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Recombination presents a nonuniform distribution across the genome. Genomic regions that present relatively higher frequencies
of recombination are called hotspots while those with relatively lower frequencies of recombination are recombination coldspots.
Therefore, the identification of hotspots/coldspots could provide useful information for the study of the mechanism of
recombination. In this study, a new computational predictor called SVM-EL was proposed to identify hotspots/coldspots across
the yeast genome. It combined Support Vector Machines (SVMs) and Ensemble Learning (EL) based on three features including
basic kmer (Kmer), dinucleotide-based auto-cross covariance (DACC), and pseudo dinucleotide composition (PseDNC). These
features are able to incorporate the nucleic acid composition and their order information into the predictor.The proposed SVM-EL
achieves an accuracy of 82.89% on a widely used benchmark dataset, which outperforms some related methods.

1. Introduction

Meiotic recombination describes the process of alleles’
exchange between homologous chromosomes duringmeiosis
[1]. It can provide material for natural selection by producing
diverse gametes. It might also contribute to the evolution of
the genome via gene conversion or mutagenesis [2–4].

Although the exact location where recombination
happens in the genome and themechanism of recombination
are still unclear, it has been assured that recombination plays
an important role in promoting genome evolution.Therefore,
several studies have been performed on chromosomes [5–7]
and found that recombination presents a nonuniform distri-
bution across the genome. Genomic regions that present
relatively higher frequencies of recombination are called hot-
spots while those with relatively lower frequencies of recom-
bination are called recombination coldspots [8, 9]. With
the number of the sequenced genomes showing explosive

growth, more reliable methods are urgently needed to be
developed to identify the recombination spots.

The prediction of recombination hotspots or coldspots is
still a challenging task, although much information can be
acquired from the experiments. Recently, several computa-
tional models have been presented to identify the recombina-
tion hotspots/coldspots. For example, Liu et al. [10], based on
sequence Kmer frequencies, proposed a model which com-
bines the increment of diversity with quadratic discriminant
analysis (IDQD). Later, this method was improved by adding
gaps into the kmers [11]. Chen et al. presented a predictor
called iRSpot-PseDNC trained with pseudo dinucleotide
composition features [12].

The aforementioned methods extracted the features from
DNA sequences in different aspects. For example, the model
based on oligonucleotide frequencies considers the nucleic
acid composition information.The iRSpot-PseDNC incorpo-
rates both the local nucleic acid composition information and
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the global information of the protein sequences. Therefore,
it is reasonable to combine these complementary predic-
tors to further improve the performance of recombination
hotspot/coldspot identification. In this regard, three basic
predictors trained with basic kmer (Kmer) [13], dinucleotide-
based auto-cross covariance (DACC) [14, 15], and pseudo
dinucleotide composition (PseDNC) [16], respectively, were
combined via the framework of ensemble learning approach,
and a novel predictor called SVM-EL was proposed. All these
features can be easily generated by a recently proposed tool
called Pse-in-One [17], which is able to generate various
features only based on the DNA, RNA, or protein sequence
information.

2. Materials and Methods
2.1. Benchmark Dataset. The benchmark datasets S was
obtained from Liu et al. [10]:

S = S+ ∪ S−, (1)

where the subset S+ contains 490 recombination hotspots,
the subset S− contains 591 recombination coldspots, and the
symbol ∪ represents the “union” in the set theory.

2.2. Feature Vectors Generated by Pse-in-One. SVM-EL is
developed by combining the outcomes of three individual
predictors which were trained by different features, including
basic kmer (Kmer) [13], dinucleotide-based auto-cross covari-
ance (DACC) [14, 15], and pseudo dinucleotide composition
(PseDNC). These basic features can be generated by usingPse-
in-One [17]which provides two approaches to generate feature
vectors. One way is through the web server (http://bioin-
formatics.hitsz.edu.cn/Pse-in-One/) and anotherway is through
the stand-alone tool (http://bioinformatics.hitsz.edu.cn/Pse-
in-One/download/).

