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Abstract: The auditory system is a fascinating sensory organ that overall, converts sound signals to
electrical signals of the nervous system. Initially, sound energy is converted to mechanical energy via
amplification processes in the middle ear, followed by transduction of mechanical movements of the
oval window into electrochemical signals in the cochlear hair cells, and finally, neural signals travel to
the central auditory system, via the auditory division of the 8th cranial nerve. The majority of people
above 60 years have some form of age-related hearing loss, also known as presbycusis. However, the
biological mechanisms of presbycusis are complex and not yet fully delineated. In the present article,
we highlight ion channels and transport proteins, which are integral for the proper functioning of
the auditory system, facilitating the diffusion of various ions across auditory structures for signal
transduction and processing. Like most other physiological systems, hearing abilities decline with
age, hence, it is imperative to fully understand inner ear aging changes, so ion channel functions
should be further investigated in the aging cochlea. In this review article, we discuss key various ion
channels in the auditory system and how their functions change with age. Understanding the roles
of ion channels in auditory processing could enhance the development of potential biotherapies for
age-related hearing loss.

Keywords: aging; cochlea; ion channels; presbycusis; age-related hearing loss; potassium channels;
deafness; auditory; hearing; inner ear

1. Introduction

Auditory system pathologies lead to hearing loss that can be categorized into two
broad types: conductive or sensorineural hearing loss. Conductive hearing loss occurs due
to deficits in the middle or outer ear, while sensorineural hearing loss occurs due to inner
ear abnormalities. Age-related hearing loss (ARHL), also known as presbycusis, is the
most common type of sensorineural hearing loss and is a highly prevalent communication
disorder and neurodegenerative disease affecting the elderly worldwide. The majority of
people above the age of 60 experience some degree of ARHL, impacting their auditory
sensitivity and speech perception capabilities [1]; making it difficult for the elderly to
communicate, and decreases the productivity and quality of their lives [2–7]. Presbycusis
is a multifactorial process characterized by reduced sensitivity and speech understanding
in noisy environments, slowed central processing of acoustic information, and impaired
localization of sound sources, which can impart declines in music appreciation, and partici-
pation in family and social activities [8–10]. Deficits can occur at many points in the system,
including inner ear structures: hair cells, auditory nerve, stria vascularis, marginal cells in
the lateral wall, and others [8,11,12]. According to Schuknecht’s pioneering work (1969),
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there are four types of ARHL involving the cochlea: sensory, neural, stria/metabolic, and
cochlear conductive [13,14]. Sensory presbycusis occurs due to degeneration of the organ
of Corti, with major damage to outer hair cells. Neural presbycusis is a moderate-to-severe
hearing loss at high frequencies, involving a significant decrease in speech recognition.
It occurs due to loss of cochlear neurons. Strial or metabolic presbycusis is the loss of stria
vascularis cells and functionality and shows hearing loss across all frequencies. Cochlear
conductive hearing loss is characterized by presumed degenerations due to mechanical
stiffness of the basal area of the cochlea. Later in 1993, Schuknecht and co-workers added
two more types: mixed and indeterminate presbycusis. Mixed presbycusis is a combination
of four types of hearing loss; and indeterminate occurs due to damage to the stereocilia
tip links and their mechano-electrical channels [15]. They hypothesized that metabolic
presbycusis, involving lateral wall and stria vascularis atrophy, is a predominant lesion in
the inner ear, and the sensory cell and neural loss may be less prevalent [10,15,16]. Many
animal models without noise history or genetic mutations support this conclusion [17–19].
Although recent evidence from human temporal bones calls this theory into question, and
attributes more importance to the sensory and neural components of ARHL [20].

The cochlea is a spiral structure that is made up of three fluid-filled compartments,
scala media, scala tympani and scala vestibuli. Scala media is an unusual, high K+ and
low Na+ concentration fluid zone that is sandwiched between two low K+ and high NaCl
zones: scala tympani and scala vestibuli. Scala media’s unique extracellular solution,
known as the endolymph, contains 150 mM K+ with a high, positive voltage (endocochlear
potential: EP); ~ +80 to +100 mV (the highest positive voltage in the body). The apical
surface and stereocilia of the sensory hair cells lie inside the endolymph. As sound stimuli
occur, cation channels on the stereocilia open and endolymphatic K+ flows into the hair
cells. This depolarization triggers an electrical excitation of the cells and leads to the release
of neurotransmitter into the synaptic cleft of the hair cells and auditory neurons [21,22].
Dysfunction of the EP results in hearing loss or deafness since the highly positive EP is
necessary for hair cell transduction. The EP is maintained by ionic fluxes in an intact
ion channel transport system located on the lateral cochlear wall, which has two types of
tissue: stria vascularis and spiral ligament [23,24]. Stria vascularis, an epithelial-like tissue,
consisting of three types of cells: marginal, intermediate, and basal. These cells separate
the endolymphatic space from the normal extracellular environment (high Na+, low K+)
and facilitate selective passage of particular ions, fluids, and nutrients. Although previous
studies have identified some proteins involved in the transport systems [23,25], more
research is required for understanding the molecular elements and networks of the systems.
In this review, we will discuss the scientific literature focusing on various ion channels
and their roles in hearing loss, especially ARHL. The article also focuses on cochlear ion
transporters—sodium-potassium-chloride transporters, sodium-potassium-ATPase and
potassium channels. Calcium channels are not included here as there is not sufficient data
available yet to summarize them meaningfully, in the context of age-related hearing loss.
Figure 1 depicts the various channels expressed in the cochlea, especially in the cochlear
lateral wall.
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Figure 1. Schematic diagram of potassium circulation, ion channels and transporters in the cochlear lateral wall.
(I) Potassium exits the hair cell and re-circulates into the endolymph of the scala media via various structures and
ion channels in the supporting cells and lateral wall of the cochlea. (II) Various ion transporter channels; NKCC1; Na,
K-ATPase; KCNQ1; Kir 4.1; Kir 5.1 and Kv, are expressed in the stria vascularis and spiral ligament that participate in
potassium circulation and endocochlear potential generation. TJ: Tight Junctions. NKCC1, a key transporter in the cochlea,
is expressed in spiral ligament and stria vascularis cells. Adapted from Hibino and Kurachi (2006) [25], with permission
from the publisher.

2. Sodium-Potassium-Chloride Cotransporter

Sodium-potassium-chloride, Na+-K+-2Cl− (NKCC) cotransport protein is of particular
importance in the regulation of osmotic homeostasis and ion concentration regulation in
animal cells [26–28]. Specifically, this protein aids in electroneutral transport of Na+, K+
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and Cl− across the plasma membranes of cells [28–30]. In humans, the NKCC cotransporter
has two isoforms: NKCC1 and NKCC2. These two isoforms are encoded by two different
genes; namely, the SLC12A2 gene, located on chromosome 5q23, and the SLC12A1 gene,
located on chromosome 15q15-q21, respectively. NKCC1 and NKCC2 monomers share
around 60% sequence at protein levels, with NKCC2 slightly smaller than NKCC1 (NKCC1:
1212 amino acids, 131.4 kDa size; and NKCC2: 1099 amino acids, 121.3 kDa). NKCC1
has been experimentally observed to be a homodimer whose expression and composition
remains relatively constant across different cell types [29,31–34]. The phosphorylation of
the N terminus has been observed to produce movement in the C terminus as regulation of
NKCC1 occurs. This suggest that the NKCC1 C terminus is involved in transport regulation
which is amplified within dimeric pairs and could provide insight into the mechanisms of
cation-coupled Cl− cotransport as mediated by conformational changes [28,35].

