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Modeling and understanding human grasp functionality are fundamental in prosthetics, robotics, medicine, and rehabilitation,
since they contribute to exploring motor control mechanism, evaluating grasp function, and designing and controlling
prosthetic hands or exoskeletons. However, there are still limitations in providing a comprehensive and quantitative
understanding of hand grasp functionality. After simultaneously considering three significant and essential influence factors in
daily grasping contained relative position, object shape, and size, this paper presents the tolerance grasping to provide a more
comprehensive understanding of human grasp functionality. The results of joint angle distribution and variance explained by
PCs supported that tolerance grasping can represent hand grasp functionality more comprehensively. Four synergies are found
and account for 93% ± 1:5% of the overall variance. The ANOVA confirmed that there was no significant individual difference
in the first four postural synergies. The common patterns of grasping behavior were found and characterized by the mean
value of postural synergy across 10 subjects. The independence analysis demonstrates that the tolerance grasping results highly
correlate with unstructured natural grasping and more accurately correspond to cortical representation size of finger
movement. The potential for exploring the neuromuscular control mechanism of human grasping is discussed. The analysis of
hand grasp characteristics that contained joint angle distribution, correlation, independence, and postural synergies, presented
here, should be more representative to provide a more comprehensive understanding of hand grasp functionality.

1. Background

Tremendous grasp functionality is one of the critical charac-
teristics of humans [1–4]. More than 20 degrees of freedom
(DoFs) [5–7] are coordinately actuated by multiple extrinsic
and intrinsic muscles [8] and controlled by a huge amount
of neural resources [9]. Any bone, muscle, and nerve damage
often leads to impairment of hand movement, which will
seriously affect the quality of life [10], such as stroke, Parkin-
son’s disease (PD), or physical injury. All of these critical
particularities of the human hand have attracted investiga-
tors to study hand grasp functionality. People want to
understand human hand grasp functionality as comprehen-

sively as possible. In neuroscience, investigators expect to
establish experimental paradigms that can effectively repre-
sent human grasp functionality in order to explore the neu-
ral mechanism of motor control. In rehabilitation, the
therapists hope that they can more comprehensively and
accurately evaluate the hand grasp function for clarifying
the functionality impairment to formulate the personalized
treatment plans. In robotics, roboticists expect to compre-
hensively understand grasp functionality and characteristics
in order to design and control prosthetic hands or exoskele-
tons to help patients reconstruct the hand grasp functions.

The systematic research of hand grasp function starts
from the functionality assessment in rehabilitation [11]. A
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discrete set of grasp types is used to qualitatively summarize
hand grasp function. Along this direction, a number of
researches have investigated the classification of human
grasp, as shown in Table 1. Schlesinger [11] classified human
grasp to 6 typical postures according to the object shape,
while Napier [12] found that people may grasp the same
object with different postures according to different aim
goals (power and precision grasp). Kamakura et al. [13]
added the intermediate grasp to supplement aim goals. The
14 typical grasp postures were used to describe the hand
grasp functionality. Iberall and Iberall and Bingham
[14–16] classified hand grasp posture based on the opposi-
tional force consideration. By summarizing the related
researches, 25 typical postures were used to describe human
grasp functionality. Consequently, three main classification
definitions are obtained: object shape, aim goal, and opposi-
tional force and virtual finger. In this case, after synthetically
considering the three classification definitions, Cutkosky
[17], Stival et al. [18, 19], and Feix et al. [20] proposed their
grasp taxonomies using 16, 20, and 33 typical grasp postures
to represent human grasp functionality, respectively.

In neuroscience, human grasp kinematics is extensively
investigated to quantitatively discover the effects of particu-
lar factors on human reach-to-grasp process or a particular
behavioral phenomenon in a specific context, as shown in
Table 2. Jeannerod proposed the Dual Visuomotor Channel
theory [21] to lay the foundation for the related studies:
human prehension actually consists of two distinct but tem-
porally integrated movements, a reach and a grasp. Reach
and grasp are mediated as a function of extrinsic object
properties (e.g., object position and orientation) and intrin-
sic object properties (e.g., object size and shape), respec-
tively. Along this direction, several particular intrinsic and
extrinsic object property effects on reach-to-grasp are inves-
tigated. Most of them only focus on the single factor, as
shown in Table 2, such as the intrinsic object properties
(e.g., size [22], fragility [23], texture [24], and mass [25,
26]), extrinsic object properties (e.g., initial position [27]
and target position [28, 29]). The studies of the particular
context are difficult to comprehensively represent human
grasp functionality. In addition, these studies mainly focus
on the process of the entire arm movement of reach-to-
grasp process, rather than the hand-centric consideration.
The measures mainly contained hand movement time, grasp
aperture, and finger (hand) position on objects (Table 2),
rather than the detailed grasp posture.