Suppose a DNA sequenceD is

D = 𝑅
1
𝑅
2
𝑅
3
𝑅
4
𝑅
5
⋅ ⋅ ⋅ 𝑅
𝐿
, (2)

where 𝐿 represents the DNA sequence length and 𝑅
𝑖
(𝑖 =

1, 2 ⋅ ⋅ ⋅ 𝐿) is the nucleic acid at the position 𝑖. Therefore, three
basic features used in the current study can be described as
follows.

2.2.1. Kmer. Kmer [13] is an approach representing DNA
sequences by the occurrence frequencies of kmers.The Kmer
contains the local sequence-order information and it can be
generated with the help of Pse-in-One by the following steps.

For web server approach, firstly, choose DNA sequences
(PseDAC-General), then select Kmer in the tab of Mode,
and set the value of 𝑘. Secondly, input or upload the DNA
sequence file in FASTA format, click the Submit button, and
then you will see the results and you can download them as a
text file (Figure 1).

For stand-alone approach, Kmer features can be easily
generated by using the following command line:

‘./kmer.py −f svm −l +1 3 DNA’

where −f svm represents the format of the output file which is
the LIBSVM training data format, −l +1 represents the input

Figure 1: An example of the kmer features’ generation by using Pse-
in-One.

file that contains positive samples only, 𝑘 equals 3, and the
sequence type is DNA.

2.2.2. Dinucleotide-Based Auto-Cross Covariance (DACC).
Dinucleotide-based auto-cross covariance (DACC) [14, 15] is
the combination of DAC [14, 15, 19] and DCC [14, 15]. The
DAC measures the correlation between two dinucleotides
for one DNA property [17]. The DCC approach measures
the correlation between two dinucleotides for two different
properties [17].

Given a DNA sequence D represented as (2), the DAC
feature can be calculated as [17]

DAC (𝜇, lag)

=
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where 𝜇 is the dinucleotide property index; 𝐿 is the length
of DNA sequence; lag represents the distance between two
dinucleotides; 𝑃

𝜇
(𝑅
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𝑅
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at position 𝑖 for the dinucleotide property index 𝜇;
𝑃
𝜇
represents the average value of 𝑃
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) for a DNA
sequence.

Given a DNA sequence D represented as (2), the DCC
feature can be calculated as [17]
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where 𝜇
1
and 𝜇

2
are two different dinucleotide property

indices; 𝐿 is the DNA sequence length; lag is the distance
between two dinucleotides; 𝑃
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Table 1: The values of fifteen DNA dinucleotide properties.

AA/TT AC/GT AG/CT AT CA/TG CC/GG CG GA/TC GC TA
F-roll 0.04 0.06 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.03
F-tilt 0.08 0.07 0.06 0.10 0.06 0.06 0.06 0.07 0.07 0.07
F-twist 0.07 0.06 0.05 0.07 0.05 0.06 0.05 0.06 0.06 0.05
F-slide 6.69 6.80 3.47 9.61 2.00 2.99 2.71 4.27 4.21 1.85
F-shift 6.24 2.91 2.80 4.66 2.88 2.67 3.02 3.58 2.66 4.11
F-rise 21.34 21.98 17.48 24.79 14.51 14.25 14.66 18.41 17.31 14.24
Roll 1.05 2.01 3.60 0.61 5.60 4.68 6.02 2.44 1.70 3.50
Tilt −1.26 0.33 −1.66 0.00 0.14 −0.77 0.00 1.44 0.00 0.00
Twist 35.02 31.53 32.29 30.72 35.43 33.54 33.67 35.67 34.07 36.94
Slide −0.18 −0.59 −0.22 −0.68 0.48 −0.17 0.44 −0.05 −0.19 0.04
Shift 0.01 −0.02 −0.02 0.00 0.01 0.03 0.00 −0.01 0.00 0.00
Rise 3.25 3.24 3.32 3.21 3.37 3.36 3.29 3.30 3.27 3.39
Energy −1.00 −1.44 −1.28 −0.88 −1.45 −1.84 −2.17 −1.30 −2.24 −0.58
Enthalpy −7.60 −8.40 −7.80 −7.20 −8.50 −8.00 −10.60 −8.20 −9.80 −7.20
Entropy −21.30 −22.40 −21.00 −20.40 −22.70 −19.90 −27.20 −22.20 −24.40 −21.30

