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Abstract
RYR2 mutation is clinically frequent in non‐small cell lung cancer (NSCLC) with its
function being elusive. We downloaded lung squamous cell carcinoma and lung adeno-
carcinoma samples from the TCGA database, split the samples into RYR2 mutant group
(n = 337) and RYR2 wild group (n = 634), and established Kaplan‐Meier curves. The
results showed that RYR2 mutant group lived longer than the wild group (p = 0.027).
Weighted gene co‐expression network analysis (WGCNA) of differentially expressed
genes (DEGs) yielded prognosis‐related genes. Five mRNAs and 10 lncRNAs were
selected to build survival prognostic models with other clinical features. The AUCs of 2
models are 0.622 and 0.565 for predicting survival at 3 years. Among these genes, the
AUCs of DKK1 and GS1‐115G20.1 expression levels were 0.607 and 0.560, respectively,
which predicted the 3‐year survival rate of NSCLC sufferers. GSEA identified an asso-
ciation of high DKK1 expression with TP53, MTOR, and VEGF expression. Several
target miRNAs interacting with GS1‐115G20.1 were observed to show the relationship
with the phenotype, treatment, and survival of NSCLC. NSCLC patients with RYR2
mutation may obtain better prognosis by down‐regulating DKK1 and up‐regulating GS1‐
115G20.1.
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1 | INTRODUCTION

Globally, the number of lung cancer cases and deaths is
increasing, with GLOBOCAN statistics in 2018 showing
approximately more than 2 million new cases of lung cancer,
reported to hold 11.6% of all cancer types, and 1.76 million
deaths, accounting for 18% of all cancers [1]. Despite the
availability of surgery, chemotherapy, and targeted drug
therapy [2], the overall survival (OS) of lung cancer is still
disappointing, with a survival rate at 5 years of only 19.4%
[3]. Non‐small cell lung cancer (NSCLC) is the highest
prevalent subtype reported to take up 85% of total lung
cancers [4]. Depending on the different pathological features,
NSCLC can be further classified into three types: squamous
cell carcinoma, adenocarcinoma, and large cell carcinoma. In
NSCLC cells, there are a large number of genetic and
epigenetic alterations [5], which have an important impact on
the pathogenesis and progression of NSCLC. Understanding
the somatic genetic mutations and transcriptome changes of
NSCLC is of great significance for improving the prognosis
of NSCLC.

Many cancer genetic studies have identified frequent
mutations in the genes that encode extremely large protein
molecules in cancer cells, and these mutated genes include
TTN, RYR2, RYR3, MUC16, MUC4, and DNAH5 [6]. In
order to study human cancers at the gene and transcriptional
product level, numerous public databases from large patient
cohorts have been created to identify various biomarkers
related to cancer pathogenesis, progression and therapeutic
responses [7, 8]. By analysing public data, we found that
RYR2 mutation is a clinically frequent variant in NSCLC.
Ryanodine receptor two protein, encoded by the RYR2 gene,
is predominantly distributed in heart and involved in
excitation–contraction coupling [9], whose mutations are
mainly associated with a range of myopathies and arrhythmias
[10]. Although RYR2 polymorphisms have been confirmed
for underlying functions in three different regions or “hot-
spots” of the coding sequence, the study of its assumed
function in cancers is still in its initial stages and further
studies are expected [11]. Schmitt, K et al. found differential
promoter methylation status and expression level of RYR2 in
head and neck tumor, suggesting that reduced expression of
RYR2 in adjacent tissues and precancerous lesions may
potentially indicate poor survival and impending malignancy
[6]. In oesophageal cancer, the RYR2 mutation upregulated
signalling pathways involved in the immune response and
enhanced anti‐tumor immunity [12]. The RYR2 rs12594
mutation (occurring in the 30‐UTR) also significantly reduced
the risk of developing breast cancer [13]. Nevertheless, its
role in NSCLC is currently unknown.