While NKCC2 is localized only in the kidney, NKCC1 is primarily found in secretory
epithelial cells where it is expressed in the basolateral membrane. However, northern probe
studies have shown that NKCC1 can be found in the plasmalemma of many different cell
types, including most non-epithelial cells [26,32,36]. NKCC1 is known to be physiologically
important with key roles in cardiac, vascular, renal, hepatic, and sensory systems. It is also
found within the nervous system, being present in the striatum, neocortex, hippocampus,
dorsal root ganglia, and glia serving to regulate the generation, inhibition, and propagation
of action potentials; as well as being expressed in the heart and skeletal muscle [26,37,38].
Within these systems, NKCC1’s main role is to regulate intracellular Cl- concentrations
as well as overall cell volume [27,39–41]. To do this, NKCC1 facilitates the entry of Na+,
K+ and Cl− from interstitial fluid into cells. Specifically, when NKCC1 is activated, it
allows the entry of Na+, K+, and 2Cl− via cation-coupled chloride cotransport. This results
in an electroneutral influx of ions into the cell [26,28–30,37,38]. For the regulation of cell
volume, NKCC1 has an estimated turnover of 600 water molecules transported/molecule.
This osmotic regulation is highly precise, as cells maintain their volume with an accuracy
of ~2%. Furthermore, previous studies show that NKCC channel activation is linked
with osmotic dysregulation in both shrunken and swollen cells through the activation of
phosphatases and protein kinases [39,42–45].

Malfunction of NKCC1 can lead to complications, not least neurodegenerative dis-
eases and attenuation of sensory system acuity like epilepsy, ataxia, hypertension, and
hearing loss [46–54]. Also, studying interactions between enzyme activation and NKCC1
performance has led to the exploration of therapeutic countermeasures which show promis-
ing results. Regulation of NKCC1 function has been shown to improve the severity of Rett
syndrome, Down’s syndrome, schizophrenia, Parkinson’s disease and other neurological
conditions through GABAergic modulation [28].

Presbycusis and NKCC1 (Sodium-Potassium-Chloride Cotransporter)

Deterioration of the EP, linked to stria vascularis pathology, is a primary cause of
ARHL. NKCC1 is expressed in marginal cells of the stria vascularis and plays a key role
in maintaining the EP, by helping regulate K+ concentration in scala media. There are
multiple reports demonstrating the role of NKCC1 in inner ear function and aging declines.
For instance, Liu’s group [55] found that NKCC1 is mainly expressed in the cochlear
lateral wall in C57BL/6J mice, and its expression levels decreased with age associated
declines in hearing. Mice were divided into four different age groups: 4, 14, 26 and 52
weeks old. There was a steady decline in NKCC1 expression at both protein and gene
levels with age; confirmed by immunofluorescence microscopy, Western blotting and
quantitative real-time polymerase chain reaction (RT-PCR) techniques, as displayed in
Figure 2. Frisina and colleagues reported similar ageing declines in NKCC1 expression for
CBA/CaJ mice [47]. The mutation/disruption of NKCC1 led to deafness and structural
damage in the inner ear of other mouse models [56,57]. Specifically, Delpire et al. [56]
disrupted the slc12a2 (NKCC1 gene) in mouse pups and found that the mutant mice were
deaf. Significant damage was observed in the inner ear structures, such as collapse of
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Reissner’s membrane, shrinkage of stria vascularis, disorganization of the organ of Corti,
including hair cell loss. Similarly, Flagella et al. [58] generated NKCC1 deficient mice
and observed reduced growth, lower mean arterial blood pressure measured using a
femoral artery catheter, and no auditory function, including collapse of inner ear structures.
These studies demonstrated that NKCC1 is essential in transepithelial K+ movements
for generation of potassium rich endolymph. In summary, NKCC1 plays a role in ARHL
consistent with its participation in the production of the potassium-rich endolymph fluid,
essential for inner ear function and sound transduction. For example, the application of the
NKCC1 antagonist furosemide decreases the EP and, elevates the thresholds of auditory
nerve fibers [59,60]. Through fitting the mean furosemide gerbil data to that of the human
audiometric comparison, Schmiedt et al. [59] found the overall audiometric profiles of
quite-aged and furosemide-treated gerbils and the human data are quite similar [59,61].
This finding strongly supports the hypothesis that ARHL in many humans is of metabolic
origin. Given its critical involvement in aging changes in cochlear function, NKCC1 could
be a potential therapeutic target for new ARHL treatments. Provocatively, the chronic
treatment of aging CBA/CaJ mice with aldosterone, a natural occurring hormone that
declines with age in mammals, prevents certain key aspects of ARHL (relative to aging
control mice); i.e., aldosterone hormone therapy improved auditory brainstem response
thresholds and improved survival of spiral ganglion neurons via inhibition of age-related
downregulation of NKCC1 and apoptotic pathways [46–48,62].

Figure 2. Aging decline of NKCC1 (sodium-potassium-chloride cotransporter) in C57BL/6J mouse
cochlear lateral wall with four different age-group animals; 4 weeks old, 14 weeks old, 26 weeks
old and 52 weeks old. (I) Age-related changes of NKCC1 protein stain with FITC (Fluorescein
isothiocyanate, green fluorescence—top row) and the nuclei counter stained by DAPI (4′,6-diamidino-
2-phenylindole, blue fluorescence—bottom row) for 4 animal groups at 400× magnification; A,
E—4-week-old group; B,F—14-week-old group; C, G—26-week-old group and D, H—52-week-old
group. (II,III) Western blotting and real-time polymerase chain reaction (RT-PCR) results from
the four different age groups showed the gradual reduction in NKCC1 at both protein and gene
expression levels. * p < 0.05, ** p < 0.01. From Liu et al. (2014) [55], with permission from the publisher.
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3. Na+ K+-ATPase

Sodium-potassium adenosine triphosphate (Na+, K+-ATPase), also known as the
Na+/K+ pump, is an enzyme primarily located in the cell membrane. It transports ions
against a concentration gradient, i.e., sodium out of the cell and potassium into the cell.
Na+, K+-ATPase is classified as a P-type ATPase. Furthermore, through evolutionary
analysis and phylogenetic modeling, Na+, K+ -ATPase has been classified in the P2C family
and its closet relative is H+, K+-ATPase [63]. These enzymes are P-type ATPase proteins
composed of multiple subunits. Na+, K+ -ATPase is a heterodimeric protein that consists of
two subunits that coexist in 1:1 stoichiometry (the catalytic subunits—α, and the regulatory
subunits—β) and a FXYD protein [64,65].