A portion of studies focuses on hand kinematic synergies
in some specific contexts, as shown in Table 3. Santello et al.
[30] investigated the hand postural synergies in 57 imagined
object grasping. Mason et al. [31] studied the reach-to-grasp
synergies of 16 columnar object grasping. Hereafter, the
kinematic synergies are investigated in different application
considerations and grasp conditions (e.g., biometrics for
secure identity verification [32], precision grasp for cylinder
of different size [33], haptic exploration [34], rapid grasping
[35], and bimanual manipulation [36]). Different objects
(8 to 57 types in Table 3) are selected to span the grasp
functionality in the corresponding specific context. However,
these studies focus on some particular application consider-

ations and grasp conditions, rather than a general and repre-
sentative understanding of human grasp functionality.

On the other hand, the investigators attempt to under-
stand human nature grasping behavior through behavior
recording in unstructured environment. Bullock et al.
[37–40] built a video dataset collected from a head-
mounted camera to record hand usage in two housekeepers
and two machinist work activities. Ingram et al. [41] use
Cyberglove to track the hand movements of six subjects out-
side of a laboratory setting. Unstructured environment
grasping provides a paradigm to understand human general
grasp behavior. However, due to the randomness of grasping
context, it is difficult to help people quantitatively understand
the detailed grasp postures Moreover, the rigorous condi-
tions of unstructured environments outside the laboratory
limit the use of large medical imaging equipment (e.g., fMRI
and MEG) and motion capture equipment. It is difficult to be
used to explore the neuromuscular control mechanism of
human grasping. Based on the large medical imaging equip-
ment (e.g., CT and fMRI), numerical hand models have been
well-developed to investigate hand grasping and biomechan-
ics. Wei et al. have developed a subject-specific finite element
human hand model to study hand grasping in 2019 [42].

Consequently, there are several open points in the litera-
tures for providing a comprehensive and quantitative under-
standing of human grasp functionality. Firstly, the studies of
grasp classification mainly focus on a few typical grasp types
on the basis of the qualitative grasp classification definition.
It is difficult to understand human grasp functionality com-
prehensively and quantitatively, but the classification defini-
tion can help us complete the representative influence
factors of human grasp. Secondly, for the grasp kinematic
studies, the objective is to discover the particular influence
factors on human reach-to-grasp or a particular behavioral
phenomenon in a specific context. Besides, these studies
focus on the movement functionality of the entire upper
limb including the hand, wrist, and arm rather than the
hand-centric consideration in detail. Therefore, the related
studies have difficulty providing a comprehensive under-
standing of human grasp functionality. Thirdly, the studies
of hand kinematic synergies are also investigated in some
particular application considerations and grasp conditions.
The results make it difficult to comprehensively represent
human grasp functionality. Fourthly, for human natural
grasp in unstructured environment, it is difficult to help peo-
ple quantitatively and parametrically understand human
grasp behavior in detail. The rigorous conditions outside
the laboratory limit the use of large medical imaging equip-
ment to explore the neuromuscular control mechanism of
human grasping.

Different from previous studies, we attempt to complete
the significant influence factors on human grasping, inte-
grate them to establish a laboratory-based unstructured
experimental paradigm to efficiently represent human gen-
eral grasp functionality, and further improve the application
range, such as neuroscience, rehabilitation, and robotics. In
an accompanying study [43], we demonstrate that the rela-
tive position between the human hand and object, as a gen-
eral and essential influence factor in daily grasping, can
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cover the main definitions of grasp classification and seems a
direct influence factor and indicator of grasp planning
parameterization. The relative position seems another
important basic influence factor that significantly affects
human grasping in addition to the object size and shape,
which is seldom investigated in previous researches. There-
fore, we simultaneously considered the three general influ-
ence factors that contained relative position, object shape,
and size in this paper in order to provide a comprehensive
understanding of human grasp functionality.

In this paper, we quantitatively investigate the human
tolerance grasping (human can successfully grasp various
objects in different acceptable relative positions between
the human hand and object). The object shape (sphere, cyl-
inder, and prism), size (small and large), and relative posi-
tions (X/Y/Z deviations) between the human hand and
object are all considered as a whole in order to represent
human grasp functionality more comprehensively. On this
basis, joint angle distribution and variance explained by PC
results supported that tolerance grasping can represent hand

Table 1: Summary of selected precious studies on grasp classification for describing hand grasp functionality.

Study
Total number of
hand grasps

Classification definition Description

Schlesinger [11] 6 Object shape
Six typical postures are proposed to describe hand grasp

functionality according to the object shape.

Napier [12], Kamakura
et al. [13]

14
Action goals (power, precision,

intermediate grasp)

Power grasp holds object stably, while precision grasp
imparts the object motion [12].

