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Abstract

Purpose: To model and predict individual patient responses to radiation therapy.

Methods and Materials: We modeled tumor dynamics as logistic growth and the effect of 

radiation as a reduction in the tumor carrying capacity, motivated by the effect of radiation on the 

tumor microenvironment. The model was assessed on weekly tumor volume data collected for 2 

independent cohorts of patients with head and neck cancer from the H. Lee Moffitt Cancer Center 

(MCC) and the MD Anderson Cancer Center (MDACC) who received 66 to 70 Gy in standard 

daily fractions or with accelerated fractionation. To predict response to radiation therapy for 

individual patients, we developed a new forecasting framework that combined the learned tumor 

growth rate and carrying capacity reduction fraction (δ) distribution with weekly measurements 

of tumor volume reduction for a given test patient to estimate δ, which was used to predict 

patient-specific outcomes.

Results: The model fit data from MCC with high accuracy with patient-specific δ and a fixed 

tumor growth rate across all patients. The model fit data from an independent cohort from 

MDACC with comparable accuracy using the tumor growth rate learned from the MCC cohort, 

showing transferability of the growth rate. The forecasting framework predicted patient-specific 

outcomes with 76% sensitivity and 83% specificity for locoregional control and 68% sensitivity 
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and 85% specificity for disease-free survival with the inclusion of 4 on-treatment tumor volume 

measurements.

Conclusions: These results demonstrate that our simple mathematical model can describe 

a variety of tumor volume dynamics. Furthermore, combining historically observed patient 

responses with a few patient-specific tumor volume measurements allowed for the accurate 

prediction of patient outcomes, which may inform treatment adaptation and personalization.

Introduction

Radiation therapy (RT) is the single most used therapeutic agent in oncology.1,2 Although 

the flood of genomic data has thus far affected chemotherapy and certain targeted biological 

agents, it has yet to affect RT. With increasing understanding of the complexity of tumor 

heterogeneity, the central principle underlying precision medicine calls for cancer therapy 

to be tailored to individual patients. To this effect, actionable biomarkers need to be 

identified that adequately describe individual patients’ tumor growth dynamics and therapy 

responses. We recently postulated that the future of personalized radiation therapy will 

need to integrate and synergize clinical radiation oncology with the expertise of molecular 

biology, immunology, radiomics, and mathematical modeling.3–5

In vivo radiation sensitivity has been described in terms of a 10-gene molecular signature, 

and this genomic indicator has been shown to be highly heterogeneous within and 

between different cancer types.6–8 In mathematical modeling of RT, the prevailing dogma 

of the major effect of radiation remains DNA damage–induced direct cell death, and 

treatment schedules are derived to maximize tumor-control probability while minimizing 

the probability of normal-tissue complication.2,9 The linear-quadratic (LQ) model is the 

gold standard to describe the in vitro radiosensitivity of cells.10–12 Indeed, most—if not 

all—quantitative modeling studies use the dose-dependent survival fraction derived from the 

LQ model to calibrate RT cell death rates.13 To account for nondirect cell-killing effects of 

radiation, recent developments of the LQ model include radiation bystander effects.14

Cell-intrinsic radiation sensitivity, however, has recently been argued to be less of a factor 

than patient-specific, microenvironmental properties of tumors that modulate the fraction 

of actively proliferating cells in a tumor. The proliferation saturation index (PSI) describes 

the ratio of the tumor volume before radiation to its preirradiation carrying capacity—the 

maximum tumor volume that can be supported by the host tissue.15–19 The PSI ranges 

between 0 and 1: when PSI = 0, the entire tumor volume is considered as proliferative 

and tumor growth is purely exponential, and when PSI = 1, the entire tumor volume is 

considered as nonproliferative with zero tumor growth. Tumor dormancy is a visualization 

of tumors at carrying capacity. Notably, carrying capacity and PSI are emergent properties 

of multiple factors. Model analysis has shown that PSI can describe clinically observed 

volumetric regression during RT better than any single measure of radiosensitivity.15,17 

Although PSI offers a conceptual departure from traditional radiation modeling, it so far has 

continued to rely on an explicit radiation-induced cell death term.

In recent years, cancer biology has shifted from a cell-centric view toward an integrated 

view of the tumor ecosystem.18,20–22 As such, the effect of radiation on different 
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components of the tumor microenvironment has become of increasing interest.23 An 

extensive body of literature has emerged relating to the immune-activating ability of 

RT.24–28 In fact, RT efficacy may be a combination of the cytotoxic effect of radiation 

on cancer cells and the direct and indirect effects on the complex tumor microenvironment 

within the radiation treatment field (Fig. 1A). Radiation alters the tumor vasculature29 and 

releases tumor-specific antigens and damage-associated molecular patterns that stimulate 

subsequent antitumor immunity30—all of which may change the tumor carrying capacity. In 

this study, we evaluated the concept of the effect of radiation being mathematically modeled 

and simulated by a stepwise reduction in the tumor carrying capacity. This model was 

calibrated and tested on longitudinal tumor-volume data from patients with head and neck 

cancer and then was further extended to make predictions of individual patient responses to 

RT.

