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Legumains, also known as asparaginyl endopeptidases
(AEPs), cleave peptide bonds after Asn/Asp (Asx) residues. In
plants, certain legumains also have ligase activity that catalyzes
biosynthesis of Asx-containing cyclic peptides. An example is
the biosynthesis of MCoTI-I/II, a squash family-derived cyclic
trypsin inhibitor, which involves splicing to remove the
N-terminal prodomain and then N-to-C-terminal cyclization of
the mature domain. To identify plant legumains responsible for
the maturation of these cyclic peptides, we have isolated and
characterized a legumain involved in splicing, McPAL1, from
Momordica cochinchinensis (Cucurbitaceae) seeds. Functional
studies show that recombinantly expressed McPAL1 displays a
pH-dependent, trimodal enzymatic profile. At pH 4 to 6,
McPAL1 selectively catalyzed Asp-ligation and Asn-cleavage,
but at pH 6.5 to 8, Asn-ligation predominated. With peptide
substrates containing N-terminal Asn and C-terminal Asp,
such as is found in precursors of MCoTI-I/II, McPAL1 medi-
ates proteolysis at the Asn site and then ligation at the Asp site
at pH 5 to 6. Also, McPAL1 is an unusually stable legumain that
is tolerant of heat and high pH. Together, our results support
that McPAL1 is a splicing legumain at acidic pH that can
mediate biosynthesis of MCoTI-I/II. We purport that the high
thermal and pH stability of McPAL1 could have applications
for protein engineering.

Legumain belongs to the C13 subfamily of cysteine proteases
represented by asparaginyl endopeptidase (AEP) and was first
found in legume seeds (1, 2). These proteases specifically cleave
proteins at Asn/Asp (Asx) sequences. Plant legumains are
activated in acidic vacuoles and thus are also referred to as
vacuolar processing enzymes (VPEs) (3). Here we focus on the
role of legumains in the biosynthesis of plant-derived cyclic
peptides containing both Asn- and Asp-processing sites and
thus reference these enzymes as legumains.

Legumains are found in both animals and plants (4). In
parasite Schistosoma mansoni, legumains are involved in the
sequential degradation of hemoglobin into diffusible peptides
‡ These authors contributed equally to this work.
* For correspondence: James P. Tam, jptam@ntu.edu.sg.

© 2021 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for
BY license (http://creativecommons.org/licenses/by/4.0/).
and free amino acids (5). In animals, legumains mainly func-
tion in the immune response by processing self and foreign
antigens for presentation on the major histocompatibility
complex II (MHC-II) complex (4). In plants, legumains are
essential for processing seed storage proteins involved in seed
maturation and programmed cell death (3, 6, 7). Mammals
have only one legumain isoform, whereas plants encode mul-
tiple functional isoforms (4). These plant isoforms can be
grouped into seed type and vegetative type that reflect their
isoform-specific localizations and functions (7, 8).

Legumains are unusual enzymes in that they exhibit three
distinct catalytic activities: hydrolase, ligase, and splicing. The
hydrolase activity of legumains is mainly involved in activation
of seed storage proteins, proteolytic cascades in programmed
cell death, and autocatalytic activation. These hydrolytic pro-
cesses occur in lysosomes or lytic vacuoles, which are both
acidic. In addition to the Asn-hydrolytic activity of AEPs
(9, 10), AEPs were also known in 1990s as splicing enzymes in
the posttranslational modification of concanavalin by medi-
ating circular permutation (11).

Legumain-mediated protein splicing, recognized as early as
1985 to play a role in concanavalin A (ConA) maturation,
combines both hydrolytic and ligase activity in tandem during
protein processing and involves excision of intervening se-
quences and religation of the remaining sequences to induce a
different circular-permutated structure (12). This post-
translational splicing process mediated by enzyme jack bean
AEP was described in 1994 by Min and Jones (11). The ConA
precursor contains multiple Asn-cleavage sites for jack bean
AEP (CeAEP1) processing. After multiple cleavages at Asn
residues, the folded pro-ConA is processed into an N- and
C-chain. Proximity-driven ligation then occurs between the
N-chain N-terminus and the C-terminal Asn of the C-chain to
swap the 1-dimensional order of the two fragments to produce
a circular permutation of ConA (Fig. S1) (11).

Recently, an increasing number of legumains have been found
to participate in cyclic peptide biosynthesis in two different
modes. Firstly, they act as Asx-specific ligases that convert linear
peptide precursors into cyclotides that have diverse biological
activities. Examples include butelase-1 discovered in Clitoria
ternatea (13), OaAEP1b fromOldenlandia affinis (14), HeAEP3
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Asx-specific splicing enzyme from Momordica cochinchinensis
from Helianthus enneaspermus (15), and VyPAL2 from Viola
yedoensis (16). To date, butelase-1 is themost efficient ligase and
canorchestrate site-specific intra- and intermolecular ligation of
a diverse range of peptides and proteins under physiological
conditions (17). Both butelase-1 and butelase-1-like ligases
exhibit Asn-ligase activity at acidic and basic pH (16, 18). These
ligases only exhibit a low level of Asn-specific hydrolytic activity
at pH 4.5 or lower for autoactivation from their proenzymes. As
such, they are collectively referred to as pH-independent peptide
asparaginyl ligases (PALs). Secondly, AEPs mediate maturation
of cyclic peptide by a splicingmechanism,which is also known as
“cleavage-dependent ligation” (19). Examples of these cyclic
peptides include sunflower trypsin inhibitor 1 (SFTI-1), orbi-
tides, and the squash family of trypsin inhibitors MCoTI-I and
MCoTI-II (MCoTI-I/II) (20).

