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Endogenous retroviruses (ERVs) are genomic sequences that originated from retroviruses
and are present in most eukaryotic genomes. Both beneficial and detrimental functions are
attributed to ERVs, but whether ERVs contribute to antiviral immunity is not well understood.
Here, we used herpes simplex virus type 2 (HSV-2) infection as a model and found that Toll-
like receptor 7 (Tlr7-/-) deficient mice that have high systemic levels of infectious ERVs are
protected from intravaginal HSV-2 infection and disease, compared to wildtype C57BL/6
mice. We deleted the endogenous ecotropic murine leukemia virus (Emv2) locus on the Tlr7-/-

background (Emv2-/-Tlr7-/-) and found that Emv2-/-Tlr7-/- mice lose protection against HSV-2
infection. Intravaginal application of purified ERVs from Tlr7-/- mice prior to HSV-2 infection
delays disease in both wildtype and highly susceptible interferon-alpha receptor-deficient
(Ifnar1-/-) mice. However, intravaginal ERV treatment did not protect Emv2-/-Tlr7-/- mice from
HSV-2 disease, suggesting that the protective mechanism mediated by exogenous ERV
treatmentmay differ from that of constitutively and systemically expressed ERVs in Tlr7-/-mice.
We did not observe enhanced type I interferon (IFN-I) signaling in the vaginal tissues from
Tlr7-/- mice, and instead found enrichment in genes associated with extracellular matrix
organization. Together, our results revealed that constitutive and/or systemic expression of
ERVs protect mice against vaginal HSV-2 infection and delay disease.

Keywords: HSV-2 (herpes simplex virus type-2), endogenous retroviruses (ERVs), sexually transmitted infections,
antiviral response, vaginal infection
INTRODUCTION

Genital herpes simplex virus 2 (HSV-2) is a common cause of sexually transmitted infection (STI)
and affects 491.5 million individuals worldwide, equivalent to 13.2% of the world population ages 15
to 49 (1). A higher percentage of females are infected with HSV-2, but HSV-2 infection affects males
as well (1). HSV-2 enters through epithelial cells of the skin and mucosal linings of the genital area
org January 2022 | Volume 12 | Article 7587211
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and establishes a life-long infection by latently infecting the
dorsal root ganglion neurons (2). Reactivation of HSV-2
occurs during stress and can cause blisters and lesions,
itchiness, pain and shedding of the virus (2, 3). An estimated
60% of neonatal herpes infection through vertical transmission is
fatal without treatment (4). In addition, epithelial cell damage
caused by HSV-2 infection and reactivation results in STI
coinfections, including human immunodeficiency virus (HIV)
and hepatitis C virus (HCV) (3). There is also a higher incidence
of bacterial vaginosis and encephalitis in HSV-2 positive
individuals (5). Although acyclovir therapy effectively reduces
the viral load of HSV-2, acyclovir resistant strains of HSV-2 have
emerged (6), and there is no vaccine to prevent HSV-2 infection
(6, 7). Thus, HSV-2 infection remains a public health concern.

Endogenous retroviruses (ERVs) are retroviral sequences that
are part of most eukaryotic genomes and make up 8 to 10% of the
human and mouse genomes, respectively (8, 9). Most ERV
sequences are not full-length proviral sequences, and instead
are solo-long terminal repeats (LTRs) that are important
regulators of gene expression (10, 11). However, a fraction of
ERV sequences in both humans and mice encodes proviral
sequences that generate viral RNA and proteins (12, 13).
Although infectious ERVs have not been reported in humans,
human ERVs can generate viral-like particles (14, 15), and
proviral ERVs in mice generate infectious ERVs (16, 17). There
is mounting evidence that ERVs are dysregulated in various
diseases, including cancer, autoimmunity, and during viral
infection and contribute to the type I IFN (IFN-I) response
(18). IFN-I induction associated with ERV dysregulation can
reverse dampened immune responses in tumor cells and
promote antitumor immunity (19). Similarly, IFN-I induction
by ERVs may promote antiviral immunity, but this is not
well understood.

ERV expression is tightly controlled, but suppression of
innate and adaptive immunity results in elevated production of
infectious ERVs in mice (16, 17). Infectious ERVs emerge in mice
deficient in Toll-like receptor 7 (TLR7), and re-integration of
these ERVs in the genome can cause leukemia in TLR3/7/9-
deficient mice (17). Additional effects of infectious ERVs,
including their potential impact on antiviral immunity, are not
well understood. Therefore, we probed whether heightened
expression of ERVs would mediate protection against
exogenous viral infection and used HSV-2 as a model
pathogen to test this hypothesis.
RESULTS