Materials and Methods

Mathematical model of carrying capacity reduction

The change in tumor volume, V (cm3), over time is modeled by logistic growth15:

dV
dt = λV 1 − V

K ,

where λ is the intrinsic volumetric growth rate (day−1) and K is the tumor carrying capacity 

(cm3). The intrinsic volumetric growth rate translates into volume-doubling time as ln(2)/ 

λ. Without therapy, the tumor volume increases in logistic fashion, approaching its carrying 

capacity. We defined PSI ≡
V 0
K0

; where V0 is the tumor volume before the first dose of 

RT, usually obtained from patient-positioning cone beam computed tomography (CBCT) 

images. The carrying capacity of the tumor before the first dose of RT, denoted as K0, is 

calculated as

K0 =
V 0V plan eλΔt − 1

V planeλΔt − V 0
,

where Vplan is the volume abstracted at the time of initial RT planning (typically a few 

weeks before the start of RT) and Δt is the time interval between the measurements of Vplan 

and V0. During radiation, the complex microenvironment in the radiation target volume is 

altered (Fig. 1A). Thus, the effects of RT are modeled by an instantaneous reduction in 

carrying capacity, given by

Kpost–RT–Fx = Kpre–RT–Fx (1 − δ),

where Kpost−RT−Fx is the tumor carrying capacity after a radiation fraction and δ is the 

fraction by which the carrying capacity is reduced with each radiation fraction; δ is defined 

between 0 and 1, where when δ = 0 there is no reduction of carrying capacity and when δ = 
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1 there is 100% reduction in carrying capacity. Both λ and δ are assumed to remain constant 

throughout treatment.

The simple 3-parameter model proposed here can simulate a variety of tumor growth 

dynamics in response to RT. When RT is applied and the carrying capacity after RT remains 

greater than the tumor volume (Kpost-RT-Fx > Vpre-RT-Fx), tumor growth is slowed (Fig. 1B). 

Conversely, when the carrying capacity after RT is less than the volume at the time of RT 

(Kpost-RT-Fx < Vpre-RT-Fx), tumor volume declines and approaches Kpost-RT-Fx from above 

(Fig. 1C). In this case, λ now becomes the rate at which the tumor volume approaches the 

carrying capacity from above, as indicated earlier, providing a representation of the tumor 

volume radiation response rate.

Patient data

The model parameters were tuned using data from a cohort of 17 patients with head and 

neck cancer treated at Moffitt Cancer Center (MCC) with a total of 66 to 70 Gy RT in 2-Gy 

weekday fractions. The model was then tested on data from an independent cohort from 

MD Anderson Cancer Center (MDACC) comprising 22 patients with head and neck cancer 

treated with a total of 66 to 70 Gy RT (2 or 2.12-Gy weekday fractions or with accelerated 

fractionation). All methods were carried out in accordance with institutional policies of the 

2 cancer centers. The clinical protocol covering patient data and methods used in this article 

was approved by the respective institutional review boards.

Tumor volume measurements from MCC were derived from CBCT with slice thicknesses 

of 2 mm. Tumor volume measurements from MDACC were derived from CT scans from a 

CT-on-Rails system combining a GE Smart Gantry CT scanner (General Electric, Boston, 

Massachusetts) and a Varian 2100EX linear accelerator (Varian Medical Systems, Palo Alto, 

California) with slice thicknesses ranging from 2.5 to 3.75 mm. Detailed imaging acquisition 

and reconstruction details can be found in the Supplementary Materials and Methods.

For both cohorts, scans were collected at the time of RT planning, just before the first 

RT dose, and weekly during the course of treatment. All CT images were placed into 

Mirada imaging software (Mirada Medical, Denver, Colorado), and primary tumor and/or 

involved lymph nodes were contoured by a single physician (J.J.C.). Patient demographics 

and clinical parameters are described in Table E1. Statistical comparison of the 2 cohorts 

showed no significant differences in tumor, lymph node, and metastases stages. Although 

the primary site of the MCC cohort was predominantly the oropharynx, the majority 

of primary sites of MDACC patients included the tonsils and the base of the tongue. 

Locoregional control (LRC), defined as time without recurrence or cancer in the treated 

fields, and disease-free survival (DFS), defined as any recurrence of disease or death event, 

were abstracted as outcome measures and determined by biopsy confirmation or imaging 

sufficient to initiate additional treatments. A 5-year follow-up endpoint was used for both 

outcomes.