The α-subunit is responsible for the catalytic character of the Na+/K+ pump by hy-
drolyzing ATP and transporting cations in and out of cells. This subunit is composed of
approximately 1000 amino acid residues and has a mass of 110 kDa. Furthermore, four
distinct isoforms of this subunit have been identified and their presence in varying tissues
has been studied although their functional differences are not clear. The isoform α1 can be
found in most tissues and is largely responsible for ionic transport against electrochemical
gradients. Thus, in systems where large disparities in cation concentrations exist, α1 will
be transported in either apical or basolateral locations to help maintain these gradients,
e.g., renal and central nervous systems where Na+/K+ pumps maintain the unidirectional
flow of ions. Within the renal system, Na+, K+-ATPase is present within the basolateral
membrane of the tubular system in order to decrease loss of sodium. On the other hand, the
Na+/K+ pump is localized at the apical region of the epithelial cells that line the choroid
plexus. This allows them to maintain low sodium levels within the cerebrospinal fluid [66–
69]. Due to their critical functions and sweeping presence, deletion or serious mutations
of this isoform are mostly incompatible with life. However, in less extreme cases where
somatic mutations of the gene occur, altered α1 function can lead to hormone imbalances
as well as hypertension [68,70,71]. The α2 isoform, in contrast, is found predominantly
within muscle, localized to the T-tubular membranes, and assists in the indirect regulation
of Ca2+ due to its close proximity to the Na+/Ca2+ exchanger [72]. Within these muscles,
α2 is proposed to help maintain long-lasting cardiac action potentials as well as adapt to
dynamic muscle activity within somatic musculature [73–75]. Mutations in α2 can affect
both transmembrane and cytoplasmic parts of the protein. The most studied mutations
result in reduction or loss of function due to affected ion binding, ion transport, or compro-
mised integrity of the pump. Meanwhile, other mutations impair the ability to transport
the protein to the membrane [76,77]. The most prominent result of α2 mutations is the
development of familial hemiplegic migraine (FHM) that is characterized by weakness
in one side of the body during the attacks; and at-least 82 different mutations of the α2
gene are linked to FHM [78–80]. The next isoform, α3 is largely found within the nervous
system; specifically, within dendrites and neuronal projections [81]. Due to low sodium
affinity, the α3 pump is ideal for the restoration of sodium concentrations within dendritic
spines that have a buildup of sodium as high as 100 mM due to summation of neural action
potential inputs [68,82,83]. Mutations of this isoform have been consistently linked with
the development of rapid-onset dystonia Parkinsonism (RDP), alternating hemiplegia of
childhood (AHC), and CAPOS (cerebellar ataxia, areflexia, pes cavus, optic atrophy, and
sensorineural hearing loss) [84–86]. These conditions were long considered to be different
phenotypes of the same underlying genetic abnormality due to their similarity. However,
considering further observations, they have recently been categorized independently. RDP
is currently not treatable, as no therapeutic drug or therapy is available. This condition
is triggered by a stressful event which results in an irreversible rostro-caudal gradient
of dystonia and Parkinsonism which affect both the motor and psychiatric faculties of
the patient [87]. Similarly, AHC is typically diagnosed early in childhood, and its attacks
(lasting anywhere from minutes to days) are accompanied by full body unilateral weakness
or paralysis, dystonia, nystagmus, and in extreme cases, epileptic seizures [88]. CAPOS
attacks, lastly, are triggered by fevers and characterized by cerebellar ataxia, areflexia, pes
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cavus, optic atrophy, and sensorineural hearing loss, although nystagmus and hypotonia
are also common symptoms [89]. Lastly, α4 isoforms are unique to spermatozoa [90].
These are also the most distinct of α isoforms when compared to other isoforms [91].
These isoforms, despite their significant inter-species differences, all share increased func-
tionality on both hyper- and hypo-polarized sodium ion concentrations. This has been
characterized as an evolutionary advantage as it makes the spermatozoa less susceptible to
environmental insults [92].

The β-subunits act as molecular chaperones by aiding the integration and packing of
the catalytic α subunit. These processes help the cell maintain proper function, facilitate
routing to the plasma membrane, and protects against degradation [93]. These subunits,
in humans, are expressed in three isoforms. They are composed of a small N-terminal
containing only 30 amino acids, a TM helix, intracellular matrix, extracellular domain, and
a C-terminal of roughly 240 amino acids [94]. All isoforms of β subunits are regarded as
regulators of catalytic activity as well as playing key roles in cell motility, formation of tight
junctions, mesenchymal cell transformation, and cancer [64]. The β1 isoform of this subunit
stands out for its ability to react to high levels of oxidative stress by glutathionilation of a
cysteine found in the middle of its transmembrane helix that is not present in any other
isoform [95], which facilitates the Na+ K+ ATPase function. In parallel, β2 has the highest
enzymatic effects by lowering the affinity for K+ and raising the affinity for extracellular
Na+ in a more pronounced way than other isoforms. This discrepancy in kinetic properties
is the result of a difference in tilt angles of the TM helix of the isoform. This isoform,
furthermore, likely plays important roles in biological development, as β2 knock-out mice
expire 17–18 days after birth. This has been theorized to occur as a result of improper
function of important brain structures [96]. Lastly, the β3 isoform has been experimentally
found to act analogously to β1 except for the additional glutathionilation. However, no
confirmed links have yet been found between human β mutations and genetic diseases.

FXYD proteins are a family of seven proteins that are characterized by their FXYD se-
quence, two conserved glycine residues in the transmembrane domain and a serine residue.
These proteins are thought to regulate and stabilize Na+, K+-ATPase through alteration of
its affinity for Na+ [97,98]. These proteins have also been experimentally shown to have
an effect on Na+, K+-ATPase potassium affinity [99]. Notably, FXYD1 (phospholemman)
is overrepresented in the heart and has been shown to cover a range of functions which
are integral for the presence of healthy cardiac activity. FXYD1 deficient mice demonstrate
depressed contractile function and as well as increased cardiac mass; furthermore, this
protein is associated with the modulation of the sodium/calcium exchanger as well as
maximum voltage characterization of Na+, K+-ATPase [100–104]. FXYD2 and FXYD4 are
also strongly associated with Na+, K+-ATPase and regulation of its sodium affinity. Specifi-
cally, FXYD2 decreases Na+, K+-ATPase’s affinity for Na+ while FXYD4 increases it [105].
Although these isoforms are not as vital for survival as FXYD1, FXYD4-deficient mice
demonstrate impaired colonic Na+ transport, pointing to the physiological relevance of this
isoform [106]. In contrast, FXYD2 is associated with resorption of Na+ within the nephron;
yet, FXYD2-deficient mice did not show impaired renal function by virtue of compensatory
mechanism within the kidneys [97]. Lastly, as is the case with β-subunits, no confirmed
links have yet been found between human FXYD mutations and genetic diseases.