Long non‐coding RNAs (lncRNAs), a type of RNA
molecule composed of over 200 nucleotides, are structurally
similar to messenger RNAs but not translated into proteins
[14, 15]. The main ways in which lncRNAs perform bio-
logical functions in disease include: RNA decoy, miRNA
sponge, constituting RNP, recruiting chromatin modifier as

well as influencing transcription, splicing and degradation of
mRNA [16]. More and more evidences have shown that
lncRNAs are disordered in human cancer [17]. Yang et al.
demonstrated that NSCLC cells with up‐regulated lncRNA
GACAT3 expression have increased the resistance of tumor
cells to radiotherapy [18], while Shi’s group uncovered that
down‐regulated GAS5 expression in NSCLC suggested poor
prognosis [19]. Although there is no lncRNA specifically
associated with NSCLC, the crucial functions which lncRNAs
play towards the diagnosis, treatment and prognostic evalua-
tion of NSCLC are emerging [16].

In this study, we used a series of bioinformatical tools to
construct risk prognostic models of mRNAs and lncRNAs
in NSCLC with RYR2 mutations. For the first time, sig-
nificant associations of high DKK1 or low GS1‐115G20.1
expressions with the poor outcomes of NSCLC in the
presence of RYR2 mutations were uncovered, and a sig-
nificant negative correlation was identified between the
expression of DKK1 and GS1‐115G20.1 in RYR2 mutated
NSCLC.

2 | MATERIALS AND METHODS

2.1 | Sample preparation and preprocessing

Genomic and transcriptomic data was retrieved from the lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC) files which are documented in the Cancer Genome
Atlas (TCGA) on the UCSC Xena platform (https://xenab-
rowser.net/). Samples with no survival status or survival time
were removed from our study, while the samples with both
genomic and transcriptomic data were retained. According to
the mutation data detected by the Varscan2 software [20],
those containing RYR2 sense mutations were classified as the
mutant group, while those without RYR2 sense mutations
were classified as the wild group. We used Kaplan‐Meier
curves to analyse survival differences between the RYR2
mutant and wild groups and included age, gender, TNM
classification of the tumour, disease diagnosis (LUAD or
LUSC) and tumour stage as covariates to reduce the effect of
confounding factors.

2.2 | Identification of differentially
expressed genes (DEGs) and functional
enrichment analysis

Differentially expressed mRNAs (DEmRNAs) and lncRNAs
(DElncRNAs) were analysed by R package “edgeR” between
the RYR2 mutant group (n = 337) and RYR2 wild group
(n = 634), the DEmRNAs and DElncRNAs with adjusted p
values less than 0.05 were retained [21, 22]. Gene Ontology
(GO) analysis [23, 24] and Kyoto Encyclopaedia of Genes and
Genomes (KEGG) pathway enrichment analysis were run for
differential mRNAs with R package “clusterProfiler” [24].

44 - REN ET AL.

https://xenabrowser.net/
https://xenabrowser.net/


2.3 | Weighted gene co‐expression network
analysis (WGCNA)

The modules of co‐expressed differential mRNAs and
lncRNAs were identified by R package “WGCNA” [25, 26].
First, a suitable soft threshold β = 6 was calculated. Then,
average linkage hierarchical clustering was realised on a
dendrogram as a result of DynamicTreeCut analysis based on
a Topological Overlap Measure (TOM)‐based dissimilarity
matrix. A minimum threshold of 40 was set to group the
genes of similar expression pattern into the same modules.
Module eigengenes (MEs) were calculated, and then the
modules were analysed by clustering, and the closer modules
were merged into new modules by setting height = 0.5. To
determine the association with clinical traits, gene signifi-
cance (GS) for each module was computed, and higher GS
indicated genes with more biologically significant association
with clinical features. Module‐gene significance (MS) de-
scribes the relationship between module gene expression
profiles and MEs. Then, MEs were correlated with different
clinical features to identify the modules associated with
prognosis [27].

2.4 | Risk prognostic model based on
multivariate COX proportional hazard model

For DEGs, univariate regression analysis with p < 0.05 was
used as a filter to identify prognosis‐related mRNAs and
lncRNAs by combining clinical information. The mRNA
genes and lncRNA genes associated with prognosis were
screened by the least absolute shrinkage and selection oper-
ator (Lasso) Cox penalised regression model. Corresponding
coefficients were obtained, and risk prognostic models of the
identified mRNAs and lncRNAs were constructed according
to the expression levels and coefficients of these genes. Ac-
cording to the models, each patient was scored and then
defined as high and low risk by taking the median score as
the threshold. Differences in survival rates between the two
cohorts were analysed. Time‐dependent receiver operating
characteristic (ROC) curves were drawn to determine the
predictive performance of risk score one and risk score two
on the survival of NSCLC patients at 3 years. To further
investigate the reliability of the mRNA prediction model, we
downloaded the data of the other article for external vali-
dation of the 3‐year survival rate [28].