Intermediate grasp represents the postures with contact
areas of finger-side aspect [13].

Iberall and Iberall and
Bingham [14]-[16]

25
Oppositional force and virtual

finger

For a given manual task, the grasp can be classified by the
oppositional force exerted between virtual finger surfaces.
Palm, pad, and side opposition means oppositional force
along a direction perpendicular, parallel, and transverse to

the palm, respectively.

Cutkosky [17] 16 Synthesis

Cutkosky [17] proposed a hierarchical tree of grasps, totally
listing 16 different grasps.

The grasp type, action goal, and VF oppositional force are
synthetically considered.

Stival et al. [18],
Jarque-Bou [19]

20 Synthesis

Stival et al. and Jarque-Bou et al. [18, 19] built a taxonomy
that contained 20 grasp types.

The grasp type, action goal, and VF oppositional force are
synthetically considered.

Feix et al. [20] 33 Synthesis

Feix et al. [20] constructed a grasp taxonomy that contained
33 human grasp types.

The grasp type, action goal, and VF oppositional force are
synthetically considered.

Table 2: Summary of human grasp kinematic studies.

Study
Influence factor

Process MeasureIntrinsic object
properties [31]

Extrinsic object
properties [31]

Bootsma et al. [22] Size Reach-to-grasp
Movement time, transport characteristics,

grasp aperture

Savelsbergh et al. [23] Fragility Reach-to-grasp Free-time duration and in-contact phase

Weir et al. [24] Texture Reach-to-grasp Grasp aperture

Weir et al. [25] Mass Reach-to-grasp Grasp aperture

Lukos et al. [26] Center of mass location Reach-to-grasp
Position of each digit tip at contact with the

object

Armbrüster and
Spijkers [27]

Initial position Reach-to-grasp Movement time and grasp aperture

Cohen and
Rosenbaum [28]

Target position Reach-to-grasp Hand position (grasped height) on cylinder

Touvet et al. [29] Shape, size Target position Reach-to-grasp
Grasp posture and hand position,

orientation
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grasp functionality more comprehensively. Four synergies
are found and account for 93% ± 1:5% of the overall vari-
ance. The ANOVA confirmed that there was no significant
difference in the first four postural synergies across 10 sub-
jects. Therefore, the common pattern of grasping behavior
was found and characterized by the mean value of postural
synergy across 10 subjects. The independence analysis dem-
onstrates that the tolerance grasping has potential advan-
tages to explore more accurate representation of hand
neuromuscular architecture and control mechanism.

2. Methods

The same experimental setup (the view of experiment, the
grasping tolerance determination process), protocol (experi-
ment requirements), dataset, and calibration (Cyberglove
calibration process) as in the accompanying paper [43] and
a recent study [44] were used. The concise description about
the grasped object shapes and sizes, tolerance range, posture
calibration, and recording platform is shown in Figure 1.
The object shape, size, and weight of objects we chose were
based on the Feix et al. [39], Zheng et al. [45], and Bullock
et al. [38, 46] research results to high-effectively represent
the objects we grasped in daily life. The static grasping pos-
tures that can lift up the object are recorded, and the posture
that cannot lift up the object is eliminated until the stable
grasping is completed to record the corresponding posture.
Two repeats are needed. Thus, totally, 3240 postures
(10 subjects × 6 objects × 27 relative distances × 2repeats) are
collected in posture dataset. Hand grasp posture that
contained 15 joint information was actually recorded by
Cyberglove III (Virtual Technologies, Palo Alto, CA) at a
resolution of <0.1° and sampled at 100Hz each. The follow-
ing joint angles were measured: proximal interphalangeal
(PIP) joints and metacarpophalangeal (MCP) joints of digits
II-V, as well as the interphalangeal (IP) and MCP joints of
the thumb (digit I), opposition rotation (Rot) of the thumb,
abduction/adduction (ABD) of the thumb carpometacarpal
(CMC) joint, and MCP joints of digits II–V. The step (2)
figure of the glove calibration process figure in Figure 1
shows the opposition rotation of thumb Rot joint. The step
(3) and (4) figures show the flexion of four finger MCP
and PIP joints, respectively. The step (5) and (6) figures
show the flexion of thumb IP and MCP joints, respectively.
The step (8) figure shows the abduction of ABD joints.
The dataset is based on 10 healthy subjects (24~27 years

old, 8 men and 2 women) grasping six typical objects
(3 shape × 2 size) in 27 relative positions (3X deviation × 3
Y deviation × 3Z deviation) within acceptable range which
was obtained in preexperiment. Within the grasp tolerance
range, subjects can successfully grasp objects.

