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Abstract: Pretransplant graft inflammation could be involved in the worse prognosis of deceased
donor (DD) kidney transplants. A2A adenosine receptor (A2AR) can stimulate anti-inflammatory
M2 macrophages, leading to fibrosis if injury and inflammation persist. Pre-implantation biopsies
of kidney donors (47 DD and 21 living donors (LD)) were used to analyze expression levels and
activated intracellular pathways related to inflammatory and pro-fibrotic processes. A2AR expression
and PKA pathway were enhanced in DD kidneys. A2AR gene expression correlated with TGF-β1 and
other profibrotic markers, as well as CD163, C/EBPβ, and Col1A1, which are highly expressed in
DD kidneys. TNF-α mRNA levels correlated with profibrotic and anti-inflammatory factors such
as TGF-β1 and A2AR. Experiments with THP-1 cells point to the involvement of the TNF-α/NF-κB
pathway in the up-regulation of A2AR, which induces the M2 phenotype increasing CD163 and
TGF-β1 expression. In DD kidneys, the TNF-α/NF-κB pathway could be involved in the increase of
A2AR expression, which would activate the PKA–CREB axis, inducing the macrophage M2 phenotype,
TGF-β1 production, and ultimately, fibrosis. Thus, in inflamed DD kidneys, an increase in A2AR
expression is associated with the onset of fibrosis, which may contribute to graft dysfunction and
prognostic differences between DD and LD transplants.
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1. Introduction

Many factors specific to kidney transplant recipients (KTR) and donors influence the outcome
of kidney transplantation [1–3] and prognostic differences between living and deceased grafts are
well known. Despite this, little is known about the basal inflammatory status of donors at the time
of donation [4]. Immunological activation during brain death results in infiltration of leukocytes,
macrophages, and dendritic cells prior to kidney procurement [5–7], which can damage kidneys [8]
and impact on short- and long-term renal graft function [9,10]. We showed previously that circulating
monocytes from KTR are associated with prognosis in kidney transplantation [11]. Furthermore,
different studies indicated macrophages accumulation in allograft biopsies of KTR [12], which is
associated with renal interstitial fibrosis and tubular atrophy and graft outcome [13]. In fact, our group
demonstrated that macrophage infiltration into renal grafts of deceased donors before transplantation
is associated with long-term renal function [14]. Pre-implantation renal biopsies from deceased donors
showed greater inflammation than those from living donors and this appeared to be mediated by M1
macrophages, although the presence of M2 macrophages was also observed, suggesting the coexistence
of both phenotypes and even intermediate phenotypes [14]. Macrophage phenotype is modulated by
adenosine, diminishing M1 proinflammatory macrophage activation and polarizing macrophages to
an M2 anti-inflammatory phenotype [15,16]. Extracellular adenosine produced from hydrolysis of ATP
(primarily by the ectoenzymes CD39 and CD73) mediates its effects via activation of G-protein-coupled
receptors (A1, A2A, A2B, and A3). In the peritransplant period or during ischemia/reperfusion, ATP is
released early after cell damage/death, inducing activation of immune cells that migrate to the site of
injury [17,18]. Pannexin (Panx)-1 forms transmembrane channels that release ATP into the extracellular
space. It is expressed ubiquitously and, in the kidney, Panx-1 is needed for the release of intracellular
ATP from renal epithelial cells [19,20]. Subsequently, there is a decrease in the ATP/adenosine ratio to
control inflammation and initiation of wound-healing processes that can lead to fibrosis (see [21] for
a review). Adenosine is transported through nucleoside transporters (NT), being ENT1 and CNT2
good candidates, since they show high affinity for adenosine (40 µM and 8 µM, respectively) (see [22]
for a review). However, CNT2 is a Na+-dependent concentrative transporter, which makes CNT2 an
ideal candidate for regulating extracellular adenosine levels. A2A receptors (A2AR) are considered the
primary anti-inflammatory effectors of extracellular adenosine due to their high expression on immune
cells, such as monocytes/macrophages. A2ARs mainly activate the adenylate cyclase-cAMP-PKA
canonical pathway and participate in tissue remodeling and reparation. Activation of A2AR in renal
macrophages induces the expression of the anti-inflammatory cytokines and reduces kidney damage
in the acute and chronic inflammation phases of glomerulonephritis [23].

This study was undertaken to examine the role of purinergic pathways with respect to pretransplant
inflammation of kidneys from deceased donors, and specifically to investigate the role of adenosine
A2AR and how it can influence macrophage phenotype.