2.5 | Analysis of crucial DEmRNA DKK1
and DELncRNA GS1‐115G20.1

Multivariate Cox regression models were constructed to vali-
date whether the crucial DEmRNA DKK1 and DElncRNA
GS1‐115G20.1 are prognostic factors independent of other
clinical factors. Statistical significance was defined when
p < 0.05. According to TP53 mutation, the samples were split
into the TP53 mutant group and wild group. Thereafter,

expressions of DKK1 and GS1‐115G20.1 in both groups were
compared. Median expression‐based grouping was then per-
formed to classify patients into high and low expression
groups, and Kaplan‐Meier curves were plotted to compare
their survival. ROC analysis was run to evaluate the predictive
accuracy of DKK1 and GS1‐115G20.1 on 3‐year survival in
NSCLC.

The transcriptomic data were processed by GSEA software
based on the high and low DKK1 expression in the samples
[29]. The DEGs between the high and low expression groups
of DKK1 were analysed by the R package “edgeR”, and then
the DEGs list was annotated by DAVID [30]. To identify the
transcription factors (TFs), the DEGs in high and low DKK1
expression groups were analysed by R package “edgeR”, and a
total of 1485 DEGs were obtained with the condition that
p < 0.05 and |log2(FC)|≥ 0.8. The list of DEGs was anno-
tated by DAVID (module UCSC_TFBS of function Protei-
n_Interactions), and the filtering condition was p < 0.05. In
this way, we can use the UCSC database collection of TFBS
(transcription factor binding sites) to understand which tran-
scription factors the genes are enriched to.

To further investigate DElncRNA GS1‐115G20.1, we
used the StarBase v2.0 database [31] for the competing
endogenous RNAs (ceRNAs) of C1ORF21, which took the
top 20. The correlation of C1ORF21, GS1‐115G20.1 and
ceRNAs expression was performed separately based on the
data obtained from this analysis. The Custom Prediction
function of the miRDB database (http://www.mirdb.org/)
was consulted to show the possible miRNA targets of GS1‐
115G20.1 [32].

2.6 | Ethical statement

Not applicable.

2.7 | Statistical analysis

Statistical tests and plots were completed on R and GraphPad
Prism 7.04. A difference of statistical significance was defined
at p < 0.05. In the graph, *p < 0.05, **p < 0.01, **p < 0.001,
***p < 0.0001.

3 | RESULTS

3.1 | Survival analysis of the RYR2 mutant
group and wild group

Figure 1 shows the workflow of the whole study. Totally, 971
analysable NSCLC samples were obtained by the UCSC Xena
database retrieval (Table S1), which were split into the RYR2
mutant group (n = 337) and the wild group (n = 634)
(Table 1). See Table S2 for a comparison of the clinical char-
acteristics of the two groups of patients. Between‐group
comparison for survival was implemented, and it was
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demonstrated that the OS of the RYR2 mutant group was
longer than that of the RYR2 wild group (HR = 0.778 95%
CI = 0.625–0.969) (Figure 2a), with the statistical significance
as indicated in the logarithmic rank test (p = 0.025).

3.2 | DEmRNAs and DElncRNAs between
the RYR2 mutant group and wild group

The DEmRNAs and DElncRNAs between the RYR2 muta-
tion and wild group were screened by using R package “edgeR”
on 971 patients genomic and transcriptomic data. With
p < 0.05, 9271 DEGs were obtained in total, composed of
5346 DEmRNAs and 3925 DElncRNAs (Table 2). Compared
with the wild group, the mutant group had 2702 up‐regulated
and 2644 down‐regulated mRNAs, with significantly reduced
transcription of RYR2 (logFC = −0.376 p = 4.43e‐4)
(Figures 2b,c. Table S3); besides, 2168 and 1857 lncRNAs were
differentially up‐regulated and down‐regulated, respectively, in
the mutant group (Figures 2d,e, Table S4).

