tumor necrosis factor receptor
superfamily binding −2.90

GO: 0016491 oxidoreductase activity −2.49
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Table 3. Reactome analysis of low-dose UVA-related differentially expressed genes.

Reactome ID Description Log p-Value Enrichment Gene Symbol

R-HSA-2559582 Senescence-associated
secretory phenotype −3.69 5.02 CDKN2A, CDKN2D, Fos, IGFBP7,

RPS6KA1, UBB, H2BC4, ANAPC11

R-HSA-168255 Influenza infection −3.38 4.05 POLR2F, POLR2L, RPL8, RPL36AL,
RPL41, RPS25, PABPN1, ISG15, RPL36

R-HSA-6798695 Neutrophil
degranulation −2.80 2.34

APRT, ATP6V0C, CYBA, CFD, FTH1,
PKP1, RAB3A, SLC2A5, KCNAB2,

DPP7, RAB4B, RAB24, CD177,
TXNDC5, GHDC, NAPRT

R-HSA-74259 Purine catabolism −2.70 11.70 NUDT1, DNPH1, NT5C

R-HSA-611105 Respiratory electron
transport −2.44 4.09 COX6B1, COX8A, NDUFA1, NDUFA3,

UQCRH, COX14

R-HSA-109581 Apoptosis −2.36 3.12 CDKN2A, PKP1, PSMB10, UBB, SEM1,
TRADD, FADD, BBC3

R-HSA-370098 Transcriptional
regulation by TP53 −2.19 2.31

CDKN2A, COX6B1, COX8A, Fos, PIN1,
POLR2F, POLR2L, STK11, UBB, BBC3,

PRELID1, COX14

R-HSA-5213460 RIPK1-mediated
regulated necrosis −2.10 7.27 UBB, TRADD, FADD

3.4. PPI Analysis of SASP-Related Genes

To identify hub DEGs involved in the SASP, we performed PPI network analysis.
CDKN2A, CDKN2D, Fos, IGFBP7, RPS6KA1, UBB, H2BC4, and ANAPC11 were the most
significant DEGs associated with the SASP (Table 4), among which IGFBP7 showed the
lowest p-value at DEGs of protein coding genes (Figure 6A). Although UBB and H2BC4
also had significant p and log fold-change values, they play roles in ubiquitination and
were therefore shown as activated in most pathways in GO analysis, which are not suit-
able as biomarkers. Furthermore, protein–protein interaction analysis revealed that Fos
proto-oncogene (Fos) had a high-confidence network with IGFBP7 among SASP hit genes
(Figure 6B). Fos is a transcriptional factor that directly activates IGFBP7 and is used as a
candidate marker gene [26]. Based on our RNA-seq data, IGFBP7 and Fos show potential
for evaluating the progression of UVA irradiation-mediated damage.

Table 4. Differentially expressed genes in the senescence-associated secretory phenotype pathway.

Gene Description Log2 Fold-Change p-Value

IGFBP7 Regulation of cell growth,
signal transduction 4.1 1.2 × 10−15

UBB Modification-dependent protein
catabolic process 1.3 0.0022

H2BC4 Core component of nucleosome 1.8 0.012
Fos RNA polymerase II binding 1 0.024

CDKN2A Cyclin-dependent kinase inhibitor 0.95 0.026
RPS6KA1 Ribosomal protein S6 kinase 1.2 0.028

ANAPC11 Ubiquitin-dependent protein
catabolic process 0.89 0.034

CDKN2D Cyclin-dependent kinase 4 inhibitor 0.86 0.05
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3.5. Biomarker Validation

To validate the putative biomarkers filtered from RNA-seq, Fos, and IGFBP7, which
were the most significantly altered genes in response to low-dose UVA radiation, were
analyzed using RT-qPCR. IGFBP7 and Fos mRNA expression was significantly upregulated
following low-dose UVA exposure, supporting the RNA-seq results (Figure 7). Thus,
Fos and IGFBP7 are candidate biomarkers for monitoring damage caused by low-dose
UVA radiation.

Genes 2022, 13, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 7. IGFBP7 and Fos mRNA expression in cells treated with 5 J/cm2 UVA radiation. (A) Fos 
mRNA levels. (B) IGFBP7 mRNA levels. Data represent the mean ± SEM of three biological inde-
pendent experiments performed in triplicate. Asterisks indicate significant difference analyzed us-
ing Student’s t-test, * p < 0.05, *** p < 0.001 vs. control, UVA non-irradiation group. 