2.1. Basic Analysis. As the first step of data analysis, in order
to basically understanding the distribution of each joint
angle across ten subjects, two repeats in a total of 3240
postures were averaged and a general matrix was created
containing all subjects’motion data; then, the general matrix
is decomposed to ten subject matrixes corresponding to each
subject. The rows of general matrix represent different grasp
conditions of 10 subjects, 1620 rows in total (10 subjects × 6
objects × 27 relative positions), while the rows of subject
matrix represent different grasp conditions of the corre-
sponding subject, 162 rows in total (6 objects × 27 relative
positions). Each joint angle was set in the corresponding col-
umns, 15 columns in total (4 for thumb (Rot, MCP, IP, and
T-ABD), 2 for each finger ðMCP, PIPÞ × 4 fingers, and 3 for
ABD between adjacent fingers (I-M/M-R/R-P ABD)). The
mean of each joint angle, maximum (Max), minimum
(Min), and motion range (Range) of each subject are calcu-
lated based on each subject matrix, then all averaged across
ten subjects to represent the general characteristics of each
joint angle. The skewness of each joint angle distribution is
presented based on the general matrix for understanding
the general distribution of all ten subject joint angles.

2.2. Correlation Analysis. The correlation analysis is imple-
mented in each two columns of general matrix; then, the
absolute values of the correlation coefficients are obtained
and arranged in the general correlation matrix. The column
and row both represent joint types in the order of thumb
(Rot, MCP, IP, and T-ABD), MCP of four fingers (I, M, R,
and P), PIP of four fingers (I, M, R, and P), and ABD joints
between four fingers (I-M, M-R, and R-P). The boxplots are
used to understand the general distribution of absolute
values to the correlation coefficients between joints, which
shows that the distribution to each joint is relatively scat-
tered. For further investigating motion correlations of finger
and joint type, the joints are arranged into the finger (T, I,
M, R, and P) and joint type (MCP, PIP, and ABD) unit. Cor-
relations between each joint in the unit and the other joints
were calculated and averaged. In this case, the finger and
joint type movement correlations are shown. For the finger

Table 3: Summary of hand kinematic synergies in previous studies.

Study Object types Grasp condition Process

Santello et al. [30] 57 Grasp imagined objects Static grasp

Mason et al. [31] 16 Reach-to-grasp for columnar objects Reach-to-grasp

Patel et al. [32] 25 Biometrics for secure identity verification Reach-to-grasp and static grasp

Park et al. [33] 8 Precision grasp for cylinder of different sizes Static grasp

Thakur et al. [34] 50 Haptic exploration Reach-to-grasp

Vinjamuri et al. [35] 20 Rapid grasping Reach-to-grasp

Jarrassé et al. [36] 9 Bimanual manipulation Reach-to-grasp
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unit, the thumb unit contained the corresponding Rot, MCP,
IP, and T-I ABD, while for the other four finger units (I, M,
R, and P), each finger unit contains the corresponding MCP
and PIP joints. For the joint type unit, MCP and PIP unit
contained four-finger MCP and PIP joints, respectively,
while the ABD unit contained four ABD joints between each
two adjacent fingers. According to the boxplot results of
each joint, we find that there is no obvious difference to
the mean and median of different joints. However, the max-
imum correlation coefficients to the joints in each finger can
be clearly discriminated, especially for thumb and four
fingers. Thus, we conducted statistics on the maximum
correlation coefficient to each joint of each subject. Taking
fingers as a unit, the maximum correlation coefficients and
the corresponding paired joints of each given finger to 10
subjects are analyzed to show the individual differences of
finger movement correlations. As such, if the differences
are not obvious, for example, the results of 10 subjects are
completely uniform, it indicates that the given finger motion
may completely be restricted by the inherent constraint in
musculoskeletal and neuromuscular architecture, and shows
the uniform motion mode. Conversely, if the differences are
obvious, it indicates that the given finger motion is more
dexterous with lots of motion modes that varied in different
subjects, and the corresponding motion are more complex.

2.3. Finger Independence Measure. Finger motion indepen-
dence is the reflection of hand neural and neuromuscular
architecture, which has been explored extensively [41], [47,
48]. We selected two representative investigations that con-
tained the human natural hand movement in unstructured
environment [41] and cortical sites encoding for each finger
movement [9], which are used to compare with our results
for inspecting whether human tolerance grasping has the

potentials in exploring neuromuscular control mechanism
of human natural grasping in laboratory.

Inspired by the previous study [41], in order to quantify
the finger independence, we use the linear regression to fit
each joint motion of the given finger as a function of the
joint motion of other fingers and ABD module. We calcu-
lated the percentage of the finger’s movements that were
unexplained by this linear fit. More specifically, we calcu-
lated the ratio of the variance to the residual of the linear
reconstruction to the total variance for the corresponding
finger. This yielded the unexplained variance percentage to
each finger for quantifying the independence of each digit’s
movements. As such, a value of 0% would indicate that the
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Figure 1: The grasped objects, acceptable range, Cyberglove calibration, and recording platform.