Momordica cochinchinensis belongs to the Cucurbitaceae
family and is used as a traditional Chinese medicine.
M. cochinchinensis produce the cyclic trypsin inhibitors
MCoTI-I and MCoTI-II (MCoTI-I/II) that have Asp at the
C-terminal processing site and are thought to be processed
from a linear precursor by an Asp-specific legumain-ligase
(21–23). Previous studies demonstrated that MCoTI-I/II pre-
cursors harbor an N-terminal Asn (DIN↓GG) and a C-termi-
nal Asp (GSD↓AL) processing site (24). A recent in vitro study
demonstrated that a recombinantly produced AEP from
M. cochinchinensis, MCoAEP2, processed both the N- and C-
terminal domain of the MCoTI-II precursor at acidic pH to
produce cyclic MCoTI-II (25).

Here we report the isolation and characterization of an
unusual Asx-specific ligase designated McPAL1 from
M. cochinchinensis seeds. Using a panel of Asx-containing
peptides including the MCoTI-II linear precursor and other
bioactive peptides, we examined the unusual trimodal catalytic
mechanism of McPAL1 that involves pH- and P1-residue-
dependent activities that confer its multifunctionality as a
splicing enzyme, hydrolase, and ligase. We also characterized
the exceptionally high tolerance of McPAL1 to heat and basic
pH.
Results

Transcriptome analysis of M. cochinchinensis legumains

To identify AEPs in M. cochinchinensis seeds, seed extracts
were first screened for ligase activity using an Asn-containing
peptide substrate, GN12-GL (Fig. S2). Seed powder from frozen
fresh M. cochinchinensis seeds was suspended at pH 6 with a
cocktail of EDTA, β-mercaptoethanol and serine protease in-
hibitor. After centrifugation, ligase activity in the clarified
crude solution was assessed using GN12-GL at room temper-
ature. Incubation with the crude M. cochinchinensis seed ex-
tracts yielded the desired cyclic cGN12 and linear peptide
GN12, thus confirming the presence of legumain(s) in
M. cochinchinensis seeds (Fig. S2).

To determine the corresponding legumain sequences, we
obtained a transcriptome assembly of M. cochinchinensis using
total RNA isolated from fresh seeds that was sequenced by the
Beijing Genomics Institute (BGI). The resulting transcriptome
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was deposited under NCBI SRA accession no. PRJNA655570.
Precursor sequences of butelase-1 and OaAEP1b were used to
search for sequences homologous to those of legumains. Four
legumain precursors, designated McPAL1-4, were found in the
M. cochinchinensis transcriptome.

Pairwise global alignment showed that McPAL1 and
McPAL2 share 54.2% overall sequence identity and 67.1%
core-domain identity (Fig. S3). Compared with butelase-1,
McPAL1 and McPAL2 respectively have 50.5% and 66.0%
overall sequence identity, and 59.9% and 67.1% core-domain
sequence identity. McPAL3 had a lower degree of sequence
identity to McPAL1-2. Alignment of the full-length sequences
for McPAL1-4 with that of C. ternatea butelase-1 and
butelase-2, as well as human legumain (LGMN), revealed that
McPAL1-4 carry the catalytic triad of the legumain C13 family
comprising Asn70, His175, and Cys217 (numbering according
to McPAL1). In addition, McPAL1-3 exhibit signature
zymogen legumain domains consisting of a signal peptide, N-
terminal domain, AEP core domain, linker domain, and cap
domain. McPAL4 is a truncated sequence. Together, these
results confirmed that McPAL1-3 are new members of the
legumain family.

Du et al. identified two AEPs, MCoAEP1 and MCoAEP2,
from M. cochinchinensis transcriptomes (25). We compared
McPAL1 and McPAL2 with MCoAEP1 (accession no.
MK770254) and MCoAEP2 (accession no. MK770255) se-
quences using pairwise sequence alignment (Fig. S4), which
showed that McPAL1 has 99.2% identity with MCoAEP1,
which was not characterized by Du et al. due to its low
expression levels in a bacterial system. McPAL1 differs from
MCoAEP1 at two core domain residues and two cap domain
residues. McPAL2 and MCoAEP2 differed by ten residues:
five in the core domain, one in the linker region, and three in
the cap domain. Given that most of these variations are
outside the active site and substrate-binding pockets of these
ligases, they likely have minimal impact on enzymatic
activity.
Isolation, identification, and characterization of native
McPAL1 from M. cochinchinensis seeds

To isolate the first native legumain from the Cucurbitaceae
family, fresh M. cochinchinensis seeds were homogenized and
subjected to a two-step purification procedure including ion-
exchange chromatography and size-exclusion chromatog-
raphy. The purified enzyme had an apparent molecular weight
of 30 kDa as determined by SDS-PAGE (Fig. S5).

To determine the composition of the isolated ligases, we
performed in-gel trypsin and chymotrypsin digestion
followed by LC-MS/MS sequencing. The transcriptome of
M. cochinchinensis seed extract was used for database search
using PEAKS studio (Version 7.5). McPAL1 proenzyme
sequence has been identified with close to 75% core-domain
coverage (Table S1, Fig. S6). Only two peptides were from
McPAL2 and no fragments matched any region of McPAL3 or
McPAL4. In addition, we determined a seed lectin coeluted with
McPAL1 byMALDI-TOF-TOFMS/MSanalysis (Fig. S7). Thus,
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we concluded that McPAL1 is likely the most abundant legu-
main in M. cochinchinensis seeds.
Production of recombinant McPAL1 from E. coli and insect
cells

To characterize McPAL1, we expressed an unglycosylated
and glycosylated form in bacteria and insect cell systems,
respectively (Experimental procedures). The gene encoding
the complete McPAL1 amino acid sequence was cloned into
the respective expression vectors, with a His-tag for affinity
purification substituted for the signal peptide (Fig. 1A).
Following a three-step chromatographic purification process
that involved metal-affinity, anion exchange, and size-
exclusion chromatography (Experimental procedures), the
bacterial and insect cell systems yielded 1.5 and 5 to 10 mg/l,
respectively, of purified proenzymes.

