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Abstract

Antibiotic chemotherapy effectively cures many infections caused by
susceptible bacterial pathogens. However, in some cases, even extended
treatment duration does not completely eradicate the pathogenic bacteria
from host tissues. A common model for underlying mechanisms assumes
the stochastic formation of bacterial persisters similar to observations in
laboratory cultures. However, alternative explanations related to the
complexity of infected host tissues could also be relevant. We discuss
several of these aspects and emphasize the need for integrated analysis as
a basis for new control strategies.
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Antibiotics have been saving the lives of millions of people.
For most bacterial pathogens, short-term treatments of a
few days effectively cure infections and prevent relapses'~.
However, in some cases such as tuberculosis and other chronic
infections such as deep-seated abscesses with Staphylococ-
cus aureus, severe typhoid fever, or polymicrobial infections of
patients with cystic fibrosis, extended treatments over months
and even years can fail to completely eradicate the patho-
gens from tissues, posing a risk for relapse (Figure 1A). Many
treatment failures are due to inheritable antibiotic resistance.
However, surprisingly, treatment failures also occur when
the pathogen retains full susceptibility to the antibiotics of
choice in laboratory tests. There is an urgent medical need
to improve the efficacy and shorten the treatments for these
patients on the basis of a detailed mechanistic understanding
of the problem. Several different factors influence antibiotic
activities against pathogenic bacteria in host tissues. Most
research groups active in the field focus on one particular
factor: the stochastic variation of pathogen cells. However, other
factors could be at least as important. In this review, we discuss
some of these aspects and stress the need for an integrated
analysis (Figure 1B).

Stochastic variation of bacterial properties in
laboratory cultures

Bacterial cultures show heterogeneous properties even under
completely homogeneous laboratory conditions indicating
important endogenous stochastic variation within bacterial
cells™. Exposure of bacterial cultures to lethal concentrations
of bactericidal antibiotics rapidly kills most bacterial cells,
but a small fraction of cells can survive for extended periods. It
is possible that similar processes occur also in infected host tis-
sues where they could contribute to incomplete eradication under
antimicrobial chemotherapy. Because this phenomenon is
readily observable in vitro, it has attracted the attention of a
large number of research groups.
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In many cases, the surviving small subset of bacteria repre-
sents non-growing remnant cells of a previous stationary cul-
ture that have an extended lag phase’. Such persisters are thus
one particular instance of the widely characterized exten-
sive heterogeneity of stationary-phase cultures’. A variety of
other stress conditions also lead to increased antibiotic toler-
ance, including low ATP levels®, over-expression of toxins or
unrelated proteins’, translation arrest'”'!, oxidative stress'’,
and pre-exposure of cells to sub-MIC levels of bactericidal
antibiotics"’. Importantly, even growing bacteria show widely het-
erogeneous kill rates indicating that dormancy is not absolutely
required for survival during antibiotic exposure'*", implying
alternative mechanisms leading to heterogeneous killing rates in
clonal populations. These include asymmetric cell division*'*"
with uneven partitioning of efflux pumps among daughter cells®,
heterogeneous expression of prodrug-activating enzymes'?,
transient gene amplifications’’, and heterogeneous induction
of specific stress responses'’.

Although endogenous stochastic variation in bacteria often
is assumed to play a major role in impairing antibiotic effi-
cacy, empirical evidence is surprisingly scarce in infected
tissues”. Some clinical isolates of Pseudomonas aeruginosa
and Escherichia coli from antibiotic-treated patients showed
increased persister frequencies’”, but this could also reflect
fitness advantages of persisters under hostile host condi-
tions or phage attacks. One argument against a general clinical
relevance of persisters is the effectiveness of short-term anti-
biotic chemotherapy against many pathogens, which readily
form refractory persisters in laboratory cultures'”. Persisters
thus might arise in patients but the host immune system seems
to be capable of eradicating them quickly””. Moreover, bacte-
riostatic antibiotics, which cause population-wide growth arrest
in bacteria and make them tolerant against other antibiotics,
are as effective as bactericidal antibiotics for the treatment of
most infectious diseases”. However, the distinction between
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Figure 1. Treatment failures and potential causes. (A) Incomplete eradication of bacterial pathogens during extended antimicrobial
chemotherapy causes a risk for relapses after termination of therapy. (B) Possible mechanisms that enable a bacterial subset (red) to survive
during treatment while the rest of the bacterial population (blue) is successfully eradicated.
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bacteriostatic and bactericidal antibiotics is not absolute, as many
“bacteriostatic” drugs can kill bacteria at higher exposure levels
or during extended exposure times or both”. In addition, trans-
lation arrest by bacteriostatic antibiotics might impair survival
in host tissues due to an inability to produce essential virulence
factors or stress defenses. Finally, non-growing persisters can
also occur in biofilms where they could escape clearance by
host phagocytes™.

Although the general relevance of bacterial persisters in
infectious diseases remains unclear”’, they might be crucial for
infections with frequent relapses even after extended treatment
durations®”. However, other much less studied mechanisms
could also contribute to infection relapse.