Statistical methods

Patient characteristic prevalence levels were compared between the 2 cohorts using the 

Fisher exact test to test the null hypothesis that there were no nonrandom associations 

Zahid et al. Page 4

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the presence and absence of the characteristic in the 2 cohorts, and the P-values 

for each characteristic are reported in Table E1. For the remainder of the study, distributions 

of fitted parameters and model predictions were compared using a Mann-Whitney U-test 

to test the null hypothesis of distributions with equal medians. A P-value < .05 indicated 

significantly different distributions.

Model application

The mathematical model was applied to the patient data in 3 distinct phases: (1) parameter 

tuning, using the MCC cohort data; (2) testing the tuned parameters on the MDACC cohort 

data; and (3) patient outcome (LRC, DFS) and risk prediction, using the combined data from 

both the MCC and MDACC cohorts in a leave-one-out study.

Parameter tuning

The model was initially fit to patient data from the MCC cohort by finding a pair of λ and δ 
values that minimized the root mean square error (RMSE) of the model for each patient. The 

RMSE for each patient is defined as

RMSE = 1
nCT ∑

i = 1

nCT
V i − V i

2,

where Vi is the measured tumor volume at time point i; V i is the model estimate of the 

tumor volume at time point i, and nCT is the number of CT scans for the patient. After 

systematic parameter reduction analysis (supplementary methods, Table E2), it was found 

that λ could be set uniform (λ optim) across the entire cohort without losing any information. 

Parameter optimization and parameter reduction details can be found in the Supplement. 

Finally, the value for λ optim was selected by performing a full grid search of λ ∈ (0.055 

day−1, 0.69 day−1) with a step size of 0.025, to find the value of λ that minimized the 

average normalized RMSE (⟨nRMSE⟩) for the entire MCC cohort. The ⟨nRMSE⟩ is defined 

as

〈nRMSE〉 = 1
np ∑

j = 1

np RMSEj
1

nCT, j
∑i = 1

nCT, jV i, j
,

where np is the total number of patients in the cohort. The upper bound for λ was set as 1 

cell division or volume doubling per day (ln 2), and the lower bound was calculated by a 

92% cell loss factor with 1 cell division per day.31

Testing tuned parameters

We tested the capacity of the model to fit an independent patient data set from MDACC 

(patient characteristics described in Table E1) using λoptim learned from the MCC cohort. 

The model was fit to patient data from the MDACC cohort by finding the δ values that 

minimized RMSE of the model for each patient (parameter optimization details are provided 

in the Supplement).
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Patient outcome prediction

Leave-one-out outcome prediction study design.—Owing to the low failure rate 

in the treatment of head and neck cancers with RT, we only observed 6 local failures 

and 7 distant failures across both cohorts. To deal with this low number of events, all 

work in forecasting patient outcomes was done by combining the data from MCC and 

MDACC and performing a series of 39 leave-one-out cross-validation studies, where the 

forecasting model was trained on 38 patients to make predictions for the 39th patient.32 

This type of analysis is classified as a type 1b analysis in the Transparent Reporting 

of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) 

statement recommendations for predictive models, which is considered appropriate for 

model development and internal validation in the context of limited data.33

Forecasting pipeline.—Because the model simulated tumor volume dynamics, we 

related changes in tumor volume with LRC and DFS. To predict tumor volume changes and 

thus outcomes, we developed a forecasting pipeline that adaptively combined the training 

data with specific clinical measurements of the left-out test patient at appropriate weights 

(Fig. 2). We evaluate weekly tumor volume reduction as a function of the radiation-induced 

carrying capacity reduction fraction, δ. For a given test patient i, the average weekly volume 

reduction since the start of RT, − ΔV
Δt i, was used to estimate a value of δ for that patient (δi). 

This estimate was used to update the training-derived δ distribution,

Lognormal

μi =
wℎ ⋅ μℎ + wnmeas ⋅ ln δi ⋅ nmens

wnmeas ⋅ nmeas + 1 , σi =
σℎ

nmeas + 1 ,

where μi and σi were the updated parameters for the patient-specific δ distribution, μh and 

σh were the parameters for the training δ distribution, W nmeas ∈ (0, 10) was the weight given 

to the patient’s clinical measures relative to a weight of wh = 1 given to the training δ 
distribution for the nth clinical measurement, and nmeas was the number of measurements 

being considered in a given prediction. This formulation allowed the distribution to shift 

toward δi and to narrow as the number of measurements increased.