We converted the McPAL1 proenzyme into the mature
activated formusing acid-activation that involves incubating the
McPAL1 proenzyme at pH 4.5 for 16 h at 4 �C in the presence of
0.5 mM N-lauroylsarcosine, 5 mM β-mercaptoethanol, and
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vated form (26, 27). Activated McPAL1 was further purified by
size-exclusion chromatography (Fig. 1B). Good results were
achieved for McPAL1 expressed from Sf9 insect cells, and re-
combinant McPAL1 produced from Sf9 cells was used for
subsequent experiments.
Substrate design to determine McPAL1 specificity and splicing
mechanism

MCoTI-I/II biosynthesis requires a splicing mechanism
involving first an Asn-specific endopeptidase activity and then
Asp-preferring ligase activity. This cleavage-coupled ligation
requires an N-terminal cleavage site in the MCoTI-I/II pre-
cursors with an Asn and Asp at the P1 positions of the N-
terminal tripeptide (DIN) and C-terminal ligation site (DAL),
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different lengths and sequences that mimic the linear pre-
cursor of MCoTI-II (Table 1). The Asp-containing model
peptide substrate GLRRGYSGSDAL (GD10-AL) contains the
C-terminal hexapeptide SGSDAL of the MCoTI-II precursor.
The tripeptide DAL is conserved in MCoTI peptides and
serves as the recognition motif for legumains (24). For com-
parison, we also prepared a similar shortened version of
MCoTI-II having an Asn at P1, GLRRGYSGSNAL (GN10-AL),
which contains the NAL-tripeptide motif.

To examine McPAL1 processing and cyclizing activity to-
ward the MCoTI-II precursor, we synthesized a mini-MCoTI-
II bi-Asx-substrate (DIN-GD10-ALEG) and a full precursor of
MCoTI-II (DIN-MCoTI-II-ALEG) containing both Asn and
Asp residues at the N- and C-terminal processing sites,
respectively. The mini-MCoTI-II peptide precursor was
designed as a flexible peptide precursor that lacks the three
cross-strand disulfides that provide conformational constraint
to the MCoTI-II substrate.

Peptides having sequences unrelated to that of MCoTI-II
were also synthesized to show the scope of substrates in
McPAL1-catalyzed reactions (Table 1). Since macrocycles
having between 10 and 20 amino acids have a high potential
for peptidyl drug development, most model peptides used here
were in this size range and could form cyclic peptides (28).

pH-dependent trimodal profile of McPAL1

Next, we determined the enzymatic profile of McPAL1 be-
tween pH 4 and pH 8 using GD10-AL and GN10-AL, a pair of
substrates that differ only in their P1 sites (D versus N)
(Table 1, Fig. 2). The reaction products were analyzed by C-18
reverse-phase HPLC (RP-HPLC) and MALDI-TOF.

In the acidic range between pH 4 and 6.5, McPAL1 acted
mainly as an Asp-ligase on the Asp-containing GD10-AL
peptide to yield the cyclic cGD10 (Fig. 2, A and C). In contrast,
McPAL1 acted bidirectionally on the Asn-containing substrate
GN10-AL to yield both the hydrolyzed linear product GN10
Table 1
McPAL1-mediated ligation on Asx-containing peptide substrates

Peptide substrate

Name Sequence Ring siz

GD10-AL GLRRGYSGSDALc 1
GN10-AL GLRRGYSGSNALc 1
DIN-GD10-ALEG DINGLRRGYSGSDALEG 1
DIN-MCoTI-II-ALEG DINGGVCPKILQRCRRDSD

CPGACICRGNGYCGSGSDALEG
3

GN10-AL GLRRGYSGSNALc 1
KN14-GL-pB1 KLGTSPGRLRYAGNGL 1
MrlA GVCCGYKLCHPCAGNGL 1
Hylaseptin GILDAIKAIAKAAGNGL 1
RN6-HV RLYRGNHV 1

P1 Asx residues are underlined.
a Average yield and standard deviations (SDs) were calculated based on experiments perf
b Number of amino acids in the cyclic products.
c Model peptide sequence derived from MCoTI-I/II (–GYSGSDAL).
d pH profile from pH 4 to 8, see Figures 2 and 3.
e GD10-ALEG (41%).
f N.D. Not detected in HPLC profiles.
g Based on single experiment.
h Cyclodimer (55 ± 2%) and cyclotrimer (11 ± 1%).
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and cyclic product cGN10 (Fig. 2, B and D). At pH 5, 42% of
linear GN10-AL and 7% of linear GD10-AL were detected, and
57% of cGN10 and 61% of cGD10 were detected (Table 1).
Although P1-Asp can shift the equilibrium toward ligation
(29), the predominant Asp-ligase activity of McPAL1 is un-
common for plant legumains. For example, AtLEGγ is a
stronger Asp-hydrolase than Asp-ligase at acidic pH (10).