Functional enrichment analysis of DEmRNAs was per-
formed by R package “clusterProfiler”. GO annotation showed
that DEmRNAs were mainly associated with nuclear division,

organelle division, transmembrane transport complex, and
metal ion transmembrane transport activity (Figure 3a–c,
Table S5). Additionally, KEGG pathway enrichment analysis
revealed that the genes of DEmRNA were predominantly
involved in neuroactive ligand‐receptor interaction, comple-
ment and coagulation cascades, cAMP signalling pathway,
adrenergic signalling in cardiomyocytes, cell cycle and other
pathways (Figure 3d, Table S6).

3.3 | Construction of co‐expression network
to identify prognosis‐related modules

DEmRNAs and DElncRNAs were projected onto a weighted
co‐expression network with the R package “WGCNA”, and
then the modules obtained were clustered into 24 modules in
total (Figure 4a), with the module sizes ranging from 52 to
2208 genes (Table 3). Independent genes were clustered into
grey modules which were excluded from this analysis. The
topological overlap of co‐expressed genes in each module was
shown in the DEGs heat map (Figure 4b), and the relationship
of the 24 co‐expression modules was shown in the eigengene
adjacency heat map (Figure 4c). Pearson correlation co-
efficients were calculated for the MEs. The numbers displayed
in each small cell are the coefficients that reflect the association
between the gene modules and the corresponding clinical
factors, and the numbers in parentheses indicate the p‐value. In
Figure 4d, we can conclude significant associations of the blue
and light green modules with one‐year survival and the red
module with OS; hence, genes from these three modules were
selected for further analysis.

F I GURE 1 Workflow chart of the study

TABLE 1 NSCLC samples based on RYR2 mutation/wild grouping

No. of pts. RYR2 MUT RYR2 WT

LUAD 491 171 320

LUSC 480 166 314

Abbreviations: NSCLC, non‐small cell lung cancer; LUAD, lung adenocarcinoma;
LUSC, lung squamous cancer; pts, patients; MUT, mutation; WT, wild type.
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F I GURE 2 Overall survival and DEGs of RYR2 mutant group and wild group. (a) Kaplan‐Meier curve comparison of survival times between RYR2 wild‐
type and mutant groups. (b, c) volcano plot (b) and heat map (c) of DEmRNAs obtained by “edgeR” analysis. (d, e): volcano plot (d) and heat map (e) of
DElncRNAs obtained by “edgeR” analysis. DEGs, differentially expressed genes; DElncRNAs, differentially expressed lncRNAs; DEmRNAs, differentially
expressed mRNAs; FC, fold change; FDR, false discovery rate; RYR2 WT, RYR2 wild‐type; RYR2 MUT, RYR2 mutant
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3.4 | Univariate regression analysis to screen
prognosis‐related genes in blue, light green,
and red modules

For DEGs, univariate regression analysis with p < 0.05 as the
filtering condition was used to screen a total of 77 prognosis‐
related genes from blue, light green and red modules, including
57mRNAs and 20 lncRNAs (Table S7), and the significance was
selected for forest plotting from the top 15 (Figure 5a). With the
median expression of prognosis‐related genes in all samples
considered, the samples were grouped into high and low
expression cohorts, and survival conditions were analysed using
R package “survival”. Among them, 13 genes were differentially
expressed with statistically significant differences in OS, and the
Kaplan‐Meier curves were shown (Figure 5b–e and Figure S1).

3.5 | Risk prognostic model of mRNA

The 57 prognosis‐related mRNAs obtained by univariate
regression analysis were put into a Lasso regression model, and

12 mRNAs were selected according to the parameter Lambda
value, with Lambda.min. The minimum value was used as the
threshold (Figures S2a–b), and then the Cox penalty regression
model was used to reduce the dimension and finally screened a
linear risk score model consisting of 5 mRNA genes associated
with survival: risk score 1 =

P
ðcoefficient � expression level

of mRNAÞ = (−4.27e‐3*RAB44) + (−5.11e‐4*GNG7)
+ (1.61e‐4*RASA3) + (−1.26e‐3*CD200R1) + (3.69e‐
5*DKK1).