dinucleotide property index 𝜇
1
(𝜇
2
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average value of𝑃
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𝑅
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)) for aDNAsequence.
The features of DACC contain global sequence-order

information, and it can be generated via Pse-in-One [17]
which includes two generation approaches. The generation
steps of DACC feature can be described as follows.

For web server approach, firstly, choose the DNA
sequences (PseDAC-General) option, then select DACC in
the tab of Mode, and set the value of lag. Secondly, upload a
user-defined physicochemical index file called user property
and the values of fifteen dinucleotide physicochemical prop-
erties are shown in Table 1. Finally, input or upload the DNA
sequence file in FASTA format, click the Submit button, and
then you will see the results and you can download them as a
text file (Figure 2).

For stand-alone approach, DACC features can be easily
generated by using the following command line:

‘./acc.py−e user property−f svm−l +1 3DNADACC’

where −e user property represents the user-defined physico-
chemical index file, −f svm and −l +1 have the same meaning
with the above command line, the parameter lag equals 3, the
sequence type is DNA, and the method used is DACC.

2.2.3. Pseudo Dinucleotide Composition (PseDNC). Given a
DNA sequence D represented as (2), the PseDNC feature
vectorD can be defined as [17]
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(6)

where 𝑓
𝑘
(1 ≤ 𝑘 ≤ 16) represents the normalized frequency

of dinucleotides along the DNA sequence; 𝑤 (0 ≤ 𝑤 ≤ 1)

Figure 2: An example of the DACC features’ generation by using
Pse-in-One.

represents the weight factor; 𝜆 is the top counted tiers of the
correlation in aDNA, 𝜃
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Figure 3: An example of the PseDNC features’ generation by using
Pse-in-One.

where

Θ(𝑅
𝑖
𝑅
𝑖+1

, 𝑅
𝑗
𝑅
𝑗+1

)

=

1

𝜇

𝜇

∑

𝜇=1

[𝑃
𝜇
(𝑅
𝑖
𝑅
𝑖+1

) −𝑃
𝜇
(𝑅
𝑗
𝑅
𝑗+1

)]

2

,

(8)

where 𝜇 represents the indices of the dinucleotide property;
𝑃
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𝑖
𝑅
𝑖+1

)(𝑃
𝜇
(𝑅
𝑗
𝑅
𝑗+1

)) represents the value of dinucleotide
𝑅
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𝑅
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(𝑅
𝑗
𝑅
𝑗+1

) at position 𝑖(𝑗) for the dinucleotide property
index 𝜇.

Pseudo dinucleotide composition (PseDNC) [17] not only
incorporates the local nucleic acid composition information
and the global or long range information along the DNA
sequences, but also incorporates the dinucleotide properties
into feature vectors.

For web server approach, the generation steps of the
feature vectors are similar to those of the DACC’s. For web
server approach, an example is shown in Figure 3.

For stand-alone approach, the command line is

‘./pse.py −e user property −f svm −l +1 7 0.3 DNA
PseDNC’

where −e user property, −f svm, and −l +1 have the same
meaning with the above command line, lambda equals 7, the
value of weight equals 0.3, the sequence type is DNA, and the
method used is PseDNC.

The meanings of all the parameters for these scripts are
described in [17].

2.3. Support VectorMachine (SVM). Support VectorMachine
(SVM) is a kind of algorithm based on statistical learning
theory proposed by Vapnik [20–22], which has been widely
used for many bioinformatics tasks [23–27].

In the current study, the LIBSVM package version 3.21
[18] has been employed. The SVM parameters, the kernel
width parameter 𝛾 and the regularization parameter 𝐶, were
optimized via the grid tool provided by LIBSVM [18].