The reaction profile changed when the pH was adjusted
from neutral to basic pH (i.e., pH 7–8). At pH 7, McPAL1
acted predominantly and efficiently as an Asn-ligase to yield
≥90% cyclic cGN10 from GN10-AL. The catalytic efficiency
(Kcat/Km) of McPAL1-mediated cyclization of GN10-AL at pH
7 was estimated to be 1.3 × 105 M−1s−1 (Fig. S8). Within the
same pH range, McPAL1 continues to act as an Asn-ligase, but
was largely inactive toward GD10-AL, with >90% of the
starting peptide remaining after 1 h. The turnover rate (kcat) of
the GD10-AL cyclization reaction was 0.98 s−1 at pH 5, and this
was nearly 50-fold slower than that of GN10-AL cyclization at
pH 7 (48 s−1) (Fig. S8). This result suggests that protonation of
an incoming amine nucleophile (−NH3

+) at acidic pH reduces
the ligation efficiency of McPAL1 compared with the depro-
tonated incoming amine (−NH2) present at basic pH.

Comparison of McPAL1 expressed from Escherichia coli
and insect cells showed that both forms had similar pH-
dependent profiles. With the P1-Asn substrate GN12-GL,
linear GN12 was the major product of McPAL1 produced from
E. coli at acidic pH, while the cyclic product cGN12 pre-
dominated at basic pH (Fig. S9A). Similarly, for Sf9-expressed
McPAL1, 37% and <5% of GN12 were observed at pH 5 and
pH 7, respectively (Fig. S9B).

Together, our results indicated a trimodal profile of
McPAL1 activity. At acidic pH, McPAL1 shows a bimodal
profile by acting as an Asn-specific hydrolase and an
Asp-specific ligase. At basic pH, McPAL1 is monomodal,
acting predominantly as an Asn-ligase for Asn-containing
peptides.
Reaction conditions Productsa

eb (a.a.) pH Time (h) Cyclic Linear

0 5d 0.7 61 ± 4 7 ± 1
0 5d 0.5 55 ± 15 42 ± 18
0 5d 1.0 58 ± 5 41 ± 5e

4 5 3.0 95 ± 2 N.D.f

0 7d 0.5 93 ± 4 N.D.
4 7 0.2 91 ± 1 N.D.
5 7 0.2 90 ± 3 5 ± 2
5 7 0.2 77g 9
2 7 2.0 55 ± 2 (11 ± 1)h N.D.

ormed in triplicates.
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Asx-specific splicing enzyme from Momordica cochinchinensis
Processing of MCoTI-II precursors by McPAL1-mediated
splicing at acidic pH

To show that the bimodal catalytic action ofMcPAL1 at acidic
pH is shifted toward splicing activity, we used the mini-MCoTI-
II bi-Asx-substrate DIN-GD10-ALEG (Fig. 3A). We expected
that under acidic pH conditions, McPAL1 would first cleave the
substrate at theN-terminal tripeptide (DIN-) and then cyclize at
the C-terminal P1-Asp site. Indeed, we observed McPAL1-
mediated splicing of DIN-GD10-ALEG to form the expected
cyclic product cGD10 with both ends trimmed within a narrow
range of pH 4 to 6 (Fig. 3, B and C). The optimal condition for
McPAL1-mediated splicing of DIN-GD10-ALEGwas pH5.5, for
which a 60% yield of cGD10 within 30 min was obtained. At pH
6.5 and above, the cGD10 yield decreased significantly to<10%,
and accumulation of intermediate GD10-ALEG was observed.

Next, we used McPAL1 to mediate splicing of the native
MCoTI-II precursor DIN-MCoTI-II-DALEG, which contains
the folded and disulfide-constrained MCoTI-II domain flanked
by DIN and ALEG at the N- and C-termini, respectively
(Fig. 4). At pH 5, McPAL1 first cleaved after Asn−1 of the N-
terminal tripeptide DIN to produce the desired intermediate
MCoTI-II-DALEG and then cyclizes the intermediate at the
C-terminal P1-Asp of cyclic MCoTI-II (Fig. 4).

We also compared the pH-dependent ligase activity of
McPAL1 with that of two pH-independent ligases, VyPAL2
and butelase-1. These two PALs act as efficient cyclases against
J. Biol. Chem. (2021) 297(6) 101325 5
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GN10-AL and GD10-AL and have activity that is largely unaf-
fected at pH 5 to 8 (Fig. S10, A and B).

For processing of the MCoTI-II precursor DIN-MCoTI-II-
DALEG, VyPAL2 acted monomodally to produce cyclic
DIN-MCoTI-II at pH 5, and little Asn-hydrolase activity to
remove the N-terminal tripeptide DIN was observed (Fig. 4).
On the other hand, no butelase-1-mediated processing of the
MCoTI-II precursor was seen at pH 5 even after 12 h
(Fig. S10C). Taken together, McPAL1 acts as a splicing enzyme
at pH 5, and in this regard, its splicing activity is unique from
PALs such as VyPAL2 and butelase-1.

Cyclization of bioactive peptides by McPAL1-mediated ligation
at neutral to basic pH

McPAL1 is an efficient Asn-specific ligase at pH 7 for a
panel of peptides of various lengths (Table 1). Peptides in this
6 J. Biol. Chem. (2021) 297(6) 101325
panel included KN14-GL-pB1, MrIA, and hylaseptin, which are
derived from the bleogen pB1 of Pereskia bleo from the Cac-
taceae family (30), conotoxin (MrIA) from marine cone snail,
and hylaseptin-P1 from Hyla punctate (31), respectively
(Fig. S11). McPAL1 efficiently catalyzed N-to-C cyclization of
these peptides with >75% yield achieved within 12 min.