Individual patient-specific predictions were made by randomly sampling δ from the updated 

δ distribution and simulating tumor volume dynamics given the patient’s specified treatment 

schedule. For patients without any on-treatment measurements (nmeas = 0), predictions were 

made by sampling directly from the training δ distribution.

Calibrating forecasting pipeline.—To estimate δ from response data (derived from a 

given leave-one-out training cohort) and early patient-specific, on-treatment data points, we 

created an estimator for δ using average volume reduction per week − ΔV
Δt  as an input. The 

correlation of − ΔV
Δt  with the fitted δ value for each patient in the training cohort can be 

described as the following quadratic relation (Fig. 5A):

Zahid et al. Page 6

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



δ = β1 − ΔV
Δt

2
+ β2 − ΔV

Δt + β3 .

The δ values for each training cohort in the leave-one-out analysis were fit to a lognormal 

distribution (Fig. 5B). Numerical values for the β coefficients and δ distribution parameters 

can be found in the Supplement.

Treatment response predictions were simulated with different weights, W nmeas, relative 

to wh= 1 for the historical δ distribution for each number of clinical on-treatment 

measurements, nmeas. This was done with 500 predictions because our analysis showed 

this to be sufficient for stable results despite the random sampling from the δ distribution 

(Fig. E6). Across all training cohorts in the leave-one-out analysis, the optimal weights were 

determined to be W nmeas < 2 for nmeas ≤ 2, and W nmeas > 2 on average for all nmeas ≥ 3 (Fig. 

E7).

Defining risk strata.—To relate modeled tumor-volume dynamics to patient outcomes, 

we derived tumor-volume reduction cutoffs after 6 weeks of RT that perfectly separated the 

patients into 2 risk strata: (1) low risk of failure and (2) high risk of failure. The low-risk 

stratum consisted of patients with measured tumor volume changes less than the determined 

volume reduction cutoff at week 6 of RT. The patients in this stratum had no failures. The 

high-risk stratum consisted of patients with measured tumor volume changes greater than 

the determined cutoff. This group had a mixture of patients with controlled tumors and 

patients with locoregional or distant failure. Cutoff values that maximized the significance 

of curve separation of the LRC and DFS Kaplan-Meier survival curves were selected (Fig. 

5C-Fig. 5D). This was done by testing 100 possible cutoff values, spanning the entire range 

of possible cutoffs, and selecting the cutoffs that minimized the log-rank P values. The 

volume-reduction cutoffs for LRC and DFS were determined independently of each other.

Risk prediction versus outcome prediction.—The model predicted an LRC or DFS 

event if the simulated tumor volume at week 6 was greater than the volume-reduction 

threshold determined from the N-1 training cohort. The model predictive power was then 

evaluated for (1) risk prediction and (2) outcome prediction. For risk prediction, the model 

prediction was compared with the actual risk stratum that the patient’s week-6 volume 

measurement placed them in. In this case, a prediction of an event and placement in the 

high-risk stratum or the prediction of no event and placement in the low-risk stratum 

would both be considered correct predictions. For outcome prediction, the model prediction 

was directly compared with the observed LRC or DFS events from the 5-year follow-up. 

The subset of patients for which the model would have a correct risk prediction but 

incorrect outcome prediction would consist of any patients who had a week-6 tumor volume 

greater than the volume-reduction threshold (placing them in the high-risk stratum) but had 

locoregional or distant tumor control at the time of data abstraction.
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Results

Parameter tuning

Model calibration to MCC cohort—Across the entire MCC cohort, the model fit 

individual volume measurements with low error, ⟨nRMSE⟩ = 0.098, and this showed that the 

proposed model can fit a variety of pretreatment and on-treatment tumor-volume dynamics 

with 3 patient-specific parameters (Fig. E1A-E1B). The distribution of fitted values for 

individual growth rate, λ, spanned the entire bounded range, whereas the optimized values 

for the carrying capacity reduction fraction for each RT dose fraction, δ, were less than 0.1 

for each patient (Fig. E1C). Notably, 3 patients had λ values at the upper bound. However, 

we tried a number of values for the upper bound, and the model always fit λ to the upper 

bound for these patients. Model calibration and parameter optimization were performed 

42 times to reach 95% probability that the optimizer was finding globally optimal results 

(Supplementary Methods and Fig. E2). In the case that 2 optima were found, then the more 

frequently occurring parameters were selected.