Table 4: Basic statistics of the joint angle for all subjects.

Joints Mean SD Max Min Range Skewness

T-Rot 66 19 118 -19 137 -0.65

T-MCP 12 6 48 -25 73 0.10

T-IP 13 6 100 -12 112 -0.07

T-ABD 36 3 44 19 63 -1.7

I-MCP 29 8 80 -6 86 -0.10

I-PIP 41 13 81 -2 83 -0.14

M-MCP 29 6 89 -20 119 0.27

M-PIP 43 12 78 9 87 -0.36

R-MCP 37 6 92 -12 104 0.48

R-PIP 36 7 82 2 80 0.29

P-MCP 37 9 94 -6 100 0.42

P-PIP 41 13 91 4 87 0.17

I-M ABD 18 4 43 -5 48 0.34

M-R ABD 24 4 50 3 47 0.42

R-P ABD 17 4 37 2 35 0.17
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movements of the particular finger could be completely pre-
dicted by linear reconstruction using the movements of the
other four fingers. Conversely, a value of 100% would indi-
cate that none of the movements of a particular finger could
be predicted from the other four fingers.

The thumb contained four joints: opposition rotation
(Rot) and the flexion/extension of MCP, IP, and T-ABD
joint; each finger of four fingers contained two joints: the
flexion/extension of MCP and PIP joint. As the ABD joints
in Cyberglove are set in the adjacent fingers, they cannot
correspond to each single finger and are divided into a single
ABD module. ABD joint module does not exist as a depen-
dent variable in linear regression. The general matrix is
divided into ten subject matrixes corresponding to each sub-
ject. The columns also represent the joint types the same as
the general matrix, while the rows only represent the grasp
conditions to the single subject and a total of 162 rows
(6 objects × 27 relative distances). The finger independence
is calculated in each subject matrix. In this case, the subject
mean and standard error (SE) are presented.

2.4. Postural Synergy Analysis. The principal component
analysis (PCA) is implemented to each subject grasp data

and normalized to allow intersubject comparisons of hand
motion patterns. The postural synergies are used to
efficiently represent the hand movement characteristics.
One-way ANOVA was performed to further quantitatively
test individual differences of hand movement characteristics.
Independent factors were subject (1-10). The dependent
variables were four principal components.

3. Results

3.1. Basic Statistics. The first analysis step is to basically
understand the joint angle distribution, as shown in
Table 4. The mean posture performs like a neutral position
(hand in a relaxed natural state so that the joints are mini-
mizing stress on the tendons, muscles, and skeletal system)
in our daily lives. The standard deviation indicates the
dispersion degrees near the mean value of each joint
movement. The thumb performs a large dispersion. The
movement is more complex, especially for the opposition
rotation (T-Rot) and interphalangeal (T-IP) joint (the only
two joints in which SD is larger than 30). The maximum
(Max), minimum (Min), standard deviation (SD), and
movement range (Range) to the most of joints in tolerance
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Figure 2: Correlation analysis of each joint movement for all subject data totally: (a) distribution of each joint correlation, (b) finger
movement correlation, (c) joint movement correlation, and (d) the highest correlation to finger/joint. T, I, M, R, and P represent the
thumb, index, middle, ring finger, and pinky; T-I, I-M, M-R, and R-P represent the ABD joint between the adjacent fingers from the
thumb-index finger to ring finger-pinky.
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grasping are generally larger than human natural grasp [41]
and some motion range investigation studies [49], especially
for thumb Rot and MCP and ABD between fingers (the
extreme joint angles induced by extreme gestures are shown
in the Electronic Supplementary Material (available here)),
which indicates that the tolerance grasping induces more
grasping postures that do not occur in nature grasping due
to the extreme condition. This will help reflect the hand
grasp ability more comprehensively, especially for under-
standing the musculoskeletal architecture and neural control
mechanism of the human hand. The skew of the angle distri-
bution indicates that in different grasp postures, whether the
joint is more often flexed (negative skew) or more often
extended (positive skew), the thumb, index, and middle fin-
gers are more often flexed, while the ringer finger and pinky
are more often extended. Thumb ABD (T-ABD) is more
often adducted (positive skew).

3.2. Motion Correlation Analysis. For the second analysis
step, the boxplots show the data distribution in 4 segments
between the minimum, the first quartile, median, third quar-
tile, and the maximum, which is used to show the correla-
tion coefficient distribution to each joint for all 10 subjects,
as shown in Figure 2(a). It can be seen from the figure that
the distribution is relatively scattered and medians to the

absolute values of the correlation coefficients of each joint
are near 0.2. No obvious difference was shown between differ-
ent joints. In addition, taking the finger or joint types as the
unit, we calculated the mean correlation coefficients based
on the general correlation matrix, as shown in Figures 2(b)
and 2(c). Similar to the medians in Figure 2(a), no obvious dif-
ference was shown to different fingers and joint types.