Presbycusis and Na+, K+-ATPase

Na+, K+-ATPase is expressed in the lateral wall of the cochlea, specifically, in stria
vascularis, and plays a crucial role in maintaining the EP. The direct evidence that Na, K-
ATPase regulates the EP can be observed when ouabain (Na, K-ATPase inhibitor) is applied
to the round window niche in guinea pigs, the EP declines monotonically, stabilizing at a
minimum of +8.0 mV after approximately 30 min [107]. Degeneration of stria vascularis
has been strongly linked to ARHL [108–110]. As an ion pump, Na+, K+-ATPase aids in the
regulation and maintenance of the 80mV resting potential found in the scala media via
recirculation of K+ from perilymph to endolymph [111]. This process charges the cochlear
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“battery” and preserves the voltage difference of scala media through the movement of K+
against a voltage and concentration gradient.

Aging, however, causes a decline in the volume of the stria vascularis [110,112–117].
Consequently, the expression of Na+, K+-ATPase also becomes reduced within these struc-
tures. Schulte and Schmiedt [118] demonstrated the strong correlation between Na+,
K+-ATPase expression and ARHL in gerbils. The study consisted of 41 Mongolian gerbils
that were separated into four age groups: 5–12 months, 21–22 months, 29–31 months, and
35–38 months. The EP was recorded using a micropipette containing 0.5M KCl at four
separate locations; the first being made at the scala media by passing the micropipette
through the round window and basilar membrane. Subsequently, measurements were
taken by drilling holes along the otic capsule’s overlying turns. The results showed that
gerbils of more than 20 months of age had suffered significant loss of immunoreactive Na+,
K+-ATPase in stria vascularis, located along both apical and basal turns of the cochlea. Fur-
thermore, the regions of absent immunostaining grew larger with age strongly supporting
the decay of both stria vascularis and Na+, K+-ATPase viability with ageing. The drop
of EP magnitude was also reported in the same animals. Schulte and Schmiedt [118]
concluded that around 64% of the decline in EP magnitude is linked to the loss of Na+,
K+-ATPase in the stria vascularis. However, a significant level of redundancy was noted
in the capacity for ion transport within the cochlea. It was observed that a 70% decrease
in immunoreactive Na+, K+-ATPase in the stria vascularis induced a 25% decrease in the
EP. However, for more than a 75% decrease, there was a rapid decline in EP magnitude.
Figure 3 shows key findings of this study.

Figure 3. Na, K-ATPase expression in the cochlear lateral wall and endocochlear potential recordings
for different age-group gerbils. (I) Middle turn sections of gerbil cochlea showing the Na, K-ATPase
staining for a 6-month-old gerbil (a) and a 36-month-old gerbil (b–d). Various parts of lateral wall
were stained for Na, K-ATPase expression; marginal cells in stria vascularis (SV), fibrocytes in the
suprastrial zone (SS) and the inferior spiral ligament (ISL). There was a reduction in NA, K-ATPase
immunostaining in the central portion of the SV (b—between arrows) as well as fibrocytes in the
SS zone and ISL (c). Higher magnification of strial atrophy in part (b) is depicted in part (d). Strial
capillaries (asterisks) were present in old age gerbil cochlea and remain patent (c and d). Scale Bars:
a, b, c = 20 µM and d = 10 µM. Magnifications: a, b and c = ×800 and d = ×1800. (II) Mean values of
endocochlear potentials of nine young animals (dotted line) and three groups of 35- to 38-months-old
animals. The measurements were done at four positions—round window and three turns; T1, T2
and T3. Old animals were grouped based on the percentage of Na, K-ATPase immunostaining
remaining as compared to the young adult control group. From Schulte and Schmiedt (1992) [118],
with permission from the publisher.
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Hellier et al. [119] later corroborated relations between EP and ion channels/pumps
by studying the optical density, quantity, and immunoreactive characteristics of Na+, K+-
ATPase, as well as EP and stria vascularis density, in intermittently deafened guinea pigs.
Additionally, Rarey and Lippincott’s study of both spontaneously hypertensive (SHR) and
Wistar–Kyoto (WKY) rats further supports the relation between aging and Na+, K+-ATPase
expression declines. Their study used 8 SHR and 9 WKY rats. The findings indicate
that Na+, K+-ATPase immunostaining declined with age across both tested subunits (α1
and β1) for both animal models. The study further described the nature of relationships
between the Na+/K+ pump and EP by correlating an increase in Na+, K+-ATPase staining
with increased K+ concentrations within the endolymph [120]. Along similar lines, Ding
et al. [121] studied the changes of Na+, K+-ATPase and its various subunits for aging in the
CBA/CaJ mouse cochlea. Three isoforms of Na+, K+-ATPase; α1, β1 and β2 were detected,
and there were aging declines in the expressions for all three isoforms at both protein and
gene levels as shown in Figure 4. They also found that there was a preference for the α1-β1
heterodimer over α1-β2. α1-β1 interactions, observed in the young adult mouse cochlea
were not found in old mice, suggesting that alterations in isoform interactions also play a
critical role in functional declines of the aging cochlea.

In addition, the spiral ganglion cell density decreases 25% along the cochlear duct
with aging and, interestingly, nerve fibers have large amounts of Na, K-ATPase [108].
In a ouabain mouse model, when ouabain was applied to the round window niche, all
type I afferents underwent apoptosis, whereas the type II fibers that innervate the OHCs
were preserved [122], similar to some age-related changes observed in the human cochlea.
Clinically, the causative relations between strial degeneration and EP declines and loss of
other cochlear cell types, such as hair cells and auditory nerve fibers, are not yet clear, since
these changes cannot be studied directly in humans.

Although individual knockout of either NKCC1 or Na, K-ATPase leads to hearing
loss, interestingly, Diaz et al. [123] reported that simultaneous deletion of NKCC1 and
the α1 isoform of Na+, K+-ATPase in mice delayed the progression of ARHL. Also, the
deletion of NKCC1 and α2–Na+, K+-ATPase helps protect hearing thresholds and the
EP with aging. The mechanisms behind these counterintuitive findings need further
investigation. For example, they could be due to crosstalk mechanisms between NKCC1
and Na-K-ATPase.
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Figure 4. Age-related decrease in Na, K-ATPase subunits in CBA/CaJ mouse cochlea. (I) Protein lysate and mRNA
extracts were analyzed for young adult (3 months) and old (30 months) CBA/CaJ mice using western blotting and RT-
PCR techniques, respectively. There was significant decrease in α1, β1, β2 subunits of Na, K-ATPase at both protein
and gene expression levels. (II) Cross sections of cochlea with immunostaining further confirmed the results using
immunohistochemistry i.e., there was a significant decrease for Na, K-ATPase subunits α1, β1, β2 with aging in all three
cochlear turns. * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001. From Ding et al. (2018) [121], with permission from
the publisher.
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4. Potassium Channels

Potassium channels are ubiquitously present in most animal species except for some
parasites [124]. There are approximately 70 distinct potassium channels in humans, many of
which are present in cell membranes and are responsible for regulating the influx and efflux
of K+ for excitable and non-excitable cells. Furthermore, these channels help determine the
shape and timing of action potentials as well as the magnitude of the cell resting membrane
potential. Potassium channels are categorized into the following classes depending on
the structure and function of their transmembrane helixes: voltage gated (Kv), inward
rectifying (Kir), tandem pore (K2P), and ligand gated (Kligand). Voltage-gated potassium
channels are known to have six transmembrane helixes (TMs), inward rectifying channels
contains two TMs, tandem-pore channels contain four TMs, and ligand-gated potassium
channels are known to possess either two or six TMs [125,126].