In addition, McPAL1 efficiently produced a cyclodimer of
the RLYR-containing peptide precursor RN6-HV derived from
protegrin PG-1 and tachylepsin TP-1, which both have known
antimicrobial activity (Table 1, Fig. S12) (32, 33). RN6-HV was
synthesized with a His-Val leaving group that is favored by
butelase-1. At 1 mM RN6-HV, a 65% yield of cyclodimer and
13% cyclotrimer were obtained following McPAL1 treatment
for 2 h at pH 7. The results show that McPAL1 retained high
reactivity toward other dipeptide leaving groups favored by
PAL, particularly at pH >6.5 and with Asn at P1.
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McPAL1 exhibits high stability against heat and basic pH
Legumains are generally known to be unstable at neutral to

basic pH (26, 34). Most PALs are inactivated at pH >8. In our
screening assays conducted during the discovery phase for
McPAL1, we found that McPAL1 was exceptionally tolerant to
very high pH; it retained high activity to cyclize hylaseptin at
pH 9, compared with VyPAL2, which is almost fully inacti-
vated at the same pH (Fig. 5, A and B). Based on this obser-
vation, we then explored the pH-dependent thermal stability of
McPAL1. Active McPAL1 showed pH-dependent thermal
stability, with the highest Tm recorded in the pH range from
4.5 to 6 (Fig. S13A). At neutral to basic pH, McPAL1 is more
stable compared with other PALs reported to date (Fig. 5C).
The melting temperature (Tm) of McPAL1 at pH 7.0 is 57 ± 1
�C, which is ≥15 �C higher than other PALs such as butelase-1
and VyPAL2. We also analyzed biophysical properties of
McPAL1 including isoelectric point (pI), net charge, and hy-
drophobicity (GRAVY score) in comparison with the other
two PALs (Figs. 5C and S13B). The relatively high pI (6.0) of
McPAL1 active form compared with butelase-1 (pI = 4.6) and
VyPAL2 (pI = 4.5) could be the main contributor to its higher
thermal stability under basic pH. This relatively higher pI is
attributed to the presence of more positively charged residues
and less negatively charged residues in the active form of
McPAL1 relative to butelase-1 and VyPAL2 (Fig. S14).
Reducing the negative/positive ratio of surface residues has
been previously shown to improve the resistance of an enzyme
at alkaline pH conditions (35). The similar GRAVY scores for
the three enzymes suggested that hydrophobic interactions are
not a major differentiating factor for the observed pH-
dependent thermal stability of McPAL1.

To investigate the underlying molecular basis of the unusual
trimodal enzymatic nature of McPAL1, we compared a model
structure of the McPAL1 substrate binding with crystal
structures of other legumains and PALs (Fig. 6). In previous
studies on VyPAL2 and butelase-2, we introduced and vali-
dated the concept of ligase activity determinants (LADs),
which are two motifs that flank the S1 site and significantly
affect enzymatic directionality (9, 16). LAD1 is a tripeptide
motif that shapes the S2 pocket. The first residue of the LAD1
tripeptide is often an aromatic residue. In PALs, the middle
residue (also termed “Gate-keeper”) of LAD1 is a hydrophobic
residue such as Val, Ile, or Cys, which plays a major role in the
ability of PALs to change the substrate acyl-enzyme
J. Biol. Chem. (2021) 297(6) 101325 7
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conformation to one that favors an amine nucleophile rather
than water (9). In contrast, most proteolytic legumains have a
Gly at this position. In McPAL1, Gly247 occupies the gate-
keeper position, but the overall conformation of McPAL1’s
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LAD1 motif, composed of YGT (Fig. 6), is more similar to that
of PALs (VyPAL2) compared with proteolytic legumains such
as butelase-2. As such, we speculate that the LAD1 motif,
which plays a gate-keeper role in McPAL1, may also have
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synergistic effects on neighboring residues, contributing to its
trimodal enzymatic profile. LAD2 is a dipeptide motif near the
S10 pocket. In PALs, LAD2 is AP/GA/AA, but in AEPs is
commonly GP. The slightly increased hydrophobicity by the
inclusion of one or two Ala residues is believed to favor access
of peptides rather than water. McPAL1 adopts a typical pro-
teolytic legumain LAD2 as Gly-Pro, which could explain the
Asn-hydrolase activity of McPAL1 at acidic pH.

Notably, the S20 pocket of McPAL1 is exceptionally hy-
drophobic. The P20-S20 hydrophobic interaction is proposed to
be critical for the Asx-ligase activity of legumains by pro-
longing the retention time of the leaving group and blocking
access of water to the S1 catalytic center (29). Therefore, it is
reasonable to hypothesize that the strong P20-S20 interaction
between a substrate and McPAL1 could partially compensate
for the hydrophobicity of its LAD2 to further facilitate ligase
activity. Taken together, McPAL1 displays enhanced Asx-
ligase activity compared with other legumains and maintains
Asn-hydrolase activity at acidic pH, which make McPAL1 a
unique trimodal enzyme.
Discussion

This study reports the discovery and characterization of a
splicing legumain designated McPAL1 that was isolated from
the squash plant M. cochinchinensis and is involved in the
production of trypsin inhibitors MCoTI-I and MCoTI-II. We
have successfully expressed McPAL1 using both the E. coli and
Sf9 insect cell systems. While we do not observe any significant
difference in the enzymatic activity of McPAL1 from these two
expression systems where they produce different glycosylation
states, we have mainly used McPAL1 obtained from insect cell
expression in this work as it affords higher expression yield
than E. coli. The surface glycosylation may increase the mo-
lecular stability particularly against Asn-specific proteolysis
and therefore led to a higher expression yield.