As shown in Figure 2(a), the correlation coefficient dis-
tribution of the four-finger MCP and PIP joints is obviously
more scattered, due to the obviously larger value of the max-
imum correlation coefficients, which shows that the obvious
difference occurred across the four fingers, thumb, and ABD
joints. Therefore, the results indicate that the maximum cor-
relation coefficients have a higher statistical significance
compared with the mean and median. In fact, the maximum
correlation coefficient is also more practical, such as for
inspiring the mechanical design and control of the robotic
hand. In this case, taking the finger as the unit, the maxi-
mum correlation coefficient of each finger that contained
joints is shown in Figure 2(d), which shows that the thumb
maximum correlation coefficient is significantly lower than
the other four fingers.

In order to clearly clarify the individual differences for
the joint pair of the highest correlation, taking the finger as
the unit, we investigated the joint pair of the highest
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Figure 3: Paired joints with the highest correlation coefficients in each finger for each subject and the highest correlation coefficients in each
finger across ten subjects.
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correlation in each particular finger, as shown in Figure 3.
The individual differences reflect the individual grasp habits.
The larger individual differences mean the finger movement
is less limited by the hand inherent neuromuscular architec-
ture. The finger movement is more complex. Higher consis-
tency means the general grasp habits and limitation of the
inherent neuromuscular architecture. It can be seen from
Figure 3 that the consistency of the thumb was the lowest.
The 10 subjects showed 5 different joint pairs. The thumb
side joint in each joint pair is more consistent. Nine of ten
subjects showed the opposition rotation joint. The corre-
sponding joints are mainly distributed in MCP joints of
the middle and ring finger. This indicates that the thumb
often performs the opposition rotation with the palm and
fingers when the middle and ring fingers are flexed. In addi-
tion, the joint pair of the pinky, middle, and index finger
performs a relative consistent distribution across ten sub-
jects, which mainly shows the high movement correlation
between adjacent fingers, while for ring finger, the highest
correlation paired joints are approximately equally distrib-
uted in the middle finger (5 subjects) and pinky (4 subjects).
It shows that ring finger movement generally performs the
combined movement with middle finger and pinky.

Moreover, we find five high correlation joint pairs, which
are expressed in the form of ðx, yÞ and mean that the largest
correlation joint with the x joint is all y joints for all ten sub-

jects. These joint pairs showed complete consistency across
10 subjects, showing the high consistent motion correlation
relationship. The five high correlation joint pairs are found
as follows: (I-MCP, M-MCP), (M-MCP, R-MCP), (P-MCP,
R-MCP), (I-PIP, M-PIP), and (P-PIP, R-PIP), shown in
Table 5 of discussion part.

3.3. Finger Independence Analysis. As shown in Figure 4, the
vertical axis of variance unexplained is the independence
metric in our research and the selected research of natural
hand movement in unstructured environment [41], while
the Penfield size represents the number of cortical sites
encoding for each finger movements (from the only electro-
physiology study of neuron populations corresponding to
each finger movement [9]). It can be seen from the figure
that tolerance grasping shows a similar distribution trends
of finger independence with hand natural movement in
unstructured environment and cortical representation of
each finger movement. A parabola distribution with high
on the two sides and low on the middle is presented. The
thumb is the most independent digit, while the index finger
is the most independent finger across four fingers, and the
ring finger is the least independent digit. This is consistent
with hand natural movement [41], and the results have a
strong correlation (r = 0:98, S1_Fig of Electronic Supple-
mentary Material (available here)) with the results from

Table 5: Verification of coupling actuation configuration.

Coupling actuation module Motion scheme
Verification through the actual motion of our

finger

(P-PIP, R-PIP)

(M-MCP, R-MCP)

(P-MCP, R-MCP)

(I-MCP, M-MCP)

Active motion joint Passive coupling joint
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hand natural movement in the unstructured environment
outside the laboratory. This may indicate that after consider-
ing the influence of object shape, size, and relative positions,
the tolerance grasping can be seen as a laboratory-based
unstructured environment that seems to be able to efficiently
represent the unstructured natural grasping outside of a lab-
oratory setting. In order to clarify the difference of the inde-
pendence results between tolerance grasping and natural
movement, the residuals between independence metrics of
grasp conditions (tolerance grasping and natural movement)
and cortical representation of finger movement according to
Figure 4 are presented in Figure 5. It can be seen from the
figure that the residuals of tolerance grasping are obviously
smaller than those of natural movement, especially for the
thumb, index, and middle finger.