Regardless of their categorization, all K+ channels are composed of a regulatory
domain, responsible for sensing stimuli, and a pore-forming domain, responsible for ionic
transport. The primary organization of K+ channels is a tetramer wherein each monomer
has a pore-forming domain. Four pore-forming domains form a pore for ion flow [127].
Ion transport typically begins at the helical bundle from where ions enter the central
water-filled cavity, then pass to the active site, which acts as a selectivity filter composed
of four sequences, TVGYG in the 75–79th place of the genetic sequence, and then the ions
end up in the extracellular entryway. During ion transport, the ions are hydrated at the
central cavity, dehydrated at the selectivity filter, and finally rehydrated at the extracellular
entryway [128]. Furthermore, due to the structure of the selectivity filter, four K+ ions can
bind simultaneously to a tetramer allowing molecular interactions between potassium and
oxygen; maximizing the rate at which this process occurs [127].

Potassium channels usually have three states: the activated state, inactivated state,
and resting states. The channel’s state is dependent on electrochemical signaling and
stimulation, and state changes occur through a process called gating. In the resting state,
channels are closed and then open on stimulation, followed by inactivated states [129].
There are two kinds of gating mechanisms: the intracellular, which occurs at the spot where
the inner helix bends; and the extracellular, which makes use of a selectivity filter [130].
These two mechanisms, or gates, are coupled; however, their coupling is dependent on the
type of potassium channel. For instance, Kv channels are negatively linked, which favors
the inactivated state. On the other hand, tandem-pore channels are positively linked, to
favor the activated state [131].

Potassium channel abnormalities are associated with various diseases. For example, the
selective filter (SF) of Kv channels play a key role in cardiac repolarization. Therefore, distur-
bance of the proper functionality of the SF in any of the states is associated with arrhythmias
and sudden death [132]. Similarly, Kir channels, which are subdivided into seven subfamilies,
are known to have a multitude of functionalities within human tissues. Kir channels can be
categorized as homo- or hetero-tetramers and the specific Kir-6.x channels are known to aid in
the control of insulin secretion within pancreatic β-cells [133]. Kir-6.x and their partners (SUR)
have been linked to type 2 diabetes through dysregulation of insulin secretion. This link is
so pronounced that drugs targeted to SUR are commonly used to treat type 2 diabetes [134].
Tandem-pore channels (K2P) are significantly abundant in both excitable and non-excitable
cells. Therefore, it comes as no surprise that improper functionality of these channels has been
related to a variety of complications ranging from cardiovascular, such as atrial fibrillation, to
intestinal, such as Hirschsprung disease [135,136]. Also, Kligand, such as BKca, take part in
many processes including generation of action potentials, tone modulation for blood vessels,
hormone release, and neurotransmitter regulation [137,138]. In this review, we will focus on
potassium channels related to hearing loss, specially, ARHL

4.1. KCNQ Channels

Like other potassium channels, KCNQ channels are composed of four subunits which
constitute a pore, and each of these subunits consists of six transmembrane segments (S1–
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S6) where both the N and C terminus are located on the intracellular side of the membrane.
Within these segments, the S4 contains the voltage sensor while the S5 and S6 form the
pore domain along with a P-loop domain. Separately, the selectivity filter comprises four
P-loops [139–141]. KCNQ is a gene family responsible for encoding five members of Kv7
channels: Kv 7.1–7.5 (KCNQ 1–5). Four of these channels (KCNQ 2–5) are expressed
in neural systems and form the subunits of low-threshold Kv channels. These channels
activate at low, sub-threshold voltages around −60 mV. KCNQ1, also coined KvLTQ1,
is known to co-assemble to yield KCNE1 which is critical for the formation of cardiac
delayed-rectifier-like potassium currents. Consequently, it has been found that mutations
to KCNQ1 can lead to long-QT syndrome: a reduced capacity to repolarize the heart after
each heartbeat [142–145]. Additionally, mutations to this channel have been associated
with hearing loss, indicating that KCNQ1 plays a part in K+ recycling of the inner ear [140].
KCNQ2 and KCNQ3 share 40% homology with KCNQ1 and are thought to underlie the M
current; a non-inactivating potassium current found in multiple neuronal cells [146–148].
These channels are commonly found within the nervous system and their mutations can
lead to benign familial neonatal convulsions, a rare form of epilepsy [149,150]. The KCNQ4
gene is theorized to encode the molecular correlate of IK,n in outer hair cells and also, there
is evidence that it is involved with IK,L in Type 1 hair cells of the vestibular apparatus.
Mutations of the KCNQ4 can lead to a form of deafness [140,141]. Furthermore, more
recently identified KCNQ4, present in sensory neurons and the brainstem, can modulate
stimulus-excitation coupling [151,152]. Lastly, KCNQ5 is most commonly expressed in
brain and skeletal muscles and their mutations can cause retinopathy; however, it has
also been observed in dorsal root ganglion neurons where they are hypothesized to aid
regulation of pain sensitivity [141,153,154]. Furthermore, significant links have been found
between KCNQ5 and KCNQ3, which has had interesting connotations as it suggests that
KCNQ5 might also play a role in M current heterogeneity [155].

When compared to other Kv channels, KCNQ channels have an extended intracellular
C-terminus which allows increased susceptibility of modulators and, therefore, greater
variability of conformations and permeabilities. Neural KCNQs channels control somatic
excitability, bursting, and neurotransmitter transport within the nervous system [141].
Within these roles, the binding capacity of KCNQ channels with modulators allows the
channel to regulate ion flux through a variety of chemical agents. For example, KCNQ
channels are known to alter potassium transport through modulation by Ca2+ [141], calmod-
ulin [156,157], plasma membrane phosphoinositides [158,159], protein kinase C [160], SRC
(sarcoma) tyrosine kinase and N-ethylmaleimide [161].