All samples were assigned a score and defined as high‐ and
low risk based on the median risk score 1 value as the cutoff.
Figure 6a shows the expression of 5 prognosis‐related mRNAs
in two cohorts. Figure 6b shows the survival time in two
groups, and Figure 6c shows the heat map which reflects the
expression of the 5 genes in the risk model in different risk
score 1, diagnoses, and genders. The Kaplan‐Meier curve
shows the lower OS of the high‐risk patients compared with
the low‐risk group (Figure 6d); meanwhile, the area under the
ROC curve (AUC) for the survival rate at 3 years was 0.622,
indicating the favourable predictive ability of the risk model
(Figure 6e).

Risk score 1 was combined with the age, gender, tumour
stage, presence of EGFR mutation, type of diagnosed disease,
smoking history, tumour location, and clinical factors of radi-
ation therapy in a multivariate Cox regression model. Age,
tumour stage, radiation therapy and risk score 1 were deter-
mined as independent predictive factors for OS, while risk
score 1 possessed a stronger impact on survival (Figure 6f). In
order to facilitate the utilisation of risk score 1, a nomogram

TABLE 2 Differentially expressed mRNAs and lncRNAs

DEGs Up Down

mRNA 5346 2702 2644

lncRNA 3925 2168 1757

Abbreviation: DEGs, differentially expressed genes.

F I GURE 3 The most enriched GO terms and KEGG pathways of DEmRNA. (a, b, c) GO functional enrichment analysis annotated DEmRNA in terms
of BP (a), CC (b), and MF (c), respectively. (d) KEGG pathway analysis. The X‐axis displays the number of genes activated in each pathway. BP, biological
process; CC, cellular component; KEGG, Kyoto encyclopaedia of genes and genomes; MF, molecular function
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was plotted (Figure 6g). The results of the external validation
showed that the area under the ROC curve for 3 year survival
had an AUC of 0.595 and this model had acceptable predictive
power (Figure S3).

3.6 | Risk prognostic model of lncRNA

The 20 lncRNAs with prognostic related genes obtained by
univariate regression analysis were first analysed by Lasso

F I GURE 4 Network construction and module‐trait relationships of co‐expressed genes. (a) Clustered dendrograms and co‐expression network modules
generated by topologically overlapping DEGs based on average linkage hierarchical clustering. Each branch in the tree diagram represents a gene. Euclidean
distances are highly depicted. Each colour indicates a different co‐expression module. (b) Heat map of topological overlap. Yellow areas represent high levels of
topological overlap. (c) Heat map of feature gene adjacency. The heat map shows the correlation between different co‐expression modules. (d) Module‐trait
relationship. Each row is a specific module and each column is a clinical feature. The R2 and p values (in parentheses) for the Pearson correlations of modules
with clinical traits were shown in the squares. Gradient colour ranging from −1 to 1 represent the R2‐values of Pearson correlations. ME, module eigengene; OS,
overall survival
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regression analysis (Figures S2c–d), and 10 lncRNAs were
selected by the threshold parameter, Lambda.min (Figure 7a),
which constitutes a linear risk assessment model associated
with survival. The lncRNA risk score model is risk score 2 =P
ðcoefficient � expression level of lncRNAÞ = (−3.86e‐4*LI

NC00402) + (−7.83e‐3*AC007880.1) + (−1.74e‐3*LINC013
52) + (−7.58e‐4*RP11‐354E11.2) + (−3.28e‐3*RP11‐374F3.5)
+ (−6.46e‐4*AC018647.3) + (−5.75e‐4*HLA‐DQB1‐AS1)
+(−3.45e‐2*GS1‐115G20.1) + (−4.34e‐3*SMCR5) + (−2.00e‐
3*RP11‐357N13.6).

Similarly, all samples were assigned into high‐ and low‐risk
cohorts (cutoff: risk score 2). Figure 7b demonstrates the
change in risk values; Figure 7c demonstrates the survival dif-
ference; Figure 7d carries out the expression of 10 genes in the
two cohorts, the diagnostic outcome, and the gender subgroup.
Survival curves (Figure 7e) indicated that the OS rate of patients
with high‐risk was lower; meanwhile, the AUC value was 0.565,
suggesting that the model had certain predictive accuracy in the
prognosis of NSCLC patients (Figure 7f).