3.4. Postural Synergy Analysis. The PCA can estimate the
dimensionality of hand movements. Figure 6 shows that
the first two postural synergies (PC1~PC2) can explain
much of total posture variance (79% ± 4:6%), while for first
four postural synergies (PC1~PC4), they can explain 93%
± 1:5%variance information, which indicates that tolerance
grasping can be reconstructed accurately by the first four
PCs. In our previous study of extracting on all subjects’ data
simultaneously [44], we demonstrated that the first two PCs
of tolerance grasping can only explain the information less
than 65%. This is obviously lower than other studies of hand
kinematic synergies in Table 3 (~80% in grasp imagined
objects [30], ~99% in reach-to-grasp for columnar objects
[31], ~99% in precision grasping for cylinder of different size
[33], ~70% in haptic exploration [34], ~80% in rapid grasp-
ing [35], and ~88% in bimanual manipulation [36]). This
indicates that the amount and dimension of information in

tolerance grasping is increased as the simultaneous consider-
ation of relative position, object shape, and size. These results
quantitatively demonstrated that the tolerance grasping can
represent human grasp functionality more comprehensively.

Figure 7 shows the first four principal components of
each subject. The principal components were normalized
to allow intersubject comparison. It can be seen from the
figure that PC1-PC4 keep the consistency across all ten sub-
jects, especially for PC1 and PC2. The one-way ANOVA is
performed to further quantitatively test individual differ-
ences, and the result shows that there was no significant
difference in the postural synergy of the 10 subjects
(F ð9,140Þ = 0:49, P = 0:88 for PC1; F ð9,140Þ = 0:62, P =
0:78 for PC2; F ð9,140Þ = 1:22, P = 0:29 for PC3; and
F ð9,140Þ = 1:58, P = 0:13 for PC4). Therefore, the com-
mon pattern of grasping behavior was found and character-
ized by the mean value of postural synergy across 10
subjects, as shown in Figure 8. PC1 mainly reflects the similar
degree of extension-flexion of four-finger MCP and PIP joints
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Figure 4: Analysis of the finger movement independence in
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and the reverse motion between thumb Rot and IP joint,
accounting for 55:3% ± 7:2% of the variance. PC2 explains
17:7% ± 4:6% of the variance and mainly reflects the reverse
motion between adjacent fingers of four fingers and thumb
IP joint motion. PC2 can reflect the finger independence
motion and perform the posture diversity accompanying with
other PCs. PC3 and PC4 explained 9:0% ± 1:9% and 5:7% ±
1:0% of the variance and mainly perform small range of
motion to the five finger joints.

4. Discussion

The objective of this study is to provide a comprehensive
and quantitative understanding of hand grasp functionality
in detail and further clarify the applications in multiple
areas, such as neuroscience, rehabilitation, and robotics.
The results are only partially in accordance with previous
studies, showing a similar distribution trend of finger inde-
pendence and dimensionality reduction ability of kinematic
synergies. However, the novel and general experimental par-
adigm, detailed statistical analysis, and novel results can
contribute to a more comprehensive and much clearer clar-

ification of human grasp functionality, which can facilitate
applications in neuroscience, rehabilitation, and robotics.

The novelty of this study include the following: first, the
relative position between the hand and object is given a par-
ticular attention (a general and essential influence factor in
daily grasping, highly representative and direct indicator
for understanding human grasp); second, comprehensive
representation of hand grasp functionality (extensive investi-
gations from multiareas, hand-centric consideration of three
main influence factors, and number of grasp types); third,
comprehensive understanding of hand grasp functionality,
due to the detailed data analysis including basic statistics,
motion correlation, independence, and postural synergy;
fourth, the common pattern of grasping behavior was found
and characterized by the mean value of postural synergy
across 10 subjects; and fifth, a novel correlation analysis of
hand joints (individual difference of the highest correlation
joint pair in each particular finger).

For human grasp, we extensively investigated the related
studies from grasp classification, human grasp kinematics,
hand kinematic synergies, and unstructured grasping. These
studies support to establish a general experiment paradigm
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for efficiently representing human grasp more comprehen-
sively with a hand-centric consideration. In this study, we
established a tolerance grasping paradigm. Three general
influence factors of human daily grasping are simultaneously
considered including relative position, object shape, and size
in order to represent human grasp functionality more com-
prehensively. In terms of grasp type consideration, this study
considered 3240 grasp types (10 subjects × 6 objects × 27
relative distances × 2repeats) performed by 10 subjects. Each
subject performed 324 different grasp types (6 objects × 27
relative distances × 2repeats) that are much larger than
6~33 grasp types [11–19] (Table 1) of grasp classification
studies and 9~57 object grasping of hand kinematic syner-
gies [30–36] (Table 3) in order to provide a more compre-
hensive understanding of grasp functionality. In addition,
the results of joint angle distribution and variance explained
by PCs supported that tolerance grasping can represent
hand grasp functionality more comprehensively. Firstly,
the basic statistics indicates that the extreme condition of
tolerance grasping induces more grasping postures that do
not occur in nature grasping. The Max, Min, SD, and move-
ment range of tolerance grasping are generally larger than
natural movement [41]. Secondly, the postural synergy
results indicate that the number of synergies that required
explaining grasp variance is obviously larger than other
studies [30–36], as the simultaneous consideration of rela-
tive position, object shape, and size.