2. Results

2.1. Differences in Purinome Gene Expression in Renal Biopsies from DD and LD

Gene expression levels related to cell purinome in pre-implantation renal tissue samples were
analyzed to investigate expression differences between LD and DD. Figure 1 shows that we did not
find statistically significant differences between LD and DD regarding mRNA expression levels of
nucleoside transporters (NTs), except for hCNT2, which shows high affinity for adenosine and showed
lower basal expression in DD than in LD (p = 0.019). We did not detect mRNA expression of hCNT3 in
renal biopsy samples (data not shown).
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Figure 1. Relative mRNA expression of nucleoside transporters (CNT1 (A), CNT2 (B), ENT1 (C), 
ENT2 (D), ENT3 (E), and ENT4 (F)), as determined by qPCR analysis, in renal samples from LD and 
DD. Data are expressed as box-and-whisker plots. p value is shown when comparisons are 
statistically significant (Mann–Whitney U-test, p < 0.05) between groups. LD, living donors; DD, 
deceased donors. 

Regarding the expression of P1 receptors (Figure 2), A1R (Figure 2A), and A3R (Figure 2C) did 
not show differences in mRNA levels between DD and LD, whereas A2AR (Figure 2B) showed 
higher expression levels in DD than in LD (p = 0.001). A2BR mRNA was hardly detected in renal 
biopsies samples (data not shown). 

Figure 1. Relative mRNA expression of nucleoside transporters (CNT1 (A), CNT2 (B), ENT1 (C),
ENT2 (D), ENT3 (E), and ENT4 (F)), as determined by qPCR analysis, in renal samples from LD and
DD. Data are expressed as box-and-whisker plots. p value is shown when comparisons are statistically
significant (Mann–Whitney U-test, p < 0.05) between groups. LD, living donors; DD, deceased donors.

Regarding the expression of P1 receptors (Figure 2), A1R (Figure 2A), and A3R (Figure 2C) did
not show differences in mRNA levels between DD and LD, whereas A2AR (Figure 2B) showed higher
expression levels in DD than in LD (p = 0.001). A2BR mRNA was hardly detected in renal biopsies
samples (data not shown).

Figure 3 shows gene expression levels of different genes related to purinergic metabolism
or ATP release in renal samples from LD and DD. mRNA levels of CD73 (Figure 3A) and
S-adenosyl-L-homocysteine hydrolase (SAHH) (Figure 3E) was lower in DD than in LD (p = 0.009 and
p < 0.001, respectively), whereas we did not observe any difference in CD39 (Figure 3B), adenylate cyclase
(ADCY) (Figure 3C), or adenosine kinase (ADK) (Figure 3D) mRNA expression levels. The hemichannel
Panx-1, showed higher mRNA levels in DD samples than in LD samples (p = 0.017) (Figure 3F).
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SAHH (E), PANX1 (F)), as determined by qPCR analysis, in renal samples from LD and DD. Data are
expressed as box-and-whisker plots. p value is shown when comparisons are statistically significant
(Mann–Whitney U-test, p < 0.05) between groups. LD, living donors; DD, deceased donors.

2.2. Correlations of A2AR mRNA Expression Levels

To explore possible associations, correlations of gene expression levels of the different genes
studied with A2AR were determined. Table 1 shows correlations (p and Spearman’s rho values)
between A2AR and enzymes involved in adenosine metabolism and nucleoside transporters.

In general trends A2AR mRNA levels in DD samples positively correlated with the mRNA amounts
of a panel of enzymes (i.e., CD73, ADK) and transporters (i.e., hENT1, hENT2, hCNT2) known to
build up the cell purinome, likely to modulate adenosine-related biological events. Table 2 shows gene
expression positive correlations detected between M1 macrophage phenotype or inflammatory markers
(i.e., TNF-α, CD16, IL-1β), M2 macrophage phenotype or anti-inflammatory markers (i.e., IL-10, CD206,
CEBPB) and fibrotic markers (i.e., TGFB1, ACTA2) with A2AR, in renal tissue samples of DD.

Table 2 also shows differences in expression levels of these genes between DD and LD renal samples.
Expression levels of several markers related to inflammation or phenotype change of macrophages
were up-regulated in DD (i.e., TNF-α, IL-1β, CD163), while of the fibrosis markers, TGF-β1 and col1A1
were the only ones overexpressed in DD. Interestingly, expression levels of A2A and TNF-α are higher
in DD than in LD and correlate in both donor groups. Although no association was found between
A2AR mRNA levels and factors, such as donor age or cold ischemia time, an inverse correlation was
observed between the amount of PANX1 mRNA and cold ischemia time, only in kidneys from DD
(p = 0.0023, r = −0.4522). With regard to fibrosis, we showed previously that DDs are significant older
than LDs, whereas the analysis of pre-transplant kidney biopsies using the Remuzzi score, only for
research purposes and not to determine the suitability of the graft, found that more than 80% of both,
DD and LD samples, obtained a total score ≤ 3 [14].