KCNQ and Presbycusis

KCNQ4 is related to proper hearing function, being expressed in both peripheral and
central auditory systems. Its role in K+ recycling makes it a critical component of ion
homeostasis and hair cell membrane potentials. As the auditory system is stimulated, K+

flows from the endolymph into the inner hair cells through mechanoreceptive ion channels
in their stereocilia. These ions then start a recycling process through the basal membrane of
the hair cells. It is during this step that KCNQ4 channels have a significant effect, as their
locally increased staining density suggests that these channels are highly active within
the basal portion of hair cells. As a result of this pivotal role, all missense and deletion
mutations associated with KCNQ4 have been linked to a subtype of autosomal dominant
non-syndromic sensorineural progressive hearing loss whose phenotype, like presbycusis,
is characterized by reduced coding of higher frequencies [152,162–165]. Furthermore, Jung
et al. [166] have shown a probable relation between a human KCNQ4 mutation and late-
onset hearing loss through electrophysiology assays of human embryonic kidney 293 cells.
The cells were cultured in Dulbecco’s modified essential medium and transfected with
wild-type (WT) or mutant KCNQ4 plasmids as well as co-transfected with CHO-K1 cells
for the purpose of electrophysiological assessment. They concluded that KCNQ4 variants
around the pore-forming region of the channels significantly impaired K+ currents [166].
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This, in turn, impairs K+ recycling, which is the primary patho-mechanism in progressive
hearing loss [167,168]. However, the mutation of the KCNQ4 gene is not synonymous with
late onset or progressive hearing loss; instead, it acts as a marker and can be considered
a risk factor that increases the probability of an individual developing such conditions.
Van Eyken et al. [165] have also linked KCNQ4 channels directly to presbycusis through a
study conducted on two separate elderly Caucasian populations. Statistical analysis was
performed over 23 genotyped single nucleotide polymorphisms (SNPs) across KCNQ4.
Within the first population, SNP9 and SNP15 yielded a significant p-value for disparity
in auditory sensitivity of high frequencies (Zhigh) while SNP12 resulted in a significant
p-value for a difference in the detection of low frequencies (Zlow). On the other hand,
the second population showed significant Zhigh p-values for SNP18 and significant Zlow
p-values for SNP6, SNP12, and SNP18. It is important to highlight that these SNPs are
positively associated with presbycusis and furthermore, that they are all located within
the same 13kb region within the KCNQ4 gene. SNP9 and SNP18 were also related to high
frequency presbycusis for females in both population groups [165].

Interestingly, KCNQ1, has also been linked to auditory function through the expression
of its mRNA on the apical surface of stria vascularis marginal cells in the cochlear lateral
wall. In addition, several channels expressed within the apical surface of vestibular dark
cells, including a slowly activating, efflux inducing, Kv channel, are composed of KCNQ1
and KCNE1 [169]. Hence, impaired conductance of these channels has been linked to
significant inner ear damage within KCNE1(−/−) mice [170] as well as its association with
Jervell and Lange-Nielsen syndrome [141].

4.2. Inward Rectifying Channels

Inward rectifying potassium (Kir) channels exhibit different conductances for hyper-
polarized or depolarized cell states. Distinctively, Kir channels reveal higher conductance
at hyperpolarization and lower conductance at depolarization for action potentials. This be-
havior, then, favors current flowing into the cell; hence, these channels are named as
inward rectifying [171]. Furthermore, because altering the extracellular K+ levels results in
shifting the peaks of the outward current, Kir conductance is dependent on extracellular
K+ concentration [171]. These ion channels are found in several types of tissue includ-
ing cardiomyocytes, neurons, red blood cells, endothelial cells, glial cells, and epithelial
cells [172–176]. Kir channels are known to be comprised of 372–501 amino acids, wherein
which there are two primary hydrophobic segments (M1 and M2) flanked by hydrophilic
N and C termini. Additionally, although N termini are of relative constant length in all
Kir channels, C termini are known to fluctuate in length [177]. These channels are typi-
cally subdivided into seven subfamilies (Kir1.0–Kir7.0) when using molecular structure
and electrophysiological properties as categorizing criteria [178]; or into four primary
subgroups when considering biophysical characteristics. Kir channels, hence, are catego-
rized as follows: subgroup 1 (labeled Classical Kir channels) contains subfamily Kir2.x;
subgroup 2 (named G protein-gated Kir channels) contains subfamily Kir3.x; subgroup 3
(ATP-sensitive K+ channels) contain subfamily Kir6.x; and lastly subgroup 4 (K+-transport
channels) contain Kir1.x, Kir4.x, Kir5.x, and Kir7.x [179]. These channels are implicated in
various diseases. Of these, Kir4.1 has been shown to be predominant within the inner ear
of mammals where it is primarily expressed in the cochlear lateral wall, spiral ganglion
cells, and supporting cells in the organ of Corti [180–183].

KCNJ10 and Presbycusis

Of the Kir Channels, Kir 4.1—encoded by the KCNJ10 gene plays a critical role in
development and maintenance of the cochlear EP, essential for functioning of the inner ear
and sound transduction [179,182–184]. Kir 4.1 is expressed in various parts of the inner ear;
such as the cochlear lateral wall, organ of Corti and spiral ganglion. Stria vascularis, the
specialized area in the scala media lateral wall consists of several epithelial layers, including
marginal, intermediate and basal cell regions. Marginal cells face the endolymph while
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basal cells are connected to the perilymph via the spiral ligament. The in-between isolated
region is known as intrastrial space, having a low K+ concentration and a high positive
potential (more than the EP by 10–15 mV). Kir 4.1 is located in the intermediate cells and
facilitates the potassium diffusion across the apical membranes of intermediate cells. Kir 4.1
is essential to maintain the potassium concentration equilibrium across intermediate cells
and the intrastrial space and generates the high transmembrane potential there [24,181,184–
187]. Apart from lateral wall, Kir 4.1 channels are also found in supporting cells near
outer hair cells and spiral ganglion neurons; consistent with its role in potassium recycling.
Although much still needs to be learned about presbycusis and Kir 4.1 channels, KCNJ10
reduced expression levels are related to various cochlear pathologies including ARHL. For
instance, it has been demonstrated that KCNJ10 knockout mice have profound deafness,
including reduced acoustic startle responses, loss of EP, and significant degeneration
in different inner ear structures. [188–191]. KCNJ10 mutations are also associated with
non-syndromic hearing loss [192].

Pan et al. [193] demonstrated direct connections between inward rectifying channel
5.1 (Kir 5.1), encoded by gene KCNJ16, and presbycusis in ageing C57BL/6J mice. Forty
mice were divided into four age groups: 4, 12, 24 and 32 weeks old. Kir 5.1 was observed
in the cochlear lateral wall structures, including fibrocytes of spiral ligament. A decrease in
expression of Kir 5.1 was observed with ageing at both protein and gene expression levels.
Figure 5 presents this aging decline in Kir 5.1 channels. Overall, Kir channels, especially
Kir 4.1 are vital for inner ear development and EP generation, and reduced expression of
these can cause hearing loss. Further studies need to be conducted for detailed analysis of
Kir channels in relation to presbycusis.