The individual difference of the highest correlation
paired joint can clarify the general finger and joint motion
correlation across subjects. The results indicate that thumb
opposition rotation correlates well with the flexion of the
middle and ring finger, while ring finger movement gener-
ally performs the combined movement with the middle fin-
ger and pinky. In addition, five high correlation joint pairs
are firstly found and showed complete consistency across

10 subjects with the highest correlation. Five joint pairs con-
tained (P-PIP, R-PIP), (M-MCP, R-MCP), (P-MCP, R-
MCP), (I-PIP, M-PIP), and (I-MCP, M-MCP). The five joint
pairs are extensively distributed in MCP and PIP adjacent
joints of four fingers, which is consistent with previous stud-
ies indicating the high correlation in MCP and PIP adjacent
joints of four fingers [30, 41]. Four of them can be verified by
our actual movement as shown in Table 5. When we try to
independently flex the active motion joint within the
coupling actuation module, the passive coupling joint will
be coupling driven involuntarily.

The postural synergies are used to efficiently represent
the hand movement characteristics. Figure 7 shows that
PC1-PC4 keep the consistency across all ten subjects. The
one-way ANOVA further verified that there was no signifi-
cant difference in the postural synergy of the 10 subjects.
Therefore, the common patterns of grasping behavior were
found and characterized by the mean value of postural syn-
ergy across 10 subjects. Finger independence analysis results
indicate that tolerance grasping has potential advantages in
exploring the neuromuscular control mechanism of human
grasping. Figure 4 indicates that tolerance grasping shows a
similar distribution trends of finger independence with hand
natural movement in unstructured environment and cortical
representation of each finger movement. Figure 5 shows that
the independence results of tolerance grasping are closer to
cortical representation investigation results than those of
natural movement, due to the fact that the variance of finger
movements of natural grasp is significantly smaller than that
of the tolerance grasping because fingers are in the rest state
most of time in natural unstructured environment [41],
which will increase the unexplained variance percentage of
Figure 4. Moreover, the extreme condition of tolerance
grasping can induce more grasp postures (the Max, Min,
SD, and movement range of each joint are generally larger
than natural movement [41]) that do not occur in nature
grasping. These results indicate that the tolerance grasping
can filter out the disturbance of the rest state and induce
more grasp postures that contained the particular grasp in
extreme condition. Therefore, tolerance grasping provides
an efficient experimental paradigm that can more accurately
represent hand neuromuscular architecture and control
mechanism. Furthermore, the finger independence in toler-
ance grasping correlates well with cortical representation
size of finger movement (r = 0:96, S2_Fig of Electronic
Supplementary Material (available here)). All of these dem-
onstrated that the tolerance grasp can help explore the neu-
romuscular control mechanism of hand grasp. Therefore,
there are three potential advantages that the tolerance grasp
is used to explore the hand neuromuscular control mecha-
nism: (1) it can efficiently represent the unstructured natural
grasping outside of a laboratory setting, which helps reveal
the general neuromuscular control mechanisms rather than
to each specific experimental scenarios; (2) the laboratory-
based feature, which will facilitate the simultaneous use of
large medical imaging equipment (e.g., fMRI and MEG)
and motion capture equipment; and (3) more accurate
representation of hand neuromuscular architecture and con-
trol mechanism.
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Figure 8: Movement characteristics along PC1~PC4.
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5. Conclusion

In order to represent hand movement functionality more
comprehensively, object shape, size, and relative positions
are considered in our research. The results of basic analysis
and variance explained by PCs supported that the tolerance
grasping can represent human movement functionality
more completely. Four synergies are found and account for
>93% of the overall variance. The common pattern of grasp-
ing behavior was found and characterized by the mean value
of postural synergy across 10 subjects. The independence
analysis result shows the potential of tolerance grasping for
exploring the more accurate neuromuscular control mecha-
nism of human grasping. Both the literature survey and the
experimental results in this paper support that the analysis
results of tolerance grasping should be more representative
to provide a more comprehensive understanding of hand
grasp functionality. The analysis of this paper can serve
many domains, such as neuromuscular control mechanism
exploration, hand functionality rehabilitation, exoskeletons,
prosthetic hand design and control, and packaging design
of necessaries and products.
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