SVM-EL

SVM-Kmer

Output 1 Output 2 Output 3

SVM-PseDNCSVM-DACC

Ensemble output

Input

⨁ ⨁

Figure 4: The basic framework for an ensemble classifier.

In the current study, three basic predictors are proposed,
including SVM-Kmer, SVM-DACC, and SVM-PseDNC.The
values of SVM-Kmer’s parameters are shown as follows:

𝐶 = 2

7

,

𝛾 = 2,

𝑘 = 6.

(9)

The values of SVM-DACC’s parameters are shown as follows:

𝐶 = 2

3

,

𝛾 = 2

−3

,

lag = 6.

(10)

The values of SVM-PseDNC’s parameters are shown as
follows:

𝐶 = 2

13

,

𝛾 = 2

3

,

𝜆 = 7,

𝑤 = 0.3.

(11)

2.4. Ensemble Learning. In machine learning, ensemble
learning is the process by which multiple classifiers are con-
structed and combined based on the same dataset to obtain
a better performance than a single classifier [28, 29] and
existing popular multiobjective optimization evolutionary
algorithms can be used for ensemble learning [30, 31]. Ensem-
ble classifier also performed well in several bioinformatics
problems. In the current study, the basic framework for an
ensemble classifier is illustrated in Figure 4. The final results
are obtained by fusing three individual classifier outcomes, as
illustrated below.

Suppose the ensemble classifier C is defined as

C = C
1
⊕ C
2
⊕ C
3
, (12)

where C
1
represents the classifier SVM-Kmer, C

2
represents

the classifier SVM-DACC, and C
3
represents the classifier

SVM-PseDNC. The symbol ⊕ denotes the fusing operator.
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Therefore, the process of the ensemble classifier can be
formulated as follows:

𝑅
𝑗
=

1

3

𝑃
𝑖
(S, 𝐿
𝑗
) , (𝑖 = 1, 2, 3; 𝑗 = 1, 2) , (13)

where 𝐿
1
is the set only containing recombination hotspots

and 𝐿
2
is the set of recombination coldspots. 𝑃

𝑖
(S, 𝐿
𝑗
) is the

probability for DNA sequence Swhich belongs to category 𝐿
𝑖

obtained by the 𝑖th basic classifier.
Thus, which category the query DNA S belongs to is to

be determined by using its average probability calculated by
(13); that is, suppose that

𝑅
𝜇
= Max {𝑅

1
, 𝑅
2
} , (14)

where the operator max represents selecting a lager value in
the brackets, and the subscript 𝜇 represents the query DNA S
belonging to category 𝐿

𝜇
.

2.5. Criteria for Performance Evaluation. The prediction
results can be divided into true positive (TP), false negative
(FN), false positive (FP), and true negative (TN) [32]. In the
current study, jackknife test [33–37] was employed and four
kinds of evaluation indexes were adopted, including Sensi-
tivity (Se), Specificity (Sp), Accuracy (Acc), and Matthew’s
Correlation Coefficient (Mcc). They are described as

Se = TP
TP + FN

× 100%,

Sp =

TN
TN + FP

× 100%,

Acc = TP + TN
TP + TN + FP + FN

× 100%,

Mcc

=

(TP × TN) − (FP × FN)
√(TP + FP) (TP + FN) (TN + FP) (TN + FN)

.

(15)

3. Results and Discussion

3.1. Performance of theThree Basic Classifiers. As an inherent
property, sequence-order is important for the classification of
DNA sequences. So, three basic methods based on sequence-
order information are adopted to identify recombination
hotspots/coldspots. Table 2 shows the performance of the
three methods. According to the table, we can see that SVM-
DACC and SVM-PseDNC outperform SVM-Kmer on the
prediction accuracy index. The main reason is that SVM-
Kmer is only based on local sequence-order information,
while both of SVM-DACC and SVM-PseDNC also contain
global sequence-order information.