Model simplification by parameter reduction—Uncertainty associated with each 

parameter estimate leads to a decrease in the confidence and predictive power of the 

model; thus, parameter reduction may decrease uncertainty and increase confidence and 

predictive power. We explored which of the parameters could be defined as uniform across 

the entire training cohort with minimal cost to the model’s goodness-of-fit. Based on Akaike 

Information Criterion and Bayesian Information Criterion analyses, we found that λ could 

be set to a fixed value across the entire MCC cohort with minimal reduction to the fitting 

capacity of the model (Supplementary Methods and Table E2). We found λoptim = 0.13 

day−1, which corresponds to a tumor-volume doubling time of 5 days, to minimize nRMSE 

across the entire training cohort (Fig. 3B). Setting λoptim = 0.13 day−1 uniform across 

all patients resulted in fits not noticeably different from the results of the original model 

(⟨nRMSE⟩ = 0.136 vs ⟨nRMSE⟩ = 0.098) (Fig. 3A; Fig. 3C; Fig. E3). The calculated values 

of PSI did not vary significantly between the 2 models (P = .78; Fig. 3D). The distributions 

of the fitted values of δ also did not vary significantly between the full and reduced models 

(P = .86), showing that setting λ uniform across the MCC cohort did not meaningfully alter 

the estimation of δ (Fig. 3D).

Testing tuned parameters on MDACC cohort—The reduced version of the model, 

with λoptim learned from the MCC cohort, fit pretreatment and on-treatment tumor-volume 

dynamics in the MDACC cohort with high accuracy (⟨nRMSE⟩ = 0.131) (Fig. 4A-B; Fig. 

E4). This was despite the fact that some tumor volumes in the MDACC cohort were up to 2 

times larger than those in the MCC cohort, although the distribution of starting volumes was 

statistically indistinguishable between the 2 cohorts (P = .55) (Fig. 4C). The distributions 

of PSI values of the MCC cohort and the MDACC cohort also were not statistically 

distinguishable, which showed similarity in terms of pretreatment growth between the 2 

cohorts (P = .77) (Fig. 4D). In addition, the fitted values of δ did not vary significantly 

between the 2 cohorts, indicating that the on-treatment dynamics, as captured by the model, 

were also similar between the 2 cohorts (P = .66) (Fig. 4D). Owing to the wide range of RT 
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response dynamics and subsequently a broad distribution of δ values, pretreatment dynamics 

alone were unable to accurately predict δ (Fig. E5).

Patient outcome prediction—One hundred prediction simulations for each left-out 

patient, performed using the λoptim and the optimized values of W nmeas learned from the 

corresponding leave-one-out training cohorts, are displayed in Figure 5E to 5F.

Evaluating forecasting pipeline performance—The performance of the forecasting 

pipeline was evaluated in terms of both risk prediction and outcome prediction by comparing 

it with the measured tumor volumes at week 6 of RT. A total of 3 patients (8%) without 

tumor-volume measurements at week 6 were excluded from the prediction analysis.

Model outcome predictions for LRC and DFS events yielded sensitivity and specificity 

values slightly above the chance line, with nmeas = 0, for LRC prediction and slightly 

below the chance line for DFS prediction. Model predictions after inclusion of 1 on-therapy 

tumor-volume measurement (nmeas = 1) yielded specificities greater than 0.85 for both 

outcomes, although with sensitivities less than 0.5 for both LRC and DFS. By including 2 

on-treatment measurements (nmeas = 2), the forecasting framework predicted patient-specific 

outcomes with >0.63 sensitivity and >0.96 specificity for LRC and with >0.85 specificity for 

DFS, although the DFS sensitivity remained <0.5. Additional on-RT measurements (nmeas 

= 3 to 4) further increased prediction specificity for LRC, although this trend did not hold 

for DFS (Fig. 6A). Notably, sensitivity values did not increase to greater than 0.76 for LRC 

or 0.67 for DFS. To evaluate the predictive power provided by our model compared with 

the prognostic capacity of volume-reduction measurements relative to tumor volume at the 

start of RT alone to predict LRC or DFS events, we calculated ROC curves for absolute 

volume reduction for weeks 1 to 4 of RT, relative to the start of RT (Fig. 6B, Fig. E8, 

and Supplementary Methods). Whereas tumor-volume reduction alone has predictive power 

for outcome prediction, the dynamic carrying capacity model outperforms volume reduction 

alone with the inclusion of at least 1 measurement of treatment response for both LRC and 

DFS prediction, as evaluated by statistical comparisons of the Youden J statistic for both 

methods34 (Fig. 6C, Table E7, and Supplementary Methods).

In terms of risk prediction, the model predictions showed a similar trend for specificity. 

However, sensitivity values increased up to 0.8 for both LRC and DFS for nmeas = 3 to 4 

(Fig. E9A). Notably, for risk prediction, volume reduction alone statistically outperformed 

the model predictions in most cases but without clinically actionable differences (Fig. 

E9B-E9C and Table E8).