4.3. Ca2+-Activated K+ (BK) Channels

Large conductance Ca2+-activated K+ (BK) channels open in response to membrane
depolarization and binding of intracellular Ca2+ and Mg2 [194–197]. Like the ligand and
Kv channels, BK channels are composed of membrane-spanning domain and metal binding
sites. Specifically, the membrane-spanning domain is comprised of a voltage sensor and
a pore, while the metal binding sites form the cytosolic domain [198]. Like other K+

channels, BK channels are formed by four pore-forming subunits which are encoded by
a singular Slo1 gene. These channels then achieve functional diversity through splicing
of the Slo1 mRNA, or modulation by β subunits (5–10). This Slo1 gene contains three
primary structural domains labeled voltage-sensing domain (VSD), pore-gate domain
(PGD), and cytosolic domain. Each of these domains has a specific and distinct function.
VSD senses the membrane potential and the PGS controls permeation of K+ through
conformational changes, and the cytosolic domain is sensitive to Ca2+ [198]. The VSD
and PGD (or membrane spanning domain) are composed of transmembrane segments
S1–S4 and S5–S6, respectively [199]. Unlike many other K+ channels, BK channels only
contain one charged residue (Arg213) that contributes to voltage sensing within the S4
helix [200]. Furthermore, BK channels contain an additional S0 segment required for β

subunit modulation; which can modify voltage sensitivity [201–203]. Alternatively, the
cytosolic domain is made up of two RCK (regulator of K+ conductance) domains named
RCK1 and RCK2 [204]. Furthermore, the cytosolic domain contains two Ca2+ binding sites
which are considered to express a high level of affinity. The first of these sites, is located
at position Asp362/Asp367 lies within RCK1 while the second Ca2+ biding site is located
in a region labeled the Ca2+ bowl within RCK2 [204–208]. BK channels also have an Mg2+

binding site situated at the interface of the VSD and the cytosolic domain [209].
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Figure 5. Age-related decrease of Kir 5.1 channels in the cochlear lateral wall of C57BL/6J mice. Cochlea from 4 different
age-group C57BL/6J mice were analyzed using three different techniques; immunohistochemistry (I) scale bar = 10 µm,
western blotting, (II), and RT-PCR (III). Four age groups tested: 4-week-old group, 14-week-old group, 24-week-old group,
and 52-week-old group. There was a steady decrease in Kir 5.1 expressions levels at both protein and gene levels with age. *
p < 0.05, ** p < 0.01. From Pan et al. (2016) [193], with permission from the publisher.

Currently accepted models for activation of these channels propose a conformational
change induced by a ligand binding. This new conformation “pulls” the activation gate
open with a mechanism called the “tugging model” [210–213]. However, in BK channels
Mg2+ activates the channel differently. In Mg2+ interactions, the channel is activated
by pushing the voltage sensor through an electrostatic interaction between side chains
in different structural domains. This mechanism is coined a “nudging model” [198].
Interestingly, Ca2+ binding has shown to occur through more complex mechanisms, and
it has been speculated that both of these high-affinity binding sites may interact through
distinct mechanisms [198].

BK channel dysfunction has also been linked to several neurological disorders such
as schizophrenia, and antipsychotic drugs improving K+ conductance contribute to thera-
peutics [214]. For example, schizophrenic patients were found to have significantly lower
levels of mRNA expression for BK channels. Likewise, Laumonnier et al. were able to
link mental retardation and autism to haploinsufficiency of the Slo1 gene, which encodes
for BK channels, as well as low levels of BK channel expression [215]. Furthermore, some
mutations of the Slo1 gene, occurring in the β3 and β4 subunits have been shown to
increase Ca2+ sensitivity of BK channels. This increased sensitivity has been theorized to
reduce action potential thresholds as well as reduce latency of nerves; thus, increasing the
firing rate of neurons [216]. Brenner and coworkers study supports this, as β4 knockout
mice exhibit neuronal hyper-excitability and epilepsy [217].

BK Channels and Presbycusis

BK channels expressed in cochlear hair cells contribute significantly to these cell’s out-
ward K+ conductance [218]. The fast rate of activation of BK channels set them apart from
other slower-acting ion channels [219]. Expression of BK channels within the mammalian
inner ears suggests not only that BK channels contribute to high-frequency hearing in mam-
mals, but also that these channels might be a necessary specialization for the expanded
auditory frequency range of mammals [218]. The rapidly activating BK currents allow for
lower input resistances as well as shorter membrane time constants which provide better
voltage control during rapid changes that are more prevalent at higher sound frequencies.
Rohman et al. [220], for example, showed that BK channels, compared to SK channels,
provide a larger and faster conductance change in response to acetylcholine, increasing the
gain and speed of efferent inhibition [220]. Moreover, an increase of BK channel expression
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coupled with a downregulation of voltage-gated calcium channels has been proposed to
convert immature inner hair cells, showing calcium-driven responses, into mature inner
hair cells, displaying graded receptor potential changes in response to K+ influx [221].
Therefore, the expression of BK channels appears to be a defining biophysical indicator of
the mature inner hair cell.

Given the roles of BK channels for inner hair cells, hypotheses have been proposed
for the auditory capabilities of Slo1−/− mice. Specifically, these mice appear to be more
susceptible to noise-induced hearing loss as well as presbycusis [222,223]. Consistent
with this, Ruttiger and co-workers found that mice with deleted BKα-subunits showed
progressive hearing loss. This study observed the effects of BKα-subunit deletion on
knockout mouse frequency thresholds compared to wild-type mice. There was no effect
of BK—β1 subunit deletion on hearing function. For the first 4 weeks of life, cochlear
function was equal in both groups. However, by week 8 a statistically significant difference
was observable in these two groups where the BKα- mice had poorer hearing than their
wild-type counterparts. This difference continued to grow for the duration of the study
reaching its maximum around 12–17 weeks [223]. It is also important to point out that the
disparity in thresholds was most pronounced at higher frequencies which, when coupled
with the late onset, strongly correlates with the presentation of presbycusis. Similar results
were reported by Kurt et al. [224] demonstrating the critical role of BK channels in auditory
processing. Along similar lines, the deletions and mutations of BKβ2 and BKβ4 have been
linked to hearing loss through BK channel inactivation [225–228]. Given the critical role BK
plays in hearing function, it is possible that it plays a role in ARHL as well [229]. However,
there is still little evidence to support correlation between BK channels and presbycusis.
Further studies are needed to test this hypothesis.

4.4. Other Potassium Channels Related to Presbycusis

Transient potassium current channels (IA channels) are a family with a basic function-
they are opened by depolarization following hyperpolarization. By increasing the interval
between action potentials, they help a neuron to fire repetitively and accurately at low
frequencies. These channels are localized in many parts of the central nervous system
(CNS) and a main role is to modulate feedforward and feedback inhibition along the
dendroaxonic axis [230]. However, despite prominence in the CNS, the IA channels’
role in the processing of the aged cochlea remains understudied. Avenues for further
research that address specific gaps in our knowledge about this channel family in the
aging auditory system are needed. Four major classes of K+ channels exist in the central
auditory system: calcium-activated, inwardly rectifying, leak, and Kv. These channels
usually share a common homotetrameric structure with all α-subunits being identical, but a
few of them are heterotetrameric with two or more non-identical α-subunits [231,232]. The
α-subunits are named as Kv1.4, Kv3.3, Kv3.4, Kv4.1, Kv4.2, and Kv4.3, which are classified
as discrete families based on sequence similarity form and ion pore and infrastructure
of the channel. The α-subunits have the fast-kinetic properties of IA channels [233,234].
In addition, the β-subunits and other auxiliary subunits are subunits for modulating the
biophysical properties and functions of IA channels [233,235–237].