Table 1. Gene expression correlations between A2AR and enzymes involved in adenosine metabolism
and nucleoside transporters.

A2AR Correlations

DD LD

p Rho
Spearman p Rho

Spearman

En
zy

m
es

CD39 0.065 0.272 0.311 0.246

CD73 <0.001 0.635 0.705 −0.093

ADK <0.001 0.609 0.433 0.191

SAHH <0.001 0.501 0.697 0.096

ADCY <0.001 0.521 0.271 0.266

N
uc

le
os

id
e

tr
an

sp
or

te
rs

ENT1 <0.001 0.603 0.170 0.328

ENT2 0.003 0.426 0.507 0.162

ENT3 <0.001 0.563 0.673 0.104

ENT4 0.002 0.441 0.459 0.181

CNT1 0.049 0.288 0.792 0.065

CNT2 0.017 0.347 0.665 −0.106

LD, living donors; DD, deceased donors.
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Table 2. RNA expression levels of different genes in DD vs. LD and gene expression Spearman rank
correlations coefficients between A2AR and inflammatory, anti-inflammatory and fibrosis genes.

A2AR Correlations

RNA Expression DD LD

DD vs. LD Significance p Rho
Spearman p Rho

Spearman
In

fla
m

m
at

or
y

&
M

1
m

ar
ke

rs

TNF ↑ [14] * <0.001 0.504 0.022 0.520

NFKB ↑ p = 0.033 <0.001 0.626 0.997 0.001

CD16 ↑ [14] * <0.001 0.507 0.131 0.359

CD86 = [14] * <0.001 0.478 0.303 0.250

IL-1β ↑ [14] * 0.003 0.432 0.983 0.005

A
nt

i-
in

fla
m

m
at

or
y

&
M

2
m

ar
ke

rs

IL10 = n.s. <0.001 0.492 0.265 0.269

CD206 = [14] * <0.001 0.577 0.132 0.358

CD163 ↑ [14] * <0.001 0.502 0.209 0.302

IL13RA2 = n.s. 0.002 0.437 0.204 0.305

CD209 ↑ [14] * 0.056 0.281 0.557 0.144

CEBPB ↑ p < 0.001 <0.001 0.482 0.446 0.186

EM
T

&
Fi

br
os

is
m

ar
ke

rs

TGFB1 ↑ [14] * <0.001 0.712 0.061 0.437

FIBRONECTIN = [14] * <0.001 0.652 0.545 0.148

ACTA2 = [14] * <0.001 0.572 0.123 0.366

VIMENTIN = [14] * 0.002 0.447 0.718 0.089

COL1A1 ↑ p = 0.006 0.005 0.407 0.102 0.386

COL1A2 = n.s. <0.001 0.511 0.158 0.337

COL3A1 = n.s. 0.015 0.354 0.051 0.454

Significance is shown as the value of “p” when lower than 0.05 or as n.s. (not significant) when higher according to
the Mann–Whitney U test. [14] * corresponds to the reference of the previous study in which the gene was included
and analyzed. LD, living donors; DD, deceased donors.

2.3. Protein Expression in Renal Biopsies from DD and LD

Protein levels were measured in pre-implantation renal tissue of both DD and LD, and these data
are summarized in Figure 4. It shows that the expression of the active dimer form ofA2AR (p = 0.004)
(Figure 4A), CD163 (p = 0.012) (Figure 4B), and pPKA (p = 0.018) (Figure 4C) proteins was significantly
higher in kidney extracts from DD compared with LD samples. Levels of pCREB were also marginally
higher in DD, although statistical significance was not reached (p = 0.070) (Figure 4D).
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Representative Western blots for A2AR, CD163, pPKA and pCREB. Data are expressed as 
box-and-whisker plots. p value is shown when comparisons are statistically significant (unpaired 
Student’s t-test, p < 0.05) between groups. LD, living donors; DD, deceased donors. 
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monocyte/macrophage functions. In the present study, regulation of the A2AR pathway and 
monocyte activation by TNF-α was examined using the in vitro model of undifferentiated THP-1 
monocytes. TNF-α addition increased A2AR mRNA expression levels in THP-1 cells (Figure 5A) as 
previously reported [24]. This increase was significant at all time points analyzed, although the 
results showed a dependence on TNF-α incubation time and concentration, showing the maximum 
increase 3 h after 10 ng/mL TNF-α addition. CD163 and TGF-β1 gene mRNA levels were 
up-regulated at 18 and 24 h of treatment (Figure 5B). Shorter treatments (3 and 6 h) did not result in 
changes in mRNA levels. 
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(C) and phospho CREB (pCREB) (D) in renal samples from DD and LD. Total protein was isolated from
kidney tissues, as described in Materials and Methods, and separated by SDS-PAGE. Protein expression
semiquantitation performed by densitometric analysis of Western blots. (E) Representative Western
blots for A2AR, CD163, pPKA and pCREB. Data are expressed as box-and-whisker plots. p value is
shown when comparisons are statistically significant (unpaired Student’s t-test, p < 0.05) between
groups. LD, living donors; DD, deceased donors.