Discussion

To our knowledge, this is the first presentation of a mathematical model of tumor-volume 

dynamics in response to RT with a dynamic carrying capacity modeled as an instantaneous 

function of therapy. Previously, Hahnfeldt et al presented a model with a dynamic carrying 

capacity, modeled as a continuous function based on the degree of vascularization, to 

model the effect of antiangiogenic drugs.35 Several models have used a changing tumor 

microenvironment with a dynamic carrying capacity to model the effects of immune 
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predation, immune-mediated tumor stimulation, or nutrient availability in the tumor 

microenvironment.36–38 In contrast to these models, we assumed carrying capacity reduction 

to be an emergent multifactorial property.

This simple model, with 3 patient-specific parameters in the full version and 2 patient­

specific parameters in the reduced version, was able to simulate individual differences 

in both the varied tumor-response dynamics during RT and variable pretreatment growth 

dynamics, which included, but were not limited to, no change in tumor volume before 

RT, transient increases in volume after the start of RT, and various rates of volume 

reduction during RT. Previous attempts to model the effect of radiation with an LQ model–

related survival rate have been unable to capture some of these diverse behaviors15,17; this 

motivated the inclusion of additional variables and parameters describing the dynamics of 

“doomed” cells dying from radiation,39–41 yielding an ill-posed mathematical problem with 

currently collected data.42 The ability to model radiation response dynamics with a single 

variable and fewer parameters as shown in this study opens up the possibility of reliably 

predicting individual patient responses to therapy, and subsequently, the potential to stratify 

patients for adaptation and thus personalization of radiation therapy.

Both the full version of the model with 3 patient-specific parameters and the reduced model 

with 2 patient-specific parameters fit the data with low error (⟨nRMSE⟩ < 0.14), showing 

that modeling the effect of RT as an indirect effect via a reduction in a putative carrying 

capacity may be sufficient to model patient-specific tumor-volume dynamics. Furthermore, 

the fitting results from the reduced model with a constant growth rate, λ, across the entire 

cohort showed that interpatient heterogeneity can be captured in the PSI and carrying 

capacity reduction fraction, δ, vis-a-vis traditional simulations of patient-specific growth 

rates.43–45

Testing of the reduced model with an independent data set showed promising results that 

imply that it may be possible to learn a value for a patient-uniform tumor growth rate λ from 

an external or historical cohort. In this case, all patient heterogeneity would be described 

by patient-specific PSI and δ values. Notably, even if λ is known a priori, 2 pretreatment 

volume measurements are needed to calculate PSI. Here, we showed that 2 tumor volume 

measurements from 2 sufficiently separated time points before the start of an RT course may 

be used to inform estimates of PSI.

The presented prediction pipeline, which uses the combination of a training parameter 

distribution and preliminary parameter estimates from available clinical measures, showed 

a remarkable capacity to predict clinical outcomes with high specificity and moderate 

sensitivity with the inclusion of just a few weekly clinical measurements. The high 

specificity in prediction of both LRC and DFS events after just 1 week of RT will be critical 

to the potential utility of using this framework to inform treatment adaptation, because at 

that point, there are still 4 to 5 weeks of RT left in the treatment course for head and 

neck cancers. In addition, the fact that the model forecasts of LRC and DFS outcomes 

outperform predictions based on simple volume reduction relative to tumor volume at the 

start of RT alone shows the necessity of such a model that considers multiple on-treatment 

volume measurements for making high-accuracy predictions early in the treatment course. 
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This shows the benefit of using a model that uses volume measurements from multiple 

time points, as opposed to just considering a simple metric of percentage volume reduction 

derived from volume measurements at 2 time points. Notably, the model outperformed 

volume reduction alone in predicting outcome but not risk. Despite the potential utility of 

the model forecasts, the accuracy, sensitivity, and specificity values should be considered in 

light of the low number of failures in both patient cohorts.

The trend in the optimized values of W nmeas with the inclusion of increasing amounts 

of clinical measurements (Fig. E7) indicates that the forecasting method weights the 

patient-specific clinical measurements less in the first couple of weeks of RT and then 

begins weighing them 5 to 9 times more heavily than the information from the historic 

cohort for the remaining weeks. Notably, despite essentially ignoring the patient-specific 

measurements during the first few weeks of treatment, the forecasting method achieves high 

specificity in both risk and outcome prediction. In addition, although the model was trained 

only to maximize predictive power for LRC outcomes, it performed well in accurately 

predicting DFS outcomes. It is conceivable that this may be owed to a correlation between 

these 2 outcomes.46

The capacity of this method to accurately forecast clinical outcomes for individual patients 

has potential implications for clinical decision making. If these predictions hold up in 

prospective validation, then this framework could be used to forecast and determine whether 

a patient will have a positive outcome from a course of RT midtreatment. This may offer 

the first mathematical modeling–provided trigger to adjust RT based on individual patients’ 

early response dynamics: to escalate radiation dose with or without concurrent therapies 

when necessary or to de-escalate RT without sacrificing cure.