Tlr7-/- Mice Are Resistant to
HSV-2 Infection
We first quantified infectious ERVs in Tlr7-/- mice to determine
whether ERVs are systemically elevated in Tlr7-/- mice. Total
leukocytes from the spleen, bone marrow, colon and the lung
were co-cultured with susceptible avian DFJ8 cells, and ERV
envelope expression was measured on DFJ8 cells (Figure 1A).
We observed that co-culturing of leukocytes from Tlr7-/- mice,
Frontiers in Immunology | www.frontiersin.org 2
but not wildtype (WT) mice, resulted in the expression of ERV
envelope protein in DFJ8 cells, indicating that there was
productive infection of DFJ8 cells by infectious ERVs
(Figures 1B, C). In this assay, we excluded ERV envelope
signal from any remaining input leukocytes in the culture by
measuring ERV envelope expression in CD45- DFJ8 cells.
Similarly, vaginal lavage fluid from Tlr7-/- mice contained
infectious virions (Figures 1D, E), indicating that ERVs are
secreted into the vaginal lumen.

We next investigated whether systemic expression of infectious
ERVs would influence antiviral responses and monitored
outcomes to intravaginal HSV-2 infection in WT and Tlr7-/-

mice. As HSV-2 is a DNA virus that is predominantly sensed by
DNA sensors, innate sensing of HSV-2 should not be impaired in
mice deficient in TLR7, an innate sensor for RNA ligands. Upon
intravaginal HSV-2 infection, we observed a significant reduction
in vaginal inflammation and disease pathology, as measured by
disease score (Figure 1F). HSV-2 infected Tlr7-/- mice displayed
local inflammation in the vagina, but infection did not cause
hunching, hind/limb paralysis or lethality. Tlr7-/- mice infected
with HSV-2 survived the infection compared to WT counterparts
(Figure 1G), and this was accompanied by transient reduction in
viral titers at 3 days post-infection (Figure 1H). Vaginal tissue
staining for ERV envelope and HSV-2 showed HSV-2 replication
in the superficial layer of the vaginal epithelium and in the Tlr7-/-

tissue, HSV-2 was detected in epithelial cells where ERV envelope
proteins were also highly expressed (Supplementary Figure 1).
These data showed that Tlr7-/- mice with higher systemic
expression of infectious ERVs are more resistant to intravaginal
HSV-2 infection.

Infectious ERVs From Tlr7-/- Mice Are
Sufficient to Delay HSV-2 Pathology
in WT Mice
We next asked whether resistance to HSV-2 infection in Tlr7-/-

can be recapitulated by ERVs alone. To test this, we amplified
infectious ERV particles from Tlr7-/- mice, which we and others
have previously shown is derived from a recombination between
the Emv2 and Xmv43 ERV loci in C57BL/6 mice (16, 20). We
used purified ERVs from Tlr7-/- mice that efficiently infected
DFJ8 cells (Figure 2A) to determine whether exogenous ERV
treatment would be sufficient to protect WT mice from HSV-2
infection. We intravaginally treated WT mice with either media
or purified ERVs for four consecutive days prior to infection by
HSV-2 (Figure 2B). Pre-treatment of mice with ERVs had no
significant effect on pathology or vaginal HSV-2 titer inWTmice
when infected at 2,500 PFU of HSV-2 (Supplementary
Figure 2). However, when WT mice were infected with a
much higher dose of HSV-2, 25,000 PFU, exogenous ERV pre-
treatment was sufficient to delay pathology and death
(Figures 2C, D). This effect was not a direct effect of ERVs on
HSV-2, as incubation of HSV-2 with purified ERVs did not
impact HSV-2 viral replication in vitro or infection in vivo
(Supplementary Figure 3). Together, these data showed partial
sufficiency of infectious ERVs in protection against HSV-
2 infection.
January 2022 | Volume 12 | Article 758721
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Emv2-Derived ERVs Are Necessary for
Protection Against HSV-2
The emergence of infectious ERVs in Tlr7-/- mice had previously
been attributed to recombination between the single ecotropic
ERV locus in C57BL/6 mice, Emv2 and Xmv43 (20, 21). We
confirmed this by RNA-sequencing and observed that indeed
Tlr7-/- mice expressed significantly higher levels of Emv2
Frontiers in Immunology | www.frontiersin.org 3
(Supplementary Figure 4). To address whether ERVs were
necessary for protection against HSV-2 in Tlr7-/- mice with
elevated ERV expression, we deleted the entire Emv2 locus
using CRISPR-Cas9 in C57BL/6N mice (Supplementary
Figure 5A) and crossed them to Tlr7-/- mice (22) to obtain
Emv2-/-Tlr7-/- mice. We confirmed full deletion of the Emv2
locus (Chr8:123425507-123434150, GRCm38/mm10) by Sanger
A