Pathogen physiology in host tissues

Clinical microbiology relies largely on standard in vitro assays
in rich media to assess antibiotic susceptibility of patho-
gens. The results often are predictive of therapeutic efficacy,
but pathogen physiology is significantly different under assay
conditions compared with infected host tissues’’. Genetic
screens in diverse pathogens typically have revealed many hun-
dreds of virulence genes that are specifically required in host
tissues but not in rich broth cultures, indicating large-scale
relevant functional differences. Several parameters that dif-
fer between tissues and broth cultures also have a major impact
on antibiotic activities. This includes®' oxygen tension®, carbon
dioxide tension’**, metabolite concentrations®, pH**", and anti-
microbial effector molecules of the host immune system such as
cationic antimicrobial peptides (CAMPs)* and nitric oxide®.
Limited nutrient supply and stress conditions can result in
slow pathogen proliferation, which strongly affects the activity
of most antibiotics*~*. Finally, pathogens can also adapt to
the antibiotic exposure™ and this adaptation might be more
successful when antibiotics gradually penetrate into the
infection site, compared with abrupt exposure in standard
in vitro assays. All of these effects might lead to poor
antibiotic efficacy, requiring extended treatment times.

Pathogen heterogeneity in host tissues

As an additional complexity, pathogens show significantly
increased single-cell heterogeneity in tissues and body fluids
of human patients and infected animals, compared with homo-
geneous laboratory cultures®*~'°. This includes wide variation
in bacterial growth rates, aggregation state, drug-efflux pumps,
metabolism, and stress responses. All of these parameters influ-
ence the activity of antimicrobials, and it is possible that patho-
gen subsets with favorable properties tolerate antimicrobial
exposure much better than their conspecifics, making eradi-
cation more difficult. Host-induced pathogen heterogeneity
can reflect inhomogeneous host microenvironments triggering
differences in bacterial physiology*~" but also host-induced
pathogen activities that change local microenvironments**.

An astonishing early finding was the differential recovery of
Mycobacterium tuberculosis from open and closed (that is,
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no connection to airways) cavities in the lung of patients with
tuberculosis™. Whereas drug-resistant M. tuberculosis recov-
ered from open cavities formed visible colonies on plates within
a few weeks, M. tuberculosis from closed cavities of the same
patients appeared only after a lag of many months. Strikingly,
these colonies showed full drug susceptibility, suggesting limited
selection for resistance development despite extended anti-
microbial treatment. Sputum of patients with tuberculosis
also contains mycobacteria with a wide range of cultivation
phenotypes™. A recent example that directly reveals heteroge-
neous bacteria physiology in tissues comes from Salmonella
mouse infection models. Salmonella shows local and transient
adaptations to divergent nutrient supply and disparate antimi-
crobial host attacks with reactive oxygen and nitrogen species’'.
The resulting heterogeneity in Salmonella growth rates has a
major impact on Salmonella eradication®".

Drug concentration at the site of infection
Antimicrobials must reach bacterial cells to execute their bac-
tericidal/bacteriostatic activities. Bacterial subsets hiding in
tissue microenvironments with poor drug penetration might
delay complete eradication during antimicrobial chemotherapy.
Indeed, host anatomy and biochemistry might provide physi-
cal or chemical barriers (or both) for drug penetration. This
includes the blood-brain barrier, bones, and serum proteins
that bind antimicrobials, thereby decreasing their free concen-
tration. Host inflammation increases tissue heterogeneity by
altering endothelial permeability and the formation of lesions
and abscesses. On the other hand, certain drugs such as fluo-
roquinolones, azithromycin, and bedaquiline accumulate in host
phagocytes™™’, which might lead to elevated drug concentra-
tions around the bacteria. Antimicrobial availability at the site of
infection depends on the intestinal absorption of orally adminis-
tered drugs, the distribution to the infected tissue, metabolism, and
excretion. All of these processes depend on the physicochemical
properties of the drug as well as the physiology of the patient,
which might vary during bacterial infection. Drug penetration
into accessible tissues can be measured by using microdialysis™,
but analysis of body fluids such as serum, cerebrospinal fluid,
tracheal secretions, or urine is more common. It is unclear how
representative these values are for drug availability around
the bacterial cells during infection. Indeed, novel methods
such as matrix-assisted laser desorption/ionization (MALDI)
mass spectrometry imaging demonstrate remarkable differences
in local drug concentrations in lesions compared with sur-
rounding lung tissue in tuberculosis patients and animals
infected with M. tuberculosis®*®. The emerging data suggest
that inhomogeneous drug exposure could be a crucial factor
for difficulties in eradicating M. tuberculosis. Unfortunately,
experimental data are lacking for most other infectious
diseases.

Conclusions

Antibiotic chemotherapy of most bacterial infections is highly
effective if the causative pathogen is susceptible to the anti-
biotic of choice. However, some infections require extended
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treatments to prevent relapses. Antibiotic-tolerant bacte-
rial subsets (“persisters”) as observed in laboratory cultures
might contribute to this problem. Alternatively, the host tissue
environment could be decisive by providing inhomogeneous
stress conditions and limiting drug distribution. To clarify these
issues, we need more integrated in vivo research exploiting
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recent single-cell approaches and complementary techniques
such as mass spectrometry imaging and three-dimensional
high-resolution whole-organ microscopy®-®”. A better under-
standing of the real problems impairing the chemotherapy of
such infections is critically important to devise novel strategies
for more effective and rapid treatments.
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