Although these results are very promising, it remains to be seen how δ varies with different 

RT doses. This is in contrast to models that rely on modeling tumor-volume reduction by 

modeling cell death as a result of RT, in which the well-established LQ model translates 

between different dose fractions. A prospective trial in which longitudinal tumor-volume 

data are collected for patients with similar histology and different dosing protocols would 

provide insights into how δ could be calibrated as a function of dose (NCT03656133).

It should also be noted that neither the full version of the model nor the reduced version 

could capture large transient increases in tumor volume. Such large changes in volume 

may be caused by factors not included in the model, such as an influx of immune cells 

or increased fluid retention.47,48 It may be possible to separate out these volumes if a 

different imaging modality, such as magnetic resonance imaging, is used.49 Of interest is 

that the early data points collected for test patients were weighted very low compared 

with the leave-one-out historic training data. This further indicates that early transient 

radiographic response dynamics are not captured in the developed model and may, indeed, 

not be prognostic. The increased weight for individual patient data after week 2 during 

RT suggests that by that time, radiation response dynamics are adequately captured in the 

presented model and are highly predictive and prognostic.
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In addition, we learned that when determining λoptim from one cohort and applying it as a 

predetermined parameter in an independent cohort, more rigorous investigation and analysis 

are necessary to determine what degree of similarity is needed between cohorts (and by 

what metrics this should be determined) to transfer learned parameter values. This would 

include determining the minimum characteristics necessary to describe similar cohorts. If 

the model turns out to be insensitive to the value of λ across multiple cohorts, then it may 

be possible for λ to be set uniform for broader categories and possibly even for other disease 

sites. It is interesting to note here that despite the MDACC cohort having a maximum tumor 

volume at the start of RT that was nearly 2 times larger than that of the MCC cohort, λoptim 

was translatable between these cohorts. It should also be noted that although these cohorts 

were heterogeneous in terms of the primary site of the cancer, there was no statistically 

discernible difference in outcome between the sites, owing to the small number of local and 

distant failures.

There has been a recent proposal to use a genomic signature to stratify patients according 

to radiosensitivity.50 It may be possible to find a comparable signature to predict δ. 

However, because carrying capacity, and subsequently δ, is an emergent property that is 

the sum of multiple factors, any biological signature to infer δ will likely need to include 

multiple components. This could include the degree of immune infiltration in the tumor 

microenvironment or what subtypes of immune cells make up the tumor-associated immune 

cells, which may be accessible by expression-level sequencing data or analysis of stained 

tissue samples obtained as part of a pretreatment biopsy or from surgical resection.51–53 

Depending on to what degree of confidence δ could be estimated from such pretreatment 

information, this parameter estimate could potentially be integrated into the prediction 

pipeline with its own relative weight.

The utility of the model and prediction methodology will need further validation on external 

cohorts in a prospective setting before we can ascertain that the underlying assumptions 

are acceptable, and it is necessary to be cautious as these types of models move toward 

translation.53 Nevertheless, the results presented here are promising both for mathematical 

modeling of cancer and for predicting individual patient responses to different RT protocols.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Radiation-induced reduction of carrying capacity. (A) Schematic depictionof how a radiation 

therapy (RT) target volume encompasses both the tumor and the tumor microenvironment, 

which includes the extracellular matrix, immune cells, stromal cells, and vasculature. (B, 

C) Tumor growth is modeled as logistic growth and the effect of RT is modeled as an 

instantaneous reduction in the carrying capacity, leading to 2 cases: (B) slowed tumor 

growth when the reduced carrying capacity remains larger than the current tumor volume 

or (C) tumor volume reduction when the reduced carrying capacity drops below the current 

tumor volume; in the latter case, the tumor volume will subsequently approach the carrying 

capacity from above (C). In panels B and C, the orange dashed line indicates the carrying 

capacity before RT (Ko), the green dash-dot curve indicates the trajectory the tumor volume 

would have followed without RT, the red dashed line indicates how the carrying capacity 

changes in response to RT, and solid blue curves indicate the tumor-volume trajectories after 

RT.

Zahid et al. Page 16

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Flowchart representation of the forecasting pipeline that adaptively combines training data 

and new patient measurements. The pipeline is divided into 3 phases: premeasurement based 

on the training cohort, measurements for the i-th patient, and patient-specific predictions. 