4. Discussion 
UVA-radiation-induced cellular damage is highly correlated with the radiation in-

tensity and dose. A lower dose but higher total intensity of UVA radiation causes more 
severe lipid peroxidation and oxidation-related gene alteration compared to the effects of 
high-dose UVA exposure, indicating that accumulated low-dose UVA results in a higher 
level of ROS generation and thus indirectly causes DNA damage [8,27]. Moreover, a clin-
ical trial demonstrated that UVA radiation doses of over 30 J/cm2 maintained for 24 h can 
induce perceptible erythema in humans and that lower doses did not induce significant 
erythema but caused potential skin damage [9]. In HaCaT cells, irradiation with 10 and 20 
J/cm2 UVA significantly reduced cell viability [8], whereas UVA ≤ 5 J/cm2 caused persis-
tent genomic instability [28]. Consistently, in our study, 10 and 20 J/cm2 UVA radiation 
significantly reduced the viability of NB1RGB fibroblasts, indicating that dermal fibro-
blasts and keratinocytes have a similar tolerance to UVA radiation [8]. Furthermore, 5 
J/cm2 UVA radiation did not significantly cause cell death and alter the cellular morphol-
ogy, but the mRNA expression of 771 genes was significantly altered in NB1RGB fibro-
blasts. 

The DEGs were enriched in the process of oxidative phosphorylation and mitochon-
drial inner membrane, suggesting that UVA induces mitochondrial dysfunction; most en-
dogenous ROS are derived from the mitochondrial electron transport chain as a byprod-
uct of oxidative phosphorylation [29]. Thus, UVA-induced ROS overproduction may re-
sult from impairments in the mitochondrial electron transport chain and cellular photo-
damage [30]. Moreover, mitochondrial dysfunction and the associated ROS generation 
contribute to altering the intracellular redox balance and are accompanied by mitochon-
drial translocation of p53, subsequently leading to the excretion of SASP and finally re-
sulting in oncogene-induced cellular senescence [31–33]. 

UVA radiation induces aging of the human epidermis, even at low doses of 1–4 J/cm2, 
by influencing PI3K/AKT mediated arresting in S phase of the cell cycle [34]. However, 
the contribution of specific cell types to this process, particularly the role of human dermal 
fibroblasts, remains poorly understood. A previous study showed that UVA radiation in-
duced oxidative stress in mouse dermal cells, and that dermal cells secreted matrix met-
alloproteinase-1 to modulate epidermal keratinocytes [19], suggesting that senescent cells 
can induce paracrine senescence in normal neighboring cells via secretion of SASP factors 
[35]. Moreover, chronic exposure to SASP has been shown to impair the regenerative ca-
pacity of keratinocytes in mice [36]. In our study, low-dose UVA also induced a significant 
alteration in SASP-related genes in NB1RGB fibroblasts, suggesting that low-dose UVA 

Figure 7. IGFBP7 and Fos mRNA expression in cells treated with 5 J/cm2 UVA radiation. (A) Fos
mRNA levels. (B) IGFBP7 mRNA levels. Data represent the mean ± SEM of three biological
independent experiments performed in triplicate. Asterisks indicate significant difference analyzed
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4. Discussion

UVA-radiation-induced cellular damage is highly correlated with the radiation in-
tensity and dose. A lower dose but higher total intensity of UVA radiation causes more
severe lipid peroxidation and oxidation-related gene alteration compared to the effects of
high-dose UVA exposure, indicating that accumulated low-dose UVA results in a higher
level of ROS generation and thus indirectly causes DNA damage [8,27]. Moreover, a clinical
trial demonstrated that UVA radiation doses of over 30 J/cm2 maintained for 24 h can
induce perceptible erythema in humans and that lower doses did not induce significant
erythema but caused potential skin damage [9]. In HaCaT cells, irradiation with 10 and
20 J/cm2 UVA significantly reduced cell viability [8], whereas UVA ≤ 5 J/cm2 caused per-
sistent genomic instability [28]. Consistently, in our study, 10 and 20 J/cm2 UVA radiation
significantly reduced the viability of NB1RGB fibroblasts, indicating that dermal fibroblasts
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and keratinocytes have a similar tolerance to UVA radiation [8]. Furthermore, 5 J/cm2 UVA
radiation did not significantly cause cell death and alter the cellular morphology, but the
mRNA expression of 771 genes was significantly altered in NB1RGB fibroblasts.