McPAL1 splicing activity mediates maturation of MCoTI-II
from its linear precursor. This splicing activity occurs in a
narrow pH range of pH 4 to 6 that favors Asn-hydrolysis and
Asp-ligation. At pH >6, McPAL1 Asp-ligation is the
rate-limiting step since S1 pocket binding is reduced by
deprotonation of the P1-Asp side chain (4). The combination
of an N-terminal Asn and a C-terminal Asp at processing sites
during MCoTI-I/II splicing also occurs in the maturation of
SFTI-1 and PawL1-type orbitides from preproalbumin
precursors as reported by Mylne and colleagues (36, 37). These
evolutionarily distant examples suggest that a legumain-
mediated mechanism of Asn- and Asp-specific tandem pro-
cessing could be a common strategy for cyclic peptide matu-
ration in acidic vacuoles of plants. To our knowledge, this is
the first report of isolation and characterization of a native and
dual-functional AEP from the cucumber family that can act as
a splicing enzyme. In contrast to canonical legumains that have
predominant proteolytic activity at acidic pH (AEP, Fig. 7 left
panel), or PALs that have pH-independent ligase activity (PAL,
Fig. 7 right panel), McPAL1 can act as a splicing legumain that
displays a trimodal catalytic profile (Fig. 7 middle panel).
Under acidic conditions, McPAL1 catalyzes hydrolysis of Asn-
Xaa bonds and forms Asp-Xaa bonds through Asp-specific
ligation. At neutral-to-basic pH, the catalytic profile of
McPAL1 reverses to catalyze formation of only Asn-Xaa bonds
(Fig. 7). The pH-dependent trimodal activity of McPAL1
suggests that it has different functions in different cellular
compartments, including, but not limited to, cleaving, ligating,
and splicing of target proteins in vivo to enhance the molecular
diversity of M. cochinchinensis tissues. Furthermore, this
particular trimodal activity provides new possibilities for
orthogonal ligation with other ligases including PALs (31,
38–43), as well as chemo-enzymatic peptide and protein la-
beling (44).

Cyclization and cyclo-oligomerization of nonstructural P1-
Asx bioactive peptides via McPAL1 suggests that McPAL1
could be a promising tool for peptidyl drug development.
Peptide macrocycles having 10 to 20 amino acid residues are
gaining interest for drug discovery because of their enhanced
metabolic stability against proteolytic degradation and their
larger footprint compared with small molecules that together
could minimize off-target side effects (45). Furthermore, the
unusually high thermal stability and tolerance to basic pH
suggest that McPAL1 could have value for protein/peptide
bio-orthogonal labeling and precision biomanufacturing at
pH >8.

In conclusion, McPAL1 is an unusually stable Asx-ligase
that displays a pH-dependent trimodal enzymatic profile. At
acidic pH, McPAL1 acts first as a splicing enzyme to form a
cyclic peptide by removing both the N(Asn)- and C(Asp)-
termini of the precursors flanking the mature domain and
then as a ligase to promote head-to-tail cyclization. At basic
pH, McPAL1 acts predominantly as an Asn-ligase. Thus, the
discovery and characterization of McPAL1 provide insights
J. Biol. Chem. (2021) 297(6) 101325 9
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into the biosynthesis of cyclic peptides and its potential value
as a tool for synthesis, semisynthesis, and modification of
peptides and proteins.

Experimental procedures

Screening of Asx-preferring ligases from M. cochinchinensis
seeds

One gram of fresh, decoated M. cochinchinensis seeds was
snap-frozen in liquid nitrogen and then ground into a powder.
The powder was extracted with 15 ml extraction buffer
(50 mM sodium phosphate buffer, 1 mM EDTA, 5 mM β-
mercaptoethanol, 1 mM PMSF, pH 6.0) for 30 min on ice.
After centrifugation, the supernatant was collected. The
extract supernatant was then mixed 1:10 (v/v) with 25 μM of
the peptide substrate GLYRRGRLYRRNGL in 20 mM sodium
phosphate buffer containing 5 mM β-mercaptoethanol, pH 6.0
for 5 min at room temperature. The relative ligase activities
were analyzed by mass spectrometry based on the formation of
the cyclic peptide GLYRRGRLYRRN.

Isolation of native McPAL1 from M. cochinchinensis seeds

FreshM. cochinchinensis seeds (100 g) were homogenized in
500 ml of the abovementioned extraction buffer. Large cellular
debris was removed with cheesecloth, and small particles and
insoluble materials were removed by centrifugation at 15,000g,
4 �C for 20 min. The extraction was conducted at 4 �C to
minimize protein degradation. After centrifugation, the su-
pernatant was applied to a flash column containing a 100 ml
slurry of SP-Sepharose Fast Flow cation-exchange resin (GE
Healthcare). The column was washed with buffer A (50 mM
citrate buffer, 1 mM EDTA and 5 mM β-ME, pH 5.0) and
eluted with buffer B (50 mM citrate buffer, 1 mM EDTA,
5 mM β-ME and 100 mM NaCl, pH 5.0). The eluent was
placed in 10-kDa cutoff dialysis tubing and dialyzed overnight
against 12 l of buffer A. The dialyzed sample was filtered and
loaded onto four 5 ml HiTrap SP Sepharose high-performance
columns connected in series (GE Healthcare) using an ÄKTA
FPLC platform with a linear gradient of 0 to 1 M sodium
chloride at a flow rate of 5 ml/min (buffer A: 50 mM citrate
buffer, 1 mM EDTA and 5 mM β-ME, pH 5.0; buffer B: 50 mM
citrate buffer, 1 mM EDTA, 5 mM β-ME, and 1 M NaCl, pH
5.0) over 120 min. Fractions with peptide cyclase activity were
pooled and further subjected to size-exclusion chromatog-
raphy with a HiLoad 16/600 Superdex 75 prep grade column at
a flow rate of 0.8 ml/min. SDS-PAGE and Coomassie Blue
staining were used to analyze enzyme purity.