Squares represent information learned from the training cohort, and circles represent 

information measured or calculated for an individual patient. The entire prediction pipeline 

can be repeated with the additional measurements from the patient.
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Fig. 3. 
Model testing results for the MDACC cohort with uniform λ learned from the MCC cohort 

and patient-specific δ values. (A) Representative fitting results for 3 patients showing the 

rich variety of response dynamics that the model can capture. Volume trajectories are 

from the reduced model using λoptim learned from the training cohort for all patients. (B) 

Correlation of simulated volumes to the measured tumor volumes for all 22 patients in the 

cross-validation cohort. (C) Box plots comparing tumor volumes at the start of radiation 

therapy of the training cohort (17 patients) and the cross-validation cohort (22 patients). 

(D) Box plots showing parameter distributions across all patients and comparing the results 

from the training and cross-validation cohorts. For each box plot, median and interquartile 

divisions are indicated.
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Fig. 4. 
Model tuning results for the MCC cohort, with uniform λ and patient-specific δ values 

compared with fits from the full model. (A) Representative fitting results for 3 patients 

showing the rich variety of response dynamics that the model can capture. Magenta 

curves (dashed for pretreatment calculations and solid for on-treatment fits) show volume 

trajectories from the full model with patient-specific λ values; blue curves (dashed for 

pretreatment calculations and solid for on-treatment fits) show volume trajectories from 

the reduced model, using λoptim = 0.13 day−1 across all patients. (B) Finding optimal λ 
to minimize the average normalized root mean square error for the training cohort. (C) 

Correlation of simulated volumes for the reduced model to the measured tumor volumes for 

all 17 patients in the training cohort. (D) Parameter distributions across all patients for both 

the full model and the reduced model (median and interquartile divisions indicated).
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Fig. 5. 
Prediction pipeline inputs and results for the 39 leave-one-out studies for the combined 

MCC and MDACC cohorts. (A) Scatter plot of δ and the weekly percentage volume 

reduction, with all 39 quadratic fits from the leave-one-out analyses overlaid, that serves 

as a δ estimator derived from each corresponding training cohort. (B) Histograms of the 

fitted values for δ for each leave-one-out training cohort, which serves as the chosen 

training δ distribution, with a uniform λ = 0.13 day−1 with lognormal fits to the distribution 

overlaid. (C) Plot showing the ranges for the locoregional control (LRC) and disease-free 
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survival (DFS) prediction cutoffs derived from the 39 leave-one-out training cohorts. 

Error bars indicate standard deviations across the 39 training cohorts. (D) Kaplan-Meier 

analysis for LRC and DFS for the 39 leave-one-out training cohorts separated by their 

respective percentage volume reduction threshold after 6 weeks of radiation therapy (RT). 

(E) Representative spaghetti plots of tumor-volume prediction simulations: 100 prediction 

simulations for patient 10 for nmeas = 0 to 4. Light green circles around the black dots 

indicate measurements that were considered in making predictions. (F) Results of 100 

prediction simulations from the leave-one-out analyses showing the predicted normalized 

tumor volumes at the sixth week on RT (colored dots) compared with the measured 

normalized tumor volume (black asterisks). In panels E through F, black dashed lines 

indicate the patient-specific cutoffs for LRC prediction; the cyan dashed lines indicate the 

patient-specific cutoffs for DFS prediction. Blank columns indicate that predictions were not 

made for patients who did not have a volume measurement at week 6; red diamonds indicate 

simulations with estimated volumes Vweek 6 on-RT / V0 > 2 outside of the displayed area.
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Fig. 6. 
Comparing outcome predictions using the dynamic carrying capacity model with the 

prediction pipeline vs volume reduction alone. (A) Receiver operator characteristic (ROC) 

plots summarizing the pipeline results from the 39 leave-one-out studies to predict 

locoregional control and disease-free survival for each left-out patient, with an increasing 

number of weekly measurements being considered. Each marker shows the performance of 

1 simulation of 500 predictions each (10 simulations total); the gray unit line indicates the 

chance line in the ROC space. Standard deviations for all predictions were <0.01 (exact 

values are given in Table E3 in the Supplement). (B) ROC analysis of prediction results 

using volume reduction relative to the start of radiation therapy (RT) for weeks 1 to 4 

of RT. Error bars indicate the standard deviations (exact values are given in Table E5) 

of the sensitivity and specificity of the 39 leave-one-out predictions derived from points 

maximizing the Youden J statistic derived from individual ROC analyses (Fig. E8). (C) 

Comparison of the Youden J statistic for the model predictions (teal) and predictions using 

volume reduction alone (black) at different weeks of RT. Error bars indicate standard 

deviation values (exact values are given in Tables E3 and E5). Standard deviations < 0.05 are 
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not shown. All comparisons are statistically distinct (P < .05; exact values are given in Table 

E7), except for DFS for weeks 3 and 4 of RT.
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