2.4. TNF-α Increases Expression of CD163 and TGF-β1 through A2AR in THP-1 Cells

THP-1 is a human leukemia monocytic cell line, which has been extensively used to study
monocyte/macrophage functions. In the present study, regulation of the A2AR pathway and monocyte
activation by TNF-α was examined using the in vitro model of undifferentiated THP-1 monocytes.
TNF-α addition increased A2AR mRNA expression levels in THP-1 cells (Figure 5A) as previously
reported [24]. This increase was significant at all time points analyzed, although the results showed a
dependence on TNF-α incubation time and concentration, showing the maximum increase 3 h after
10 ng/mL TNF-α addition. CD163 and TGF-β1 gene mRNA levels were up-regulated at 18 and 24 h of
treatment (Figure 5B). Shorter treatments (3 and 6 h) did not result in changes in mRNA levels.

Figure 6 shows that pretreatment with 1 µM ZM241385 (A2AR antagonist) abolished the effect of
TNF-α on CD163 (Figure 6A) and TGF-β1 (Figure 6B) mRNA up-regulation, providing evidence that
the A2A receptor is involved in M2 macrophage activation by TNF-α. Treatment of THP-1 cells with a
known CD163 inducer, IL-10, similarly increased CD163 mRNA expression levels in a manner that was
also dependent upon A2AR signaling, as demonstrated by its blockade by ZM241385, showing the
role of the A2AR in the shift to M2 phenotype (Figure 6C). There was no observed effect of IL-10 on the
expression of TGF-β1 (Figure 6D).

To know the potential involvement of the NF-κB signaling-pathway in these events, cells were
pre-treated with BMS345541, a highly selective inhibitor of IκB Kinase. Figure 7 shows this inhibition
blocked the up-regulation of gene expression levels of A2AR (Figure 7A), CD163 (Figure 7B) and
TGF-β1 (Figure 7C), triggered by TNF-α.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 20 
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SD (n = 3). 

Figure 6 shows that pretreatment with 1 μM ZM241385 (A2AR antagonist) abolished the effect of 
TNF-α on CD163 (Figure 6A) and TGF-β1 (Figure 6B) mRNA up-regulation, providing evidence that 
the A2A receptor is involved in M2 macrophage activation by TNF-α. Treatment of THP-1 cells with a 
known CD163 inducer, IL-10, similarly increased CD163 mRNA expression levels in a manner that 
was also dependent upon A2AR signaling, as demonstrated by its blockade by ZM241385, showing 
the role of the A2AR in the shift to M2 phenotype (Figure 6C). There was no observed effect of IL-10 
on the expression of TGF-β1 (Figure 6D). 

Figure 5. TNF-α enhances A2AR, CD163, and TGF-β1 levels in THP-1 cells. The time course of TNF-α
induced A2AR (A), CD163 (B), and TGF-β1 (C) expression in THP-1 cells as quantitated by qPCR.
*, ** and *** denote significant differences (p < 0.05, p < 0.01 and p < 0.001, respectively) as compared
with the DMSO group using unpaired Student’s t-test. All values are expressed as means ± SD (n = 3).
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induced by TNF-α in THP-1 cells. Cells were also treated with IL-10 and ZM241385 to evaluate its effect on
CD163 (C) and TGF-β1 (D) gene expression. THP-1 cells were treated with ZM241385 (1 µM) 30 min before
adding TNF-α (10 ng/mL) or IL-10 (10 ng/mL) for 18 h. Cells were collected, and total RNA was extracted
and retrotranscribed to cDNA. Results are expressed as mean ± SD; p value is shown when comparisons
are statistically significant (unpaired Student’s t-test, p < 0.05), n = 3 for each point.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 20 

 

 
Figure 7. Effect of the NF-κB inhibitor BMS354451 on the A2AR (A), CD163 (B) and TGF-β1 (C) 
mRNA levels in THP-1 cells stimulated with TNF-α (10 ng/mL). BMS354451 (1, 2.5, 4 and 5 μM) was 
added to the cells 1 h before cytokine treatment and cultured for 20 h. Results are expressed as mean 
± SD; p value is shown when comparisons are statistically significant (unpaired Student’s t-test, p < 
0.05), n = 4–8 for each point. 