The DEGs were enriched in the process of oxidative phosphorylation and mitochon-
drial inner membrane, suggesting that UVA induces mitochondrial dysfunction; most
endogenous ROS are derived from the mitochondrial electron transport chain as a byprod-
uct of oxidative phosphorylation [29]. Thus, UVA-induced ROS overproduction may
result from impairments in the mitochondrial electron transport chain and cellular pho-
todamage [30]. Moreover, mitochondrial dysfunction and the associated ROS generation
contribute to altering the intracellular redox balance and are accompanied by mitochondrial
translocation of p53, subsequently leading to the excretion of SASP and finally resulting in
oncogene-induced cellular senescence [31–33].

UVA radiation induces aging of the human epidermis, even at low doses of 1–4 J/cm2,
by influencing PI3K/AKT mediated arresting in S phase of the cell cycle [34]. However,
the contribution of specific cell types to this process, particularly the role of human dermal
fibroblasts, remains poorly understood. A previous study showed that UVA radiation
induced oxidative stress in mouse dermal cells, and that dermal cells secreted matrix
metalloproteinase-1 to modulate epidermal keratinocytes [19], suggesting that senescent
cells can induce paracrine senescence in normal neighboring cells via secretion of SASP
factors [35]. Moreover, chronic exposure to SASP has been shown to impair the regenerative
capacity of keratinocytes in mice [36]. In our study, low-dose UVA also induced a signif-
icant alteration in SASP-related genes in NB1RGB fibroblasts, suggesting that low-dose
UVA radiation accelerates human dermal fibroblast senescence, and activated SASP may
interfere with the regenerative capacity of epidermal cells. Additionally, several studies
showed that NF-κB is involved in regulating the SASP, as inflammatory responses can
recruit macrophages to eliminate potentially senescent cells [37,38]. Thus, low-dose UVA
exposure may lead to photoaging of both dermal and epidermal cells and even result in
skin inflammation.

Cell senescence caused by UVA radiation is the hallmark of UVA-induced skin damage.
SASP is a form of growth arrest in which senescent cells produce extracellular secretomes
that mediate the senescence response of neighboring cells [39]. Inflammatory cytokines
(e.g., IL-6, IL-7, IL-15), growth modulators (e.g., FGF7), angiogenic factors (e.g., angiogenin),
and matrix metalloproteinases (e.g., MMP-1, MMP-3, MMP-10) are all associated with the
SASP [40]. Studies showed that cellular responses and stress sensors that regulate the SASP
are influenced by UVA radiation [41,42]. UVA radiation induces the generation of ROS,
including superoxide (O2•- or singlet oxygen (1O2)), which can oxidize cellular proteins,
making them relatively insoluble [43]. Intracellular deposition of insoluble oxidized protein
aggregates is associated with SASP induction and inflammatory disorders [44,45]. UVA-
induced cell senescence may be strongly associated with SASP activation. Because various
factors also induce SASP responses to clear antigens, toxins, and cancer cells, not all
SASP-related genes reflect the damage caused by low-dose UVA radiation [46]. Of the
SASP-related DEGs identified in this study, IGFBP7 showed the most significant p-value.
IGFBP family members are not only highly involved in the SASP, but IGFBP4/7 are also
key components required to trigger cell senescence [47]. Similarly, a genome-wide shRNA
screening of melanocytes showed that IGFBP7 plays a central role in senescence and
apoptosis [26]. Together, these findings indicate that cells sensitively express IGFBP7 during
UVA-radiation-induced senescence, and IGFBP7 is a potential biomarker for monitoring
low-dose UVA-induced cell damage. Additionally, we found that UVA promotes activation
of the oxidative stress-sensitive signaling protein p38 and its downstream target Fos. The
IGFBP7 promoter contains a consensus binding site for the dimeric AP-1 transcription
factor, including c-Fos and c-Jun [26]. Fos mRNA was significantly regulated in senescent
fibroblasts. Similar results were reported for the HaCaT cell line [48–50], suggesting that
the mRNA expression of Fos can indicate both senescence and inflammation induced by
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UVA [51–53]. Thus, Fos is another potential biomarker of low-dose UVA-induced cell
damage in both epidermal and dermal cells.

5. Conclusions

This study characterized genetic changes and pathway alterations induced by low-
dose UVA radiation in NB1RGB fibroblasts using RNA-seq; low-dose UVA-induced DEGs
were mostly enriched in mitochondrial dysfunction and SASP activation. Fos and IGFBP7,
which respond to inflammation and cell senescence, show potential as biomarkers of
damage caused by low-dose UVA radiation.
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