B C

D E

G HF

FIGURE 1 | Elevated infectious ERVs and HSV-2 resistance in Tlr7-/- mice. (A) Schematic of DFJ8 co-culture assay to measure infectious ERVs. (B, C)
Representative FACS plots of DFJ8 cells co-cultured with leukocytes from the indicated tissues for 7 days and stained with CD45 and ERV envelope, gated on live
cells. Data from all mice were combined and plotted (n=3 per group). (D, E) DFJ8s cultured with dilutions of vaginal lavage fluid from WT B6 (n=2) or Tlr7-/- (n=4) and
stained for ERV envelope protein. Representative data from more than three experiments. Mice were infected intravaginally with 2,500 PFU of HSV-2 and monitored
for disease (F) and survival (G), and vaginal viral titer (H) was quantified. The data are pooled from three independent experiments WT (n=16) and Tlr7-/- (n=18).
Statistical significance was calculated using two-way ANOVA for disease score, Mantle-Cox test for survival and two-way ANOVA Sidak’s multiple comparisons test
for viral titers. *p < 0.05; **p < 0.01; ***p < 0.001. ns, not significant.
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sequencing (Supplementary Figures 5B, C). Compared to
Tlr7-/- mice, these mice showed no expression of ERV envelope
protein in splenocytes (Figures 3A, B) nor infectious ERVs, as
measured by co-culturing splenocytes with DFJ8 cells
(Figure 3C). We next confirmed the loss of Emv2 expression
in both Emv2-/- and Emv2-/-Tlr7-/- mice by analyzing proviral
ERV expression in RNA sequencing (RNA-seq) data of vaginal
tissues obtained from naive mice (Figure 3D). Emv2-/-Tlr7-/-

vagina had no expression of Emv2, and the expression of other
ERVs including xenotropic (xmv), polytropic (pmv) and
modified polytropic (mpmv) ERVs was neither elevated in
Tlr7-/- vaginal tissue nor affected upon deletion of Emv2.

We next tested whether the loss of Emv2 in Tlr7-/- mice would
result in a loss of protection against HSV-2. Compared to Tlr7-/-

mice infected with HSV-2, Emv2-/-Tlr7-/- mice were not
protected against HSV-2, and HSV-2 mediated pathology was
comparable to that of WT mice (Figure 3E). Comparable
survival was further observed between Emv2-/-Tlr7-/- and WT
mice upon HSV-2 infection (Figure 3F). We observed
comparable expression of HSV-2 entry receptors, Nectin-1 and
HVEM (23, 24) across all genotypes, as well as between WTmice
treated with media and mice treated with purified ERVs
(Supplementary Figure 6). This suggests that receptor
expression is not a determinant of differential susceptibility.
These results revealed that the protection against HSV-2 in
Tlr7-/- mice is dependent on elevated expression of infectious
ERVs derived from Emv2 in Tlr7-/- mice.
Frontiers in Immunology | www.frontiersin.org 4
Based on the observation that ERV treatment was sufficient to
provide protection against HSV-2 in WT mice, we next tested
whether exogenous ERV treatment could rescue the lack of ERVs
in Emv2-/-Tlr7-/- mice. Both disease scores and survival were
comparable between Emv2-/-Tlr7-/- mice treated with media alone
or exogenously treated with ERVs, indicating that local treatment
with ERVs is not sufficient to rescue the loss of protection observed
in Emv2-/-Tlr7-/- mice. (Supplementary Figure 7).
Transcriptome Analysis of Vaginal Tissues
In order to identify Emv2-dependent gene signatures in Tlr7-/-

mice that correlate with protection against HSV-2, we performed
cellular transcriptome analysis on whole vaginal tissues obtained
from Depo-treated naive WT, Tlr7-/-, Emv2-/-Tlr7-/- and Emv2-/-

mice. We analyzed differential expression of genes (DEG) and
compared the cellular transcriptome between WT vaginal tissue
and Tlr7-/-, Emv2-/-, or Emv2-/-Tlr7-/- vaginal tissues (Figure 4A).
More than half of the genes upregulated in Tlr7-/- tissue
overlapped with those upregulated in Emv2-/-Tlr7-/- tissues
(Figure 4B), but we found 25 genes that were significantly
upregulated in Tlr7-/- tissue compared to Emv2-/-Tlr7-/- tissue
(Figure 4C). These genes likely represent an Emv2-dependent
gene signature that is associated with HSV-2 protection in Tlr7-/-

vaginal tissues (Figures 4C, D). We further performed gene
enrichment analysis for this set of genes and found that the most
significantly enriched cellular pathway that is represented by this
A B