3. Discussion 

This study highlights different activated processes in kidney allografts from DD versus LD 
before transplantation. Renal transplant recipients show higher concentrations of proinflammatory 
cytokines in grafts from DD than in those from LD [25]. We recently reported that inflammatory and 
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adenosine [26,27], which exerts its anti-inflammatory activity mainly through A2AR [28–30]. Our 
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Figure 7. Effect of the NF-κB inhibitor BMS354451 on the A2AR (A), CD163 (B) and TGF-β1 (C) mRNA
levels in THP-1 cells stimulated with TNF-α (10 ng/mL). BMS354451 (1, 2.5, 4 and 5 µM) was added
to the cells 1 h before cytokine treatment and cultured for 20 h. Results are expressed as mean ± SD;
p value is shown when comparisons are statistically significant (unpaired Student’s t-test, p < 0.05),
n = 4–8 for each point.

3. Discussion

This study highlights different activated processes in kidney allografts from DD versus LD before
transplantation. Renal transplant recipients show higher concentrations of proinflammatory cytokines
in grafts from DD than in those from LD [25]. We recently reported that inflammatory and reparative
responses coexist in DD kidney grafts, indicating that pre-implantation kidney grafts from DD exhibit
more inflammation than those from LD [14]. Inflammation can be modulated by adenosine [26,27],
which exerts its anti-inflammatory activity mainly through A2AR [28–30]. Our results indicate that A2AR
expression is increased in DD kidney grafts, which would induce anti-inflammatory responses that
eventually could lead to the onset of renal fibrosis if uncontrolled or persistent inflammation occurs [31].
Monocytes and macrophages synthesize and release TNF-α, a potent mediator of inflammation that
induces A2AR activity [24,32]. A2AR expression can be up-regulated directly by TNF-α [33] because
of the presence of NF-κB binding sites in the upstream regions of the A2AR gene [24,34], but it has
also been suggested that TNF-α may inhibit desensitization of A2AR and enhance the functions of the
receptor [35].

Evidence suggests a role of TNF-α in renal interstitial fibrosis and collagen deposition [36],
which may be mediated by TGF-β1 increase [37,38]. In our study, renal samples from DD showed
higher gene expression of A2AR, TNF-α and TGF-β1 than LD and correlated positively with each
other. Neutralization of TNF-α was found to reduce TGF-β1 production, myofibroblast activation,
and collagen deposition, and therefore diminished renal interstitial fibrosis [39]. Our results with THP-1
cells confirm that TNF-α increases A2AR gene expression through the NF-κβ pathway, which can
induce M2 phenotype and fibrosis.

Up-regulation of A2AR is likely to be the beginning of a reduction in inflammatory response.
A2AR downregulates classic macrophage activation, reducing the production of proinflammatory
cytokines such as TNF-α and increasing the expression of the anti-inflammatory cytokine IL-10 [40].
In addition, it was reported that A2AR antagonists promote the M1 phenotype of macrophages
infiltrating nephritic glomeruli [41]. A2AR signaling through G proteins is based on the stimulation
of adenylate cyclase (AC), which induces intracellular cAMP and activates protein kinase A (PKA).
Moreover, A2AR and AC mRNA expression showed a positive correlation in DD samples and p-PKA
was increased in DD samples compared with LD samples. Chronic inflammatory tissue injury is
accompanied by the accumulation of extracellular adenosine released by immune and non-immune
cells. Adenosine receptor expression in macrophages appears to change upon inflammatory activation,
since A2ARfunction in human THP-1 monocytes has been shown to be up-regulated by IL-1β and
TNF-α [24]. Indeed, our results show that A2AR gene expression in THP-1 monocytes is rapidly
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up-regulated by TNF-α, suggesting that anti-inflammatory A2AR is up-regulated following classic
activation of macrophages, possibly to initiate resolution of inflammation [26].