Risk score 2 was combined with the age, gender, tumour
stage, presence of EGFR mutation, types of diagnosed disease,
smoking history, tumour location, and clinical factors of radi-
ation therapy in a multivariate Cox regression analysis. Age,
tumour stage, radiation therapy and risk score two were
observed to be the predictive factors for OS in an independent
manner, while the prognostic performance of risk score two
was much greater (Figure 7g). Similarly, the nomogram was
plotted (Figure 7h).

3.7 | Crucial prognosis‐related mRNA gene
DKK1 is an independent prognostic factor and
correlated with the expression of TP53,
MTOR, VEGF

The mRNA genes included in the risk score 1 were analysed.
There were five mRNA genes in the mRNA‐based risk

prognostic model, and only one gene, DKK1, was carried out
with survival significance between high and low expression
groups (Figure 5b). DKK1, therefore, was selected for the
study and then observed to present increased expression in
the TP53 mutation group compared with the wild group with
a statistically significant difference (Figure 8a). The AUC
value was 0.607 using high and low DKK1 expressions to
predict survival at 3 years of NSCLC cases (Figure 8b). With
clinical information considered, multivariate analysis by Cox
regression identified DKK1 as an independent prognostic
factor (Figure 8c). Additionally, GSEA analysis found that the
differential genes in the high and the low DKK1 expression
groups were related to the expression of mTOR, VEGF and
TP53 (Figure 8d).

With regard to the regulation network of mRNA‐TFs, 911
DEGs were of decreased expression and 574 DEGs were of
increased expression (Table S8). The DEGs which were
enriched in these TFs were: CHX10, S8, E47, LHX3, CREL,
AP1 and HNF3B. The top 18 TFs associated mRNAs with
greater |log2(FC)| were selected for the regulatory network
mapping (Figure 9).

3.8 | Crucial prognosis‐related lncRNA
GS1‐115G20.1 is an independent prognostic
factor, associated with the expression of
C1ORF21, multiple target miRNAs, and
DKK1

The lncRNA genes in the risk score 2 were analysed, and the
patients were assigned into high and low expression groups
on the basis of median lncRNA expression values. GS1‐
115G20.1 was identified to be of survival significance at a
higher degree (Figure 5c); GS1‐115G20.1, therefore, was
selected for the study. TP53 mutation group witnessed a
downward trend of GS1‐115G20.1 expression compared with
the wild group characterised by a statistically significant dif-
ference (Figure 10a). The expression level of GS1‐115G20.1
was used to predict the 3 year survival rate of NSCLC cases
with AUC = 0.560 (Figure 10b). Combined with the clinical
information, multivariate Cox regression analysis showed that
GS1‐115G20.1 was a prognostic factor independent of other
variables (Figure 10c).

The correlation analysis by C1ORF21, GS1‐115G20.1
and ceRNAs of C1ORF21 expression showed that the cor-
relation coefficients were between −0.033 and 0.423
(Figure 10d), and the correlation coefficient between GS1‐
115G20.1 and C1ORF21 was 0.365, p = 2.2E‐16, which is
much higher in LUAD, r = 0.468. The “custom prediction”
function of miRDB database was used to predict miRNA
targets of lncRNA GS1‐115G20.1, and there were 27 miR-
NAs that might interact with GS1‐115G20.1 (Table S9). In
addition, we also found low GS1‐115G20.1 expression in the
high DKK1 expression group (Figure 10e,f). However, we
did not find any evidence of their direct interaction in public
databases.

