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Abstract

Background: Aggregatibacter actinomycetemcomitans is genetically heterogeneous and comprises distinct clonal lineages
that may have different virulence potentials. However, limited information of the strain-to-strain genomic variations is
available.

Methodology/Principal Findings: The genome sequences of 11 A. actinomycetemcomitans strains (serotypes a-f) were
generated de novo, annotated and combined with three previously sequenced genomes (serotypes a-c) for comparative
genomic analysis. Two major groups were identified; serotypes a, d, e, and f, and serotypes b and c. A serotype e strain was
found to be distinct from both groups. The size of the pangenome was 3,301 