It is worth noting that the induction of A2AR by TNF-α is relatively fast and persistent whereas
induction of CD163 and TGF-β1 occurs later and is A2AR-dependent. These results support that
fibrotic processes are initiated through A2AR-activation when monocytes/macrophages are exposed to
prolonged inflammation. Although CD73 expression is lower in DD than in LD samples, indicating that
extracellular synthesis of adenosine might be somehow reduced, hCNT2 expression is downregulated
in DD samples, which is consistent with reduced adenosine clearance from the extracellular milieu.
Indeed, as recently reviewed [22], hCNT2 may be a major player in regulating extracellular adenosine
levels and there is evidence of CNT2 being regulated at the post-translational level [42]. Interestingly,
the hCNT2-encoding gene (SLC28A2) is by far the most dramatically down-regulated one among
the purinome-related genes in inflamed ileal mucosa samples from Crohn’s disease patients [43].
Furthermore, A2ARs are known to up-regulate CNT2 activity in differentiated PC12 cells [43]. Moreover,
it was also observed that hypoxia downregulated CNT2 function without affecting ENT1 activity,
which suggests, as mentioned above, an important role of CNT2 in the modulation of extracellular
adenosine concentrations [43,44]. In this regard, A2AR signaling again emerges as an important
mechanism for limiting inflammatory responses [45–47]. Although some authors observed that
CD73 expression and function were upregulated by proinflammatory mediators [48,49], Zanin et al.
provided evidence that proinflammatory M1 macrophages decrease both the expression and the
activity of CD39 and CD73, leading to reduced ATP degradation [50]. Moreover, TNF-α was found
to reduce the surface expression and activity of CD73 [51]. By contrast, M2 macrophages showed
increased expression and activity of both enzymes, followed quickly by the conversion of ATP into
adenosine. Our findings on pre-implant kidney grafts from DD confirmed overexpression of TNF-α
and decreased expression of CD73. Chronic lack of CD73 was associated with an autoimmune
inflammatory phenotype, which at the renal level affects the glomerular endothelium, leading to
glomerular inflammation, injury, and interstitial cellular infiltrate, with consequent proteinuria and
decreased kidney function [52]. Our results also show a little—but significantly increased—expression
of Panx-1 and an inverse correlation with ischemic time in kidneys from DD. This could be due
to a known regulation of the channel by the released ATP itself that can bind to a binding site in
aPanx-1 extracellular loop to prevent persistent excitatory signaling of Panx1-mediated ATP release [53].
Moreover, increased extracellular ATP levels can induce the internalization of Panx1, avoiding further
release of excitatory ATP [54].

In our study, low intracellular SAHH gene expression in DD grafts may contribute to the
accumulation of S-adenosylhomocysteine (SAH) and to a decrease in intracellular adenosine and
homocysteine production. Barroso et al. showed that an excess of SAH in response to NF-kB activation
leads to the expression of adhesion molecules and cytokines such as IL-1β and TNF-α in endothelial
cells, resulting in an inflammatory response [55].

During an inflammatory process, adenosine can activate A2AR to attenuate inflammation and
tissue injury. Adenosine reduces the M1 macrophage phenotype and activation of A2AR shifts
macrophages towards the M2 phenotype [16,56], and promotes wound healing in mice [57,58].
Thus, extracellular adenosine appears to facilitate a macrophage switch characteristic for an alternatively
activated phenotype [59]. We have shown that A2ARmRNA expression correlates with the M2
macrophage marker CD163 and that both proteins are augmented in DD samples compared with LD.
Our results are in accordance with the hypothesis that the onset of anti-inflammatory activity induces
the M2 phenotype and is driven by A2AR signaling.

Stimulation of IL-10 production in RAW264.7 macrophages by adenosine was regulated by the
transcription factor C/EBPβ [60]. In our study, A2AR expression in DD correlated with C/EBPβ and
IL-10. During macrophage activation, C/EBPβ is induced by the CREB transcriptional activator,
and Ruffell and co-workers found that deletion of CREB-binding sites from Cebpb promoter avoided
macrophage activation and blocked specific M2 genes [61]. Our results suggest the activation of CREB,
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since phospho-CREB is up-regulated in DD renal biopsies, although statistical significance was not
reached. Other models support involvement of C/EBPB in M2 macrophage differentiation and fibrosis
after damage [62–64].