3.2. The Performance of the Three Basic Predictors Can Be
Further Improved by Using Ensemble Learning. Based on
the analysis above, we have proposed three basic predic-
tors for identifying recombination hotspots/coldspots. These
methods capture DNA information from different aspects.

Table 2: Results on benchmark dataset for different predictors
proposed in the current study.

Predictor Test method Se (%) Sp (%) Acc (%) MCC
SVM-Kmera Jackknife 75.92 86.29 81.59 0.628
SVM-DACCb Jackknife 76.12 87.99 82.61 0.649
SVM-PseDNCc Jackknife 72.04 90.69 82.24 0.644
SVM-EL Jackknife 76.33 88.33 82.89 0.654
aThe parameters used are 𝑘 = 6 for SVM-Kmer and 𝐶 = 27 and 𝛾 = 2 for
LIBSVM [18].
bThe parameters used are lag = 6 for SVM-DACC and 𝐶 = 23 and 𝛾 = 2−3
for LIBSVM [18].
cThe parameters used are 𝜆 = 7 and 𝑤 = 0.3 for SVM-PseDNC and 𝐶 = 213
and 𝛾 = 23 for LIBSVM [18].
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Figure 5: The comparison of different predictors for
hotspots/coldspots identification. The areas under ROC curves
(AUC) of SVM-EL, SVM-DACC, SVM-Kmer, and SVM-PseDNC
are 0.91, 0.90, 0.89, and 0.87, respectively.

Therefore, we presented a complementary method SVM-EL
which can fuse these basicmethods to improve the prediction
performance. The performance of SVM-EL is shown in
Table 2, from which we can see that SVM-EL outperforms
the three basic methods. Besides, the corresponding receiver
operating characteristic (ROC) curves of the four classifiers
were drawn in Figure 5. AUC, the area under the ROC curve,
is often used to indicate the performance of a classifier: the
larger the value, the better the classifier.

As shown in Figure 5, the predictor SVM-EL showed the
top performance, outperforming three basic methods: SVM-
Kmer, SVM-DACC, and SVM-PseDNC.

3.3. Comparison with Other Related Predictors. Two state-
of-the-art methods, IDQD [10] and iRSpot-PseDNC, were
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Table 3: Results on benchmark dataset for different predictors.

Predictor Test method Se (%) Sp (%) Acc (%) MCC
IDQDa 5-fold 79.40 81.00 80.30 0.603
iRSpot-PseDNCb Jackknife 73.06 89.49 82.04 0.638
SVM-EL Jackknife 76.33 88.33 82.89 0.654
aFrom Liu et al. [10].
bFrom Chen et al. [12].

selected to compare with the proposed SVM-EL. Table 3
shows the results of various methods on the benchmark
dataset.

According to Table 3, we can see that SVM-EL out-
performs the other methods. The main reason is that
IDQD and SVM-Kmer only consider local sequence-order
information, and iRSpot-PseDNC, SVM-DACC, and SVM-
PseDNC improved them by incorporating global sequence-
order information. However, SVM-EL not only incorporates
the local nucleic acid information, but also incorporates the
global information. Therefore, we conclude that SVM-EL
would be a useful tool for hotspots/coldspots identification.

4. Conclusion

In this article, we proposed a predictor called SVM-EL for
yeast hotspot/coldspot identification, which combines Sup-
port Vector Machine (SVM) with Ensemble Learning (EL).
The approach combined with different predictors trained
by different features contributes to the improvement of
prediction accuracy. SVM-EL is trained by different features,
including basic kmer (Kmer), dinucleotide-based auto-cross
covariance (DACC), and pseudo dinucleotide composition
(PseDNC). All these features can be generated by Pse-in-
One [17], which is a powerful web server for generating
various DNA, RNA, or protein features. It also provides
a stand-alone version to users, which is easy to use. Via
jackknife test, it was observed that the predictor outperforms
other predictors. In the future, we will consider using other
approaches for yeast hotspot/coldspot identification, such as
bioinspired computing models [38–45].
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