TABLE 3 Gene number of each WGCNA module

Module No. of genes Module No. of genes

Black 145 Light green 71

Blue 596 Light yellow 69

Brown 290 Magenta 134

Cyan 98 Midnight blue 93

Dark green 59 Pink 137

Dark grey 52 Purple 129

Dark red 64 Red 189

Dark turquoise 53 Royal blue 67

Green 196 Salmon 106

Green yellow 113 Tan 112

Grey 72 Turquoise 2208

Light cyan 74 Yellow 275
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F I GURE 5 Univariate regression analysis for screening prognostic genes. (a) Top 15 prognostic relevant genes in blue, light green and red modules of
significance. (b, c, d, e): prognostic relevant genes were assigned into high and low expression groups based on median expression level, and the final Kaplan‐
Meier curves of four genes with p < 0.05 were demonstrated. Kaplan‐Meier curves of the GS1‐115G20.1 curve (c) divergence is obvious. CD1E curve (d) has a
significant crossover and therefore is not significant
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4 | DISCUSSION

It has been proven that RYR mutations are frequently found
in most cancer genomic studies with somatic mutations [6].
Nevertheless, the role and mechanism of RYR2 mutations in
NSCLC pathogenesis and progression have not been
confirmed. It is important to further clarify the potential
genes related to the prognosis of NSCLC with RYR2 mu-
tation. Extracting transcriptomic data from the UCSC Xena

dataset can help identify prognostic factors that may be
involved in cancer development or evolution. In this study,
we used genomic and transcriptomic data of LUAD and
LUSC from the UCSC Xena database to identify lncRNAs
and mRNAs, which are differentially expressed in RYR2
mutant and RYR2 wild‐type NSCLC. By survival analysis, we
found that patients in the RYR2 mutant group have better
survival, and the somatic mutation of RYR2 may be
protective.

F I GURE 6 Construction of the mRNA risk prognostic model. (a, b): Distribution of samples in high‐ and low‐risk groups using median risk score one,
with vertical coordinates of risk score one is shown. (c) Heat map shows the expression of five mRNA genes in the risk model in different risk score 1, different
diagnoses, and different genders. (d) Kaplan‐Meier curves for survival time of patients with high‐ and low risk. (e) ROC curves for predicting 3 year survival.
(f) The forest plots of multivariate Cox regression. Black squares on the horizontal line indicate the hazard ratio and the horizontal lines show the 95%
confidence interval. (g) Nomogram for predicting survival in NSCLC
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To further investigate the molecular mechanism by which
RYR2 mutation improves the prognosis of NSCLC patients,
we constructed co‐expression networks for DEmRNAs and
DElncRNAs, selected modules related to NSCLC prognosis
for analysis, and constructed risk prognosis models for the
prognosis‐related mRNA and lncRNA genes. The important
DEmRNA genes included were RAB44, GNG7, RASA3,
CD200R1 and DKK1. KEGG enrichment analysis showed
that the DEmRNA gene was mainly related to neuroactive
ligand‐receptor interaction, complement and coagulation

cascades, cAMP signalling pathway, adrenergic signalling in
cardiomyocytes, cell cycle and other pathways. Among them,
the cell cycle and cAMP signalling pathway are pivotal in
tumour development in the study of NSCLC [33, 34]. Mean-
while, based on the above results, we constructed the mRNA
risk prognostic model with reliable results for both internal and
external validation. Although the transcriptome‐based prog-
nostic model has not yet reached a very satisfactory level for
the prediction of survival in NSCLC patients, the attempt still
has far‐reaching implications.

F I GURE 7 Construction of the lncRNA risk‐prognosis model. (a) 10 lncRNAs associated with prognosis and co‐efficiency values. (b, c): Distribution of
samples into high‐ and low‐risk groups with median risk score 2 and vertical coordinates of Risk Score two is shown. (d) The risk model with 10 lncRNA genes
expressed in different risk score two, different diagnoses, and different genders is shown in a heat map. (e) Survival curves of the high‐risk and low‐risk groups.
(f) ROC curves for predicting 3 year survival. (g) The forest plots of multivariate Cox regression. Black squares on the horizontal line indicate the hazard ratio
and the horizontal lines show the 95% confidence interval. (h) Nomogram for predicting survival in NSCLC
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As the crucial DEmRNA gene in this study, the Dickkopf
Wnt signalling pathway inhibitor‐1 (DKK1) is a well‐established
classical Wnt signalling inhibitor [35], which is essential in the
proliferation and migration of multiple tumour cell types [36].
Overexpressed DKK1 promotes bony metastasis of breast
cancer while inhibiting its lung metastasis, and even in the same
tumours, an organ‐specific role of DKK1 has been noted [37].
Several studies have indicated associations of DKK1 over-
expression with cancer malignant progression and adverse
prognosis in a raft of human cancers, suggesting a potential
oncogenic function of DKK1 [38–41]. Yamabuki et al. showed
that high DKK1 expression indicates adverse outcomes of
NSCLC patients, and its exogenous expression improves
migration and invasion of cells [40]. Notably, significant corre-
lations between elevated serum DKK1 protein concentrations