In summary, DD kidney grafts display more inflammation than LD and produce higher levels
of TNF-α. Our results suggest that CD163 and TGF-β1 are regulated, at least in part, by TNF-α via
A2AR to initiate anti-inflammatory processes and promote M2 macrophage phenotype. Our work also
indicates that, in kidney biopsies from DD, the cAMP/PKA/CREB/C/EBPβ pathway could be activated,
which would also favor the switch from macrophages M1 to M2. A proposed integrated mechanistic
model explaining the dual inflammatory and anti-inflammatory conditions of DD kidneys is shown in
Figure 8.

Although further research is needed, our results unequivocally show differences in purinergic
signaling in grafts from DD and from LD which highlights the possibility of targeting purinome
elements for therapeutic management of early and persistent inflammation associated with renal graft
dysfunction. Adenosine signaling is considered protective in ischemic lesions with immunomodulatory
properties. Our observations, although focused on kidney transplantation, show crucial changes in
the immunomodulation of transplanted organs, highlighting a key role for the purinome in kidney
graft inflammation and the onset of fibrosis. Our results confirm the growing evidence that purinergic
signaling is involved in the inflammatory response that can be associated with rejection and chronic
allograft dysfunction. Our contribution also raises the possibility of purinergic biology playing a more
general role in the clinics derived from organ transplantation in humans.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 14 of 20 
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Figure 8. Schematic representation of the proposed mechanism of inflammation/anti-inflammation in
DD kidneys. After an injury, such as hypoxia or ischemia, ATP is released and the production
of the inflammatory cytokine TNF-α is induced. Via the NF-κB pathway, TNF-α stimulates
A2AR expression although the formation and uptake of extracellular adenosine are restricted.
Thus, the cAMP-PKA-CREB signaling pathway could be initiated and promote anti-inflammatory
immune responses, e.g., through the induction of IL-10 and the switch to the M2 macrophage phenotype
(CD163). If injury or inflammation persists, this can lead to the generation of TGF-β1, which may
mediate the onset of fibrosis.
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4. Materials and Methods

4.1. Donors, Patients, and Kidney Samples

This study was approved by the ethics committee of Fundació Puigvert. Participants were from the
study population for a previous work [14] in which patients characteristics are described [14]. In brief,
94 renal donors (60DD/34LD) were included. We obtained renal biopsies for gene expression analysis
from 47 DD and 21 LD. Two living donors’ samples were missing. We collected pre-implantation biopsies
from kidney donors and clinical information for donors and KTR who underwent transplantation in our
institution between 2008 and 2011. All of them signed an informed consent form. Tissue samples from
biopsy cores were processed for mRNA extraction and gene expression analysis by qPCR. Total protein
was also obtained for Western blot.

4.2. Cell Culture and Treatments

Human monocytic leukemia THP-1 cells (ATCC) were cultured in RPMI (Lonza, Bassel, Switzerland)
supplemented with 10% fetal bovine serum (Life Technologies, Carlsbad, CA, USA), 2 mM glutamine,
and antibiotic (Lonza). Cells were grown in complete medium and then growth arrested in serum-free
medium for 24 h. All experiments were performed under serum-free conditions. THP-1 cells were
seeded at 37 ◦C in a humidified 5% CO2/95% air atmosphere in the presence of 5, 10, and 20 ng/mL of
TNF-α (R&D Systems, Minneapolis, MN, USA) at different time points (3, 6, 18, and 24 h). When needed
and at the times selected, cells were pretreated for 30 min with 1µM of the A2AR antagonist ZM241385
(Tocris, Bristol, UK) or for 60 min with the NF-κβ blocker BMS345541 (Sigma, Saint Louis, MO, USA)
(1, 2.5, 4, and 5 µM) before the addition of TNF-α. Control samples always contained the same amount
of vehicle (DMSO) to exclude any interference in cell responses. After the incubation period, cells were
centrifuged and pellets were resuspended in TriReagent (Sigma).

4.3. Real Time PCR

4.3.1. Renal Tissue

Kidney biopsies were processed as described previously [14]. Briefly, samples were homogenized
with Tissuelyser LT (Qiagen, Hilden, Germany). Aqueous phase containing RNA was transferred into
an RNeasy column (AllPrep DNA/RNA/Protein Mini Kit, Qiagen) and was eluted with RNAse-free
water. The integrity of total RNA was assessed on a denaturing agarose gel, allowing visual assessment
of the 28S and 18S rRNA bands. Retrotranscription of total RNA to cDNA was done according to the
user guide of the Applied Biosystems™ QuantStudio™ 12K Flex Real-Time PCR System, OpenArray®