RNA isolation and transcriptome sequencing

RNA was isolated from fresh M. cochinchinensis seeds by a
protocol based on that described by Djami-Tchatchou and
Straker using CTAB extraction buffer (2% cetyl-
trimethylammonium bromide, 2% polyvinylpyrrolidone,
100 mM Tris-HCl (pH 8.0), 2 mM EDTA, 2 M NaCl, 2% β-
ME). RNA library construction was performed using 1 μg of
total RNA (RIN value >7.0) with an Illumina TruSeq mRNA
Sample Prep kit (Illumina, Inc). Briefly, poly-A-containing
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mRNA molecules were purified using poly-T-attached mag-
netic beads. Following purification, mRNA fragmentation was
performed using divalent cations at elevated temperatures.
RNA fragments were reverse-transcribed into first-strand
cDNA using SuperScript II reverse transcriptase (Invitrogen)
and random primers, followed by second-strand cDNA syn-
thesis using DNA Polymerase I and RNase H. The cDNA
fragments were subjected to end repair processing, addition of
a single “A” base, and ligation of the indexing adapters. The
products were then purified and enriched using PCR to create
the final cDNA library. The libraries were quantified using
qPCR according to the qPCR Quantification Protocol Guide
(KAPA Library Quantification kits for Illumina Sequencing
platforms) and qualified using TapeStation D1000 ScreenTape
(Agilent Technologies). Indexed libraries were sequenced at
the Beijing Genomics Institute (China) using the HiSeq2500
platform (Illumina).

Sequencing of native McPAL1 by LC-MS/MS

Isolated SDS-PAGE gel bands containing McPAL1 was
reduced with 5 mM DTT and alkylated using 20 mM iodoace-
tamide at pH 7.0 at 37 �C. In-gel digestion of the intact proteins
was performedwith 10μg/ml trypsin (Pierce,MSgrade, Thermo
Scientific) at pH 7.8 at 30 �C overnight or 15 μg/ml chymo-
trypsin (Pierce, MS grade, Thermo Scientific) at pH 7.8 at 37 �C
overnight. Digested peptideswere extracted fromgel pieceswith
50% acetonitrile (0.1% formic acid). Solvents were completely
removed using Speedvac and peptides were redissolved in 0.1%
formic acid in Milli-Q water. Preliminary sequencing was per-
formed using MALDI-TOF-TOF (Applied Biosystems, 4800)
and analyzed with MASCOT Daemon using the long open
reading frames extracted from M. cochinchinensis seed tran-
scriptome by TransDecoder version 5.1.1 (https://github.com/
TransDecoder) as templates for database search where
50 ppm MS and 0.5 Da MS/MS tolerances were applied. A
galactose-specific lectin was identified in the fraction with
McPAL activity (Fig. S7). To obtain a better resolution, digested
peptide samples prepared with the samemethod were subjected
to LC-MS/MS sequencing on a UHPLC (Dionex UltiMate 3000,
Thermo Scientific Inc) linked to a mass spectrometry (Orbitrap
Elite, Thermo Scientific Inc). Fragmentation of peptides was by
higher-energy CID. Resultant spectra from both trypsin and
chymotrypsin digested samples were combined and analyzed
using PEAKS studio (version 7.5, Bioinformatics Solutions) with
10 ppmMS and 0.05 Da MS/MS tolerances. Translated mRNA
sequences encoding McPAL1-4 were used as templates for
Database search. Peptide fragments for McPAL1 were sum-
marized in Table S1.

Recombinant expression, purification, and activation of
McPAL1 from E. coli

DNA encoding full-length M. cochinchinensis McPAL1
without the putative signaling domain (residues Lys37-Ala490)
was cloned and expressed as an ubiquitin fusion protein in T7
shuffle E. coli cells (New England BioLabs). Transformed cells
were grown at 30 �C in LB broth to mid-log phase whereupon
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the temperature was lowered to 16 �C, and expression was
induced with 1 mM isopropyl–D-1-thiogalactopyranoside
(IPTG) for 20 h. Cells were harvested by centrifugation and
resuspended in lysis buffer (50 mM Tris-HCl, 150 mM NaCl,
1mMEDTA, 0.1%Triton-X100, 1mMPMSF, pH 7.5), followed
by sonication and removal of cellular debris by centrifugation.

Lysates containing recombinant McPAL1 were further pu-
rified by metal affinity using a Ni-NTA column (Bio-Rad). His
tag-containing proteins bound to the column were eluted us-
ing 50 mM Tris-HCl, 300 mM imidazole, pH 8.0. Ni-NTA
elution fractions containing the protein were dialyzed over-
night and loaded onto 5 ml HiTrap Q Sepharose high-
performance columns (GE Healthcare). Bound proteins were
eluted with a continuous salt gradient of 0 to 30% buffer B
(20 mM Bis-Tris, 2 M NaCl, pH 7) for 15 column volumes.