C D

FIGURE 2 | Purified ERVs from Tlr7-/- mice are sufficient to delay HSV-2 pathology in WT mice. (A) DFJ8 infection of purified ERVs compared to mock supernatant
at the indicated dilutions measured by FACS using anti-ERV envelope antibody, gated on live cells. (B) Schematic of ERV pre-treatment followed by HSV-2 infection
in WT B6 mice. Mice were pre-treated with purified ERVs (n=9) or medium (n=8) on the indicated days and infected intravaginally with 25,000 PFU of HSV-2 and
monitored for disease (C) and survival (D). The data are pooled from two independent experiments. Statistical significance was calculated using two-way ANOVA
Sidak’s multiple comparisons test for disease score and Mantle-Cox test for survival. **p < 0.01; ***p < 0.001.
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gene set was extracellular matrix organization (Figure 4E).
Notably, these genes were devoid of interferons and interferon-
stimulated genes. Taken together these data revealed a unique set
of genes that are induced in HSV-2 protected Tlr7-/- mice that are
regulated by infectious ERVs.
Frontiers in Immunology | www.frontiersin.org 5
Type I IFN Does Not Play a Major Role in
ERV-Mediated Protection Against HSV-2

Type I IFN (IFN-I) is a key mediator of innate antiviral
immunity and signals through the IFNa/b receptors to induce
A B

C

D

E F

FIGURE 3 | Emv2-encoded ERVs mediate protection against HSV-2. (A) Histograms of ERV envelope expression in the indicated splenocyte populations.
Representative histogram of one mouse per genotype within an experiment with 3-5 mice per group. (B) ERV envelope expression data showing data from all mice
and comparing splenocytes from uninfected mice (filled circles) with mice from 2 days post HSV-2 infection (open circles). (C) Quantification of ERV envelope
expression on DFJ8 cells at 14 days post co-culture with splenocytes from the indicated mice (n=4 per group), as a proxy measurement for infectious ERVs. CD45+

input splenocytes were excluded to measure ERV envelope only in DFJ8 cells. (D) Differential proviral ERV expression in vaginal tissues from the indicated mice
determined by RNA-seq analysis followed by DESeq2 analysis. Data are from 2 mice per group. Indicated mice were infected intravaginally with HSV-2 and disease
score (E) and survival (F) were monitored (WT, n=15; Emv2-/-, n=9; Tlr7-/-, n=13; Emv2-/-Tlr7-/-, n=21). The data are pooled from three independent experiments.
Two-way ANOVA Tukey’s multiple comparisons test and log-rank (Mantel-Cox) test were performed to calculate significance for disease score and survival,
respectively, between Tlr7-/- and Emv2-/-Tlr7-/- groups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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expression of IFN-stimulated genes (ISGs) (25). IFN-I protects
against intravaginal HSV-2 infection in mice by initiating a
protective innate and adaptive immune response (26). In
parallel, dysregulation of ERVs is associated with the induction
of an IFN-I response through RIG-I/MDA5 (19). Thus, we
originally hypothesized that antiviral response against HSV-2
occurs through ERV-mediated induction of IFN-I signaling.
However, based on the transcriptome analysis, IFN signaling
was not one of the enriched pathways in Tlr7-/- vaginal tissue
(Figure 4E). Thus, we further probed whether IFN-I signaling
was involved in ERV-mediated protection against HSV-2.

We examined expression of a set of ISGs that has previously
been associated with protection against intravaginal HSV-2
infection (27). Based on RNA-seq data, these ISGs were not
significantly induced in Tlr7-/- vaginal tissues compared to WT
Frontiers in Immunology | www.frontiersin.org 6
vagina (Figure 5A). We also examined whether CD11c+ dendritic
cells that are responsible for mounting a protective IFN-I response
in the vagina were elevated in Tlr7-/- mice. We found comparable
levels of live CD45+ cells (Supplementary Figure 8) as well as
CD11c+ and CD11c+CD11b+ dendritic cells in the vagina of WT
and Tlr7-/- mice (Figures 5B, C). Finally, we tested whether
protection against HSV-2 by exogenous ERV treatment requires
IFN-I signaling by treating Ifnar1-/- mice intravaginally with
purified ERVs from Tlr7-/- prior to HSV-2 infection. We observed
that exogenous ERV treatment is capable of delaying disease
progression both by disease score and survival in Ifnar1-/-mice
(Figures 5D, E), indicating that IFN-I signaling is not required for
this protection. The lack of ISG expression in mice that are
protected from HSV-2, together with the observation that
protection is provided by ERVs even in the absence of IFN-I
A