and tumour progression as well as lowered survival were iden-
tified in lung cancer patients [42]. In the results of this study, high
DKK1 mRNA expression in the RYR2 wild type suggested a
worse prognosis for lung cancer by analysing the UCSC xena
database. In the present study, E47, CREL and AP1 were
important cancer‐related TFs enriched to DKK1 high‐ and low‐
expressing DEmRNAs [43–45].

Recent advances have suggested that non‐coding genes
may also be new participants in the cancer paradigm [19]. In
this study, a predictive model of lncRNAs was constructed, and
in these lncRNAs, GS1‐115G20.1 may play a role in the
development of NSCLC. GS1‐115G20.1 (also called ENSG0
0000230470.1; OTTHUMG00000035468.1; AL078645.1) is
located on chromosome CHR1:184408336‐184412360 (Grc
h38), which is exactly located on the protein‐coding gene

F I GURE 8 DKK1 is an independent prognostic factor. (a) DKK1 was highly expressed in the TP53 mutant group and low in the TP53 wild group. (b) ROC
curves of high and low DKK1 expression predicting 3 year survival in NSCLC patients. (c) Multivariate Cox regression analysis with DKK1 as an independent
prognostic factor. (d) GSEA identified enrichment of DKK1 low expression phenotype of the gene set
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C1ORF21 (chr1:184387057‐184629020) that encodes this
protein gene [46]. The general regulatory effect of lncRNAs on
adjacent mRNAs, coupled with expression correlation, leads to
the speculation that GS1‐115G20.1 regulates the expression of
C1ORF21, but the correlation is not strong. We found that the
lncRNA’s high expression in NSCLC indicated better survival
and may play a protective function in NSCLC.

Due to the lack of experimental studies for GS1‐115G20.1,
we could only use predictive databases. As a result, several
target miRNAs that may interact with GS1‐11520.1 were
identified (Table S8). hsa‐miR‐608 has been confirmed to play

a significant part in the apoptosis of NSCLC cells via the
regulation of migration inhibitor factor (MIF), Akt serine/
threonine kinase 2 (AKT2) and transcription factor activation
enhancer binding protein 4 (TFAP4) [47–50]; Dong et al.
found that hsa‐miR‐105‐5p could be a biomarker for early
diagnosis of NSCLC [51]; Zheng and other researchers found
that hsa‐miR‐4651 elicited a negative effect on the progression
of NSCLC via targeting bromodomain‐containing protein 4
(BRD4) [52]; from a study by Wang's group, lncRNA LIFR‐
AS1 could inhibit NSCLC cell invasion and migration by
serving as a sponge for hsa‐miR‐942‐5p [53]; in patients

F I GURE 9 The transcript factors regulatory network for DEmRNAs between high and low DKK1 expression groups. The red genes are up‐regulated, the
green genes are down‐regulated, and the blue boxes indicate the enriched transcript factors
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suffering from anaplastic lymphoma kinase (ALK)‐positive
NSCLC, decreased hsa‐miR‐362‐5p was accompanied by
longer progression‐free survival [54]. Therefore, we speculate
that GS1‐115G20.1 may interact with the above miRNAs to
have an influence on the phenotype, treatment, and prognosis
of NSCLC, but further validation of molecular experiments is
still needed.

In conclusion, using survival analysis, we found that RYR2
mutations may have a protective effect on NSCLC. Through
comprehensive bioinformatic analysis, two risk prognostic
models of mRNA and lncRNA were established in this study,
and prognostic risk models have some degree of predictive
ability. The OS of high DKK1 expression group and low GS1‐
115G20.1 expression group was worse. Overall, our findings

may extend our understanding on the protective mechanisms
of RYR2 mutations on the prognosis of NSCLC and identify
new targets for prognostic assessment and treatment.
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