Experiments (Life Technologies, Carlsbad, CA, USA). Briefly, 10 µL of 2X reverse transcription mix of
the High Capacity cDNA Reverse Transcription kit (Life Technologies) was mixed with 10 µL of total
RNA in a 96-well reaction plate. Plates were incubated at room temperature for 10 min, then incubated
at 37 ◦C for 2 h and placed on ice for 5 min, incubated at 75 ◦C for 10 min, placed on ice for 5 min,
and spun down. Real-time PCR was done in accordance with the TaqMan®gene expression assays
protocol (Life Technologies). A mix containing 2X TaqMan OpenArray Real Time PCR Master Mix
(Cat No. 4.462.159 Life Technologies) and cDNA was loaded on each OpenArray plate. These plates
were run on the computer QuantStudio 12 K Flex Real-Time PCR system. Relative quantification
of gene expression was performed using the expression of three internal controls: human GAPDH,
β-actin, and β-glucuronidase.

4.3.2. THP-1 Cells

Total RNA was isolated from THP-1 cells with TriReagent (Sigma, St. Louis, MO, USA) and 1 µg
RNA was retrotranscribed to cDNA with the MultiScribe Reverse Transcriptase kit (Applied Biosystems,
Carlsbad, CA, USA) according to the manufacturer’s instructions. Real-time amplification of cDNAs
was carried out with the TaqMan Universal Master Mix (Applied Biosystems) in the StepOne Sequence
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Detection System (Applied Biosystems). Assays used for amplification of human CD163, A2AR,
and TGF-β1 were predesigned inventoried TaqMan Gene Expression Assays (Applied Biosystems,
Foster City, CA, USA). Relative quantification of gene expression was performed as described in the
TaqMan instruction manual using human GAPDH as an internal control. The PCR arbitrary units
of the genes analyzed were defined as the mRNA levels of these genes normalized to the GAPDH
expression level in order to quantify these transcripts in relative terms.

4.4. Western Blot

Protein samples were obtained from kidney biopsies with AllPrep DNA/RNA/Protein Mini
Kit (Qiagen, Venlo, The Netherlands). Total protein pellets were dissolved in 8M urea lysis buffer,
centrifuged to eliminate cell debris, and supernatant was stored to −80 ◦C.

Thirty micrograms of total proteins were fractionated by SDS-PAGE and transferred to a
polyvinylidene difluoride membrane using a Trans-blot turbo (Bio-Rad, Hercules, CA, USA).
After incubation with 5% BSA in TBST (10 mM Tris, pH 8.0, 150 mM NaCl, 0.5% Tween 20), the membrane
was washed with TBST and incubated with antibodies against phospho (p)-CREB (Cell Signaling,
Danvers, MA, USA; dilution 1/1000), CREB (Cell Signaling; 1/500), phospho (p)-PKA (Cell Signaling;
1/1000), PKA (Cell Signaling; 1/500), A2AR(St John’s Laboratory, London, UK; 1/500), CD163 (Pierce,
Waltham, MA, USA; 1/1000), and GAPDH (Sta. Cruz Biotechnology, Santa Cruz, CA, USA; 1/2000),
the last as loading control, at 4 ◦C O/N under agitation. Membranes were washed with TBST and
incubated with a 1:20,000 dilution of horseradish peroxidase-conjugated anti-mouse or anti-rabbit
antibody (Bio-Rad, Hercules, CA, USA) for 1 h. Membranes were washed again and blots were exposed
to highly sensitive films and developed using an ECL® technique (Pierce).

4.5. Statistics

GraphPad Prism software (GraphPad Software, San Diego, CA, USA)was used to perform
statistical analysis. Results are expressed as the mean ± standard deviation (lower and upper
extremities) and percentages, as appropriate. Student’s t-test was applied to compare means. When our
data did not follow a Gaussian distribution, nonparametric tests such as the Mann–Whitney U test
and Spearman correlation were used for data analysis. All p values were two-sided, and p < 0.05
was considered significant. Spearman test significance was confirmed by p-value analysis using the
Benjamini–Hochberg procedure with a criterion of <5% False Discovery Rate [65].
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Abbreviations

DD Deceased donor
LD Living donor
A2AR A2A adenosine receptor
KTR Kidney transplant recipient



Int. J. Mol. Sci. 2020, 21, 8826 14 of 17

NT Nucleoside transporter
SAHH S-adenosyl-L-homocysteine hydrolase
AC Adenylate cyclase
ADK Adenosine kinase
PKA Protein kinase A
SAH S-adenosylhomocysteine
ENT Equilibrative nucleoside transporter
CNT Concentrative nucleoside transporter
hENT Human ENT
hCNT Human CNT
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