B C D

E

FIGURE 4 | Transcriptome analysis of HSV-2 protected vaginal tissue. (A) Volcano plots of differentially expressed cellular genes between wildtype (WT) and
Tlr7-/-, Emv2-/-, Emv2-/-Tlr7-/- vaginal tissues. Log2 fold change and p-adj (log10P) values were obtained by DESeq2. (B) Venn diagram depicting the number of
significantly upregulated genes (log2FC > 1; padj < 0.05) in the indicated genotypes compared to WT. (C) Number of significantly upregulated genes in Tlr7-/-

compared to WT and of those, number of genes that are not upregulated in Emv2-/-Tlr7-/-. Heatmap (D) and gene enrichment analysis (E) of Emv2-dependent
upregulated genes inTlr7-/- mice.
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signaling, suggest that IFN-I is not a major protective mechanism
conferred by Emv2-derived ERVs in Tlr7-/- mice or by purified
ERVs from Tlr7-/- mice.
DISCUSSION

ERVs are genomic sequences that originated from retroviral
infections and make up a significant proportion of most
eukaryotic genomes (9). In humans, ERVs can generate viral-like
particles but infectious ERVs have not been detected. In mice, ERVs
are grouped as ecotropic, polytropic, and modified polytropic
murine leukemia viruses (MLVs), originally studied for their
oncogenic properties, similar to exogenous MLVs such as
Moloney, Rauscher, Abelson and Friend MLVs (28). Although
the propensity for individual ERV loci to generate infectious viral
particles is low, recombination between sequences from distinct
ERV loci can result in the generation of replication competent
retroviruses, which can be amplified under immunosuppressive
conditions. Beyond the capacity to produce infectious retroviruses,
ERV sequences encode viral proteins that affect both the innate and
adaptive immune responses and are potential sources of cytosolic
ligands for innate immune stimulation (18). Although ERVs are
Frontiers in Immunology | www.frontiersin.org 7
dysregulated during viral infection in humans, the potential for
ERVs to impact antiviral immunity is not well understood. Here we
investigated whether ERVs affect antiviral responses and found that
ERVs derived from the Emv2 locus of B6 mice confer protection
against intravaginal HSV-2 infection in vivo.

The exact mechanism of ERV-mediated protection against
HSV-2 remains unknown. We observed a modest and transient
reduction in HSV-2 viral titers in the vaginal wash of Tlr7-/- mice
compared to wildtype mice. This is consistent with a previous
report showing that transient and early reduction in HSV-2 titers
in the vaginal wash of mice treated with antibiotics result in
significant improvement in disease scores (27). However, further
examination is needed to determine whether the viral titer in the
dorsal root ganglion where HSV-2 establishes latency is reduced.
It also needs to be determined whether the ERV-mediated
protection requires infectious ERVs in order to reveal the
molecular mechanism of protection. Based on observations
that ERVs are not directly acting on HSV-2 itself, ERVs are
likely modulating the host to promote an antiviral state in the
vaginal tissue. In line with this, transcriptome analysis revealed
that extracellular matrix organization and Ras signaling
pathways are enriched in Tlr7-/- vaginal tissues compared to
WT and depend on the presence of Emv2. Extracellular matrix
A B C

D E

FIGURE 5 | Purified ERVs from Tlr7-/- mice confer protection against HSV-2 disease in the absence of IFN-a/b receptor. (A) Heatmap depicting expression levels of
IFN-stimulated genes in the indicated vaginal tissues. (B) A representative flow cytometry plot depicting CD11b and CD11c staining on vaginal tissues from naïve WT
and Tlr7-/- mice, gated on singlets/live/CD45+ cells. (C) Compiled data for flow cytometry analysis of CD11b+ and CD11c+ cells (n=4 per group). Two-way ANOVA
with Sidak’s multiple comparisons were performed to calculate statistical significance. ns, not significant. (D, E) HSV-2 infection of Ifnar1-/- mice treated intravaginally
with optiMEM (media) or ERVs (n=4 mice per group) and monitored for disease score and survival. Log-rank (Mantel-Cox) test was performed to calculate
significance. *p < 0.05.
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proteins including collagen and laminin form the structural basis
of the dermal layer of the mucosal epithelium and support the
physical barrier provided by the epithelium (29). Therefore,
elevated expression of genes involved in extracellular matrix
organization in Tlr7-/- vaginal tissues may broadly enhance
vaginal epithelial integrity, which in turn confer protection
against HSV-2. Future investigation will explore this and other
pathways that may be involved in the protective response.

We observed a limited protective effect of ERV treatment in
WT mice compared to the protection observed in Tlr7-/- mice.
In addition, intravaginal treatment by purified ERVs was not
sufficient to rescue the loss of protection in Emv2-/-Tlr7-/- mice.
There are several potential reasons for these observations. One
possibility is that the duration and amount of ERVs expressed in
Tlr7-/- mice are much higher than the amount of exogenous virus
provided through intravaginal administration. Constitutive
production of infectious ERVs in Tlr7-/- mice likely has a much
broader impact on the vaginal tissue, as shown by the
transcriptome differences (Figure 4). Another possibility is that
TLR7 signaling is required for the partial protection provided by
exogenous ERV treatment. It is also possible that expression of
ERVs in the periphery or in other tissues is required to provide
robust protection against HSV-2. Future studies will test these
possibilities and dissect the signaling requirements for HSV-
2 protection.