Among various Kv channels, Kv1.1 and Kv3.1 are of particular interest for auditory
function as both are expressed highly in the brainstem auditory system. Within the central
auditory system, the medial nucleus of the trapezoidal body (MNTB) plays important roles
in temporal processing and tonotopic coding of auditory signals in the brainstem [238–241].
The MNTB within the superior olivary complex (SOC) is associated with gradients of Kv1.1
and Kv3.1 expression. For example, Kv3.1 exhibits its highest expression at the medial end
corresponding to high-frequency sound processing where high-frequency spike firing is
required, whereas it displays lower expression in the lateral end which is associated with
lower-frequency sound coding. Similar gradients of Kv1.1 also exist along the tonotopic axis
of MNTB, though density localization (medial vs. lateral expression levels) vary per rodent
model used [239,242,243]. It is known that Kv3.1 channel transcriptional modification is
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controlled by Ca2+-cAMP response element-binding protein (CREB) transcription factor,
i.e., action potential stimulation is needed to regulate the expression of these proteins where
these Kv channels allow calcium influx due to depolarization events [244].

In temporal processing, Kv3.1 contributes to the rapidly activating high-voltage
activation currents, assisting in cell repolarization and action potential timing reduction,
thus enabling the high frequency spike coding. Conversely, Kv1.1 contributes to rapidly
activating low-voltage activation currents by reducing the cell membrane time constant
and minimizing the temporal summation of inputs, thus, enabling the ongoing time coding
of sound signals [245–247]. Both channels, Kv3.1 and Kv1.1 are also expressed in other
parts of the central auditory system that code the tonotopic signal of the cochlea along the
auditory pathway e.g., cochlear nuclei and inferior colliculi [239,241,243,248–250].

Declines in temporal processing are a hallmark of ARHL clinically and in animal
models, and Kv3.1 and Kv1.1 appear to play a role in ARHL due to changing patterns
of expression/function with age. For instance, Frisina and coworkers reported declines
in Kv3.1b, a subunit of Kv3.1 channels, in various parts of the CBA/CaJ mouse auditory
system. In this study, four different age groups were used: 3–4 months, 15 months, 24–26
months and 29–34 months. Significant reductions in expression levels were observed by
the age of 15 months in the MNTB, anteroventral cochlear nucleus (AVCN) and lateral
superior olive (35%, 26% and 23%, respectively), notably limited to the neuropil of the axons.
Cell density decline was also observed in other parts, the medial olivocochlear (MOC)
feedback system such as the superior paraolivary nucleus, ventral nucleus of the trapezoid
body and lateral nucleus of trapezoid body (24%, 29% and 26%, respectively) with no
age-related changes observed in other parts of cochlear nucleus or inferior colliculus [251].

Interestingly, these age-related declines in the MOC were also observed in physiologi-
cal measurements—contralateral suppressions of distortion product otoacoustic emissions
(DPOAEs), where declines were observed in CBA/CaJ subject groups by 15 months of age.
These findings were further confirmed in young (6–11 weeks old) homozygous Kv3.1b
knockout mice where almost no contralateral suppression of DPOAEs was observed, in
contrast to heterozygous and wild type groups with robust contralateral suppression. How-
ever, no effect was seen in auditory brainstem responses (ABRs) and DPOAE amplitudes.
Taken together, these results indicate a strong correlation between Kv 3.1b age-linked
reductions in expression levels and the MOC feedback system declines, while indicating
that Kv3.1b is not vital for the overall sensitivity of outer hair cell functions [251]. Further
corroborating the importance of Kv3.1 in ARHL, Chambers et al. [252] modulated this
channel using the pharmacology compound AUT00063, and reported a reduction in action
potential timing variability and improved temporal coding in mice.

Similar histological studies by Jung et al. [253] found that among all auditory brain-
stem regions, only PVCN revealed age-related changes in 24- to 29-month-old Sprague–
Dawley rats as compared to 4- to 6-month-old young adult animals. Immunohistochemistry
analysis revealed increased Kv1.1 immunoreactivity in the octopus cell bodies of this re-
gion with aging, whereas the expression intensity decreased in the neuropil. In contrast,
decreased intensity of Kv3.1 was observed in the octopus cells and neuropil of aged PVCN.
This suggests that these changes may affect ion channel activity and signal processing
in the central auditory system with progressive age. Likewise, expression changes of
Kv3.1 in aging C57BL/6 mouse models can also be seen in the MNTB, where loss of Kv3.1
tonotopicity and alterations in cAMP response element-binding protein signaling was
observed [244]. An apparent Kv3.1 gradient was found in 6-week-old young mice with no
gradient observed for CREB. However, older, hearing-impaired 8-month-old mice showed
an abolished Kv3.1 gradient with a simultaneous decline in overall CREB expression and
change in distribution patterns of the activated, phosphorylated form of CREB along the
tonotopic axis of MNTB. These findings support the hypothesis that ongoing activity to the
auditory brainstem neurons is needed to maintain Kv3.1 tonotopicity through the CREB
pathway with age [244]. Further confirmation of this required brainstem activity can be
seen in a study by the Leao group [242] where congenitally deaf pups were analyzed for
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Kv1.1 and Kv3.1 expression. It was seen that these congenitally deaf pups did not show
Kv3.1 and Kv1.1 gradients as compared to normal hearing pups, most likely due to the
absence of spontaneous auditory nerve activity. These findings demonstrate the role of
Kv channels in developmental stages as well as potential therapeutic targets for temporal
processing deficits, including aging deficits.

5. Summary and Conclusions

The ion channels and transport proteins associated with cochlear K+ processing and
recycling pathways are essential for normal hearing. For example, age-related changes in
these channels usually lead to hearing disorders, including temporal processing deficits.
Ion channels involved in K+ flux—including the elusive transduction channels of hair cells,
and ion channels in neurons and stria vascularis—are included in this group. To better
understand the biological mechanisms and interactions among these K+ channels and
co-transporters, like NKCC1, Na+, K+ ATPase, is an enthralling research challenge. A next
important step is to understand in more detail the normal function of each channel ex-
pressed in the auditory system, and importantly, their interactions with each other with
aging. Virus-guided infection of cochlear cell lines including hair cells, stria vascularis and
neurons with ion channels can modulate the expression and function of K+ channels and
co-transporters in vitro, and will help to elucidate the roles they play in aging and regula-
tion of auditory function. Because some of these ion channel mutations are dominantly
inherited in cases of deafness, acute viral introduction of dominant negative constructs may
prove particularly useful in elucidating the functions of ion channels and transport proteins
in hearing loss and deafness. Overall, a detailed understanding of their involvement in
acquired hearing loss, such as presbycusis, would open up exciting new avenues in our
mechanistic understanding of hearing impairment and could lead to new biomedical and
technological therapies in this area.
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