To self-activate McPAL1, 1 mM EDTA and 1 mM Tris(2-
carboxyethyl)phosphine hydrochloride were added, and the
pH was adjusted to 4.5 using glacial acetic acid before incu-
bation for 5 h at 37 �C. The supernatant was purified using an
SEC column (elution buffer containing 100 mM citric buffer,
50 mM NaCl, pH 4.5). Protein concentration was measured by
UV absorbance at 280 nm.
Recombinant expression of McPAL1 in Sf9-insect cells

A baculovirus expression vector system was used to produce
the secreted form of McPAL1 in Sf9 cells. The cDNA sequence
encoding McPAL1 residues Lys37 to Ala490 was cloned into a
donor plasmid modified from the pDP1381 plasmid (46),
which was a generous gift from Dominic Esposito. Briefly, the
open reading frame encoded an N-terminal gp64 secretion
signal, a hexahistidine tag, and tobacco etch virus protease site
fused to the McPAL1 sequence. The L21 50-UTR sequence
(47), which can increase protein expression, was added be-
tween the late polyhedrin promoter and the open reading
frame. Cloning and propagation of the donor plasmid were
done in the E. coli DE14 strain (46) with ampicillin selection.
We used the DE32 strain (48), which was also provided by
Dominic Esposito, to produce the Δ(chitinase-cathepsin)
baculoviral bacmid. Verified donor plasmid was transformed
into chemically competent DE32 cells using a heat shock
method. Cells recovered in SOC media for 2.5 to 3 h before
they were used to directly inoculate 2 ml LB supplemented
with kanamycin and incubated overnight at 37 �C with
shaking. We bypassed plating and blue-white colony screening
as this combination of donor plasmid and bacmid production
strain routinely yields >95% white colonies. Recombinant
bacmid was purified from the DE32 cell pellet using iso-
propanol precipitation and finally resuspended in 50 μl sterile
water. After confirming the presence of the desired insert by
PCR using polyhedrin promoter and M13 reverse primers, the
bacmid was transfected into Sf9-cells using Cellfectin (Gibco)
per the manufacturer’s instructions. P0 baculovirus in the
culture supernatant was collected 5 days posttransfection,
supplemented with 10% fetal bovine serum (Gibco), and sub-
sequently amplified to P2 virus that was used to infect Sf9 cells
on a liter scale.
McPAL1 purification was achieved using three chromatog-
raphy steps. The media containing secreted zymogenic
McPAL1 was centrifuged at 8000g for 20 min at 4 �C. The pH
of the supernatant was then adjusted to 7.5 and injected into a
GE Excel affinity purification column. After binding to the
column, the protein was eluted using buffer A (20 mM HEPES
pH 7.5, 150 mM NaCI, and 5 mM β-ME) and buffer B (20 mM
HEPES pH 7.5, 150 mM NaCI, 5 mM β-ME, and 500 mM
imidazole). The eluted target protein was then diluted tenfold
using buffer A and further purified by ion exchange and size-
exclusion chromatography.

Activation of zymogenic McPAL1 was performed at pH 4.5
for 16 h at 4 �C. N-lauroylsarcosine was added to the activation
buffer to prevent religation of the cap domain to the core
domain.

Solid-phase synthesis of peptides

All peptides used in this study were synthesized on a Liberty
Blue (CEM) automated microwave solid-phase synthesizer
with Rink-amide resin (GL Biochem), using Fmoc/tBu chem-
istry. In the synthesis, five equivalents of the amino acid were
used for each coupling cycle with PyBOP activation. A double-
coupling protocol was performed if needed. All peptides were
cleaved in 95% TFA/2.5% H2O/2.5% TIS cleavage solution and
purified by prep-RP-HPLC.

In vitro cyclization assays

Enzymatic reactions were performed in 30 to 40 μl reaction
buffer (20 mM sodium phosphate/citrate, 1 mM DTT or
TCEP, and 1 mM DTT) at 37 �C and a pH ranging from 4.0 to
8.0. After the reaction, the mixture was quenched using tri-
fluoroacetic acid (TFA) to adjust the pH to <2. The quenched
reaction mixtures were subjected to MALDI-TOF mass
spectrometry using a C18 analytical column (Aries widespore).
Peaks were collected, and the identity was characterized by
either MALDI-TOF mass spectrometry or electrospray ioni-
zation (ESI).

Reaction product analysis by MALDI-TOF MS

Molecular weights of all peptides characterized in this study
were determined on an Applied Biosystem 5800 matrix-
assisted laser desorption/ionization time-of-flight mass spec-
trometer (MALDI-TOF MS). The peptide samples were mixed
1:1 with CHCA (α-cyano-4-hydroxycinnamic acid) matrix
prepared at 5 to 6 mg/ml in 80% (v/v) acetonitrile and 0.1% (v/
v) formic acid. The peptide matrix mixture (�1 μl) was
spotted. The acquired spectra were analyzed using Data Ex-
plorer 4.1 software.

Quantification of reaction products by RP-HPLC

Reaction mixtures were quantitatively analyzed using
analytical-graded C18 column (Phenomenex, Aeris, 3.6 um,
C-18, 200 Å, 250 × 21.2 mm) for reverse-phase HPLC
(RP-HPLC). A general gradient used was 15 to 60% buffer B
(acetonitrile with 0.1% TFA) from 3 to 20 min followed by 60
to 90% in 1 min.
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Data availability

Transcriptomic data for M. cochinchinensis seed extracts
have been deposited with the National Center for Biotech-
nology Information (NCBI) under accession number
PRJNA655570. The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via the
PRIDE (http://www.ebi.ac.uk/pride) (49) partner repository
with the dataset identifiers PXD028325 and PXD028327. All
remaining data is presented in the main article and supporting
information.

Supporting information—This article contains supporting informa-
tion (11, 49).
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