Studies have shown that activation of TLR7 signaling by
TLR7 agonists confers protection against genital HSV-2
infection in guinea pigs and in humans (30, 31). This is in line
with the potent antiviral effect of TLR signaling and innate
immune activation. We initiated our study in TLR7-deficient
mice because these mice, in particular, were reported to have
high levels of ERVs (16, 17). However, to delineate the functional
role of ERVs from the role of TLR7 signaling in antiviral
immunity, we generated an Emv2-deficient mouse on the
Tlr7-/- background and observed a loss of protection against
HSV-2. Thus, the data support our conclusion that resistance to
HSV-2 disease in Tlr7-/- mice requires infectious ERVs.

Intravaginal treatment of WT mice with purified ERVs from
Tlr7-/- mice delayed disease progression and prolonged survival, but
the effect was modest. This may suggest that the predominant effect
of ERVs is to boost early antiviral response and reduce viral
replication, while having a lesser impact on T cell immunity that
provides robust protection throughout the course of infection (32).
It is well established that HSV-2 infects the dorsal root ganglion
(DRG) upon vaginal infection to establish latency, and immune
restriction of DRG infection confers protection against HSV-2 (2).
There remains the possibility that ERV-mediated protection against
HSV-2 and delay in disease result from reduced HSV-2 infection of
the DRG. Although HSV-2 establishes latency upon vaginal
infection in mice, unlike human HSV-2 infection, latent HSV-2
does not reactivate. Our study is therefore limited to understanding
the protective role of ERVs during the acute phase of vaginal HSV-2
infection in mice. Future studies will investigate the role of ERVs in
different stages of HSV-2 pathogenesis.

Elevated expression of transposable elements including ERVs
and LTR elements can coincide with IFN-I induction by cytosolic
Frontiers in Immunology | www.frontiersin.org 8
sensing of double stranded RNA and DNA (19, 33). In these
settings, there are no infectious ERVs, but rather a dysregulation
of retroelements that results in an IFN response that depends on
cytosolic sensors, RIG-I/MDA5 and cGAS. ERVs from Tlr7-/-

mice, however, are replication competent and consequently will
likely stimulate innate sensors that recognize viral RNA during
viral entry and replication. As generation of double-stranded
RNA and DNA species are not part of the retroviral life cycle,
sensing of infectious ERVs is expected to be distinct from
cytosolic sensing of retroelements. The lack of IFN-I induction
by heightened ERV expression in Tlr7-/- mice may in part be due
to the lack of TLR7, which is a known innate sensor for retroviral
infection necessary for viral control (34, 35). Although it remains
to be determined whether exogenous ERV treatment induces an
IFN-I response in wildtype vaginal tissue, a previous study
showed that infectious ERVs do not readily induce an IFN-I
response in wildtype mice, even in the presence of functional
TLR7 signaling (17). In the absence of a robust IFN-I response
however, our study revealed a potentially IFN-independent
mode of HSV-2 protection, and elucidation of molecular
mechanisms underlying these findings has the potential to
reveal novel insights into antiviral responses to HSV-2.
MATERIALS AND METHODS

Mice
C57BL/6N mice (strain 027) were obtained from Charles River
Laboratories and bred in our animal facility. Tlr7-/- mice were
bred in our animal facility (22). All mice were housed under
specific-pathogen-free conditions and cared for according to
Yale University IACUC guidelines. All female mice were used
at eight to ten weeks of age for experiments.

The Emv2 knockout mouse model was generated by CRISPR-
Cas9 methodology as described (36). In brief, T7-sgRNA
templates were prepared by PCR, incorporating the guide
sequences from the desired target regions in the mouse Emv2
locus (Mus musculus strain C57BL/6J, chr8:123425507-
123434150, GRCm38/mm10), with a 5’ guide sequence of
AGATTTAAGAGGAACAGCGC (sense orientation) and a 3’
guide sequence of CACAAGTCATCAGAATCGTC (antisense
orientation). The T7-sgRNA PCR templates were then used for
in vitro transcription and purification with the MEGAshortscript
T7 Transcription Kit and MEGAclear Transcription Clean-Up
Kit, respectively (both from Thermo Fisher Scientific). Cas9
mRNA (CleanCap, 5-methoxyuridine-modified) was purchased
from TriLink Biotechnologies. Cytoplasmic microinjections of
sgRNAs (at 50 ng/ul each) and Cas9 mRNA (at 100 ng/ul) into
single-cell embryos at 0.5 d pc were performed by the Yale
Immunobiology CRISPR Core. We have not performed whole-
genome sequencing on these mice to exclude possible off-target
gene editing.

Deletion of the Emv2 locus was confirmed by sequencing the
inserts amplified using the following primers (Emv2KO primers):

Fwd: AACCGGACCCCACTCAAAG
Rev: GCATAGAAAGGGGTTAAGAAATCC
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The same primer sets were used to detect a knock-out band
and the following primers used to detect the wild-type allele
(Emv2WT primers):

Fwd: CCAGCTTGGGGGTCTTTCAAG
Rev: CGGACCCCACTCAAAGGC
A single line of confirmed Emv2 knockout mouse was

backcrossed to B6N mice, and the heterozygous mice were crossed
to generate a homozygous Emv2 knockout strain (Emv2-/-). Emv2-/-

micewere thencrossed toTlr7-/-mice togenerateEmv2-/-Tlr7-/-mice.
The following primers were used for Tlr7:

WT Fwd: AGGGTATGCCGCCAAATCTAAAG
Rev: ACCTTTGTGTGCTCCTGGAC
KO Fwd: TCATTCTCAGTATTGTTTTGCC

HSV-2 Infection
Mice were injected subcutaneously in the neck scruff with 2mg
per mouse of medroxyprogestrone acetate (Depo-Provera; GE
Healthcare) six days prior to HSV-2 infection or ERV treatment.
This treatment syncs mice in diestrus phase for up to 30 days
post-administration and enhances HSV-2 susceptibility (37). On
the day of infection, vaginal tract of mice was swabbed with a
phosphate buffer saline (PBS)-soaked calcium alginate swab
(Puritan Medical Products) and infected intravaginally with
10ul of 2500 PFU of wild-type (WT) HSV-2 strain (186syn+)
(Spang, Knipe 1983 JVI). Infected mice were weighed and scored
daily for two weeks for pathology based on scoring criteria that
monitor local inflammation and physical pathology. Disease
scores were obtained as follows: (0) no inflammation, (1)
genital inflammation, (2) genital lesions and hair loss, (3)
hunched posture and ruffled fur, (4) hind-limb paralysis or
pre-moribound and (5) euthanized. Mice were euthanized
before reaching a moribund state. In our experiments,
infection of wildtype B6 mice with 2500PFU of HSV-2 186
Syn+ strain results in 80-100% of mice succumbing to infection
and requiring euthanasia by 8 to 14 days post-infection.

Vaginal washes were collected daily for the first five days post-
infection by collecting vaginal swabs and washes with 50ul of
sterile PBS diluted 1:20 in buffer (PBS, 0.5mM MgCl2.6H2O,
0.9mMCaCl2.2H2O, 1% FBS, 1% Glucose). Washes were used to
titrate HSV-2 on Vero cells (CCL-81; ATCC). WT HSV-2 was
a generous gift from D. Knipe (Harvard Medical School) and
was propagated on Vero cells as previously described (38). All
animal procedures were performed in compliance with Yale
Institutional Animal Care and Use Committee protocols.

Tissue Harvest and Single Cell Preparation
Mouse vagina was harvested and processed as previously described
to obtain single cell suspensions. Briefly, vaginal tissues were
minced and digested in 1.65mg/ml Dispase II (Sigma) for 15
minutes in a 37°C shaking water bath, washed in PBS, and
digested in 0.425mg/ml Collagenase D (Sigma), 30ug/ml DNase
(Roche), 100u/ml Hyaluronidase (Sigma) in complete DMEM
(10% FBS, 1% penicillin-streptomycin, 1% HEPES, 1% sodium
pyruvate, 2-mercaptoethanol) for 30 minutes in a 37°C shaking
water bath. Cells were passed through a 70um cell strainer and
washed in PBS to obtain a single cell suspension. Splenocytes and
bone marrow leukocytes were obtained as previously described (38).
Frontiers in Immunology | www.frontiersin.org 9
Leukocytes from the lung were obtained by tissue digestion as
previously described (39). Lamina propria leukocytes were
obtained from the small intestine of mice by removing the
small intestine (SI) from the cecum and processed as
previously described (40). Briefly, SI was cut longitudinally and
washed in cold PBS three times to remove feces. Each SI was cut
into three to four pieces and digested in 5mM EDTA in Hank’s
Balanced Salt Solution (HBSS, Thermo Fisher) for 20 minutes in
a 37°C shaking water bath. SI were then minced and digested in
HBSS containing 2% FBS, 0.04mg/ml of DNase I (Roche), 4uM
beta-mercaptoethanol, 1mg/ml of collagenase VIII (Sigma) for
45 minutes at 37°C shaking water bath. Cells were passed
through a 100um cell strainer and washed in PBS to obtain a
single cell suspension.

Quantification and Propagation of
Infectious ERVs
Infectious ERVs were quantified using a co-culture system using
DFJ8 avian fibroblast cell line (kindly provided by Walther
Mothes, Yale University). DFJ8 cells were co-cultured with
single cell suspension of cells at a ratio of 50:1 lymphocytes to
DFJ8 ratio in a 12-well plate for four days. Cells and supernatants
were then transferred into a 60mm2 dish for three more days,
and on the seventh day, cells are harvested and stained for mouse
CD45 and MLV envelope antibody clone 573 (kindly provided
by Leonard Evans, NIH) (41). CD45 cells were excluded and
MLV envelope expression is quantified on DFJ8 cells.

Infectious ERVs from Tlr7-/- mice were generated from a single
cell colony of DFJ8 cells co-cultured with Tlr7-/- splenocytes, as
described previously (20). These DFJ8s stably express high levels of
ERVs and were used to amplify ERVs. ERVs were harvested from
the supernatant of DFJ8s cultured for seven days. Cells were
removed by centrifugation and filtration of the supernatant
through a 0.45um filter. Supernatant was concentrated through
ultracentrifugation for two hours at 23,000 x g over 25% sucrose,
and the pellet was resuspended in optiMEM media.

Flow Cytometry
ERV envelope on lymphocytes was detected as previously described
(42; b)using an anti-MLV envelope antibody clone 83A25 (kindly
provided by Leonard Evans, NIH) (41). The following antibodies
were used for staining of vaginal dendritic cells: Fixable Aqua Dead
Cell Stain Kit (Thermo Fisher), CD45 (clone 30-F11, BioLegend),
CD11b (clone M1/70, BioLegend), and CD11c (clone N418,
BioLegend). All cells were stained in 1% BSA PBS and incubated
on ice for 15 to 20 minutes. Cells were acquired on BD LSRII
cytometer and analyzed by FlowJo software v8.8.7 (Tree Star, Inc.).

RNA-Seq of Vaginal Tissues
Vaginal tissue was harvested, flash frozen, and placed in RLT lysis
buffer (Qiagen RNeasy Kit) in bead homogenizer tubes (MP
Biomedicals). The tissue was homogenized for one minute at
maximum speed on a tissue homogenizer, and the lysate was
clarified twice by centrifugation at 13,000rpm for 1 minute. RNA
was purified from the clarified lysates according to manufacturer’s
instructions (RNeasy Kit, Qiagen). 0.5ug of purified RNAwas used
to prepare a library using NEB sequencing kit (NEBNext Ultra II
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RNA Library Prep Kit for Illumina sequencing, NEB) according to
instructions and sequenced on Illumina NextSeq 550 using 150bp
pair-end sequencing using a high throughput flow cell. RNA-seq
datawas analyzed forERVsandcellulardata aspreviouslydescribed
(42). The raw data files have been deposited in GSE185281.

Confocal Microscopy
Vaginal tissues were harvested, placed in optimal cutting
temperature (O.C.T.) compound (Fisher Scientific), flash frozen in
dry ice, and stored at -80°C. Frozen tissues were sectioned into 7
mm thick sections and placed onto Superfrost microscope glass
slides (Fisher Scientific). Sections were fixed in ice-cold acetone for
10 minutes at room temperature (RT), air dried, and blocked in
blocking buffer (0.1M Tris-HCl pH7.4, 1% FBS, 2% goat serum) for
1 hour at RT. Sections were stained with anti-ERV envelope (83A25,
100mg/ml) and CD45.2 biotin (BioLegend, 10mg/ml) in staining
buffer (0.1M Tris-HCl, 1% FBS) for 1 hour at RT and washed three
times for 5 minutes in wash buffer (0.1M Tris-HCl, pH7.4). Then
stained with HSV-2 gD FITC (ViroStat, 5mg/ml), anti-rat IgG Cy3
(Jackson Immuno, 40mg/ml), and streptavidin APC (BioLegend,
40mg/ml) in staining buffer for 1 hour at RT and washed three
times. Sections were stained with Hoechst 33342 (ThemoFisher) at
1:100 for 10 minutes at RT, washed once in wash buffer, and
ProLong Gold Antifade Mountant (ThermoFisher) was added. Z-
section images were obtained on a Leica SP8 confocal microscope
using a 40x oil immersion objective.

Statistical Analysis
Statistical analyses were performed in Graphpad Prism9 software
and the statistical tests used for each dataset is indicated in the
figure legends. Differential gene expression was calculated using
DESeq2 (43) using Bioconductor R (44). Heatmaps and volcano
plots were generated using ggplot2 packages (45) and gene
enrichment analysis was performed using clusterProfiler
package (46) in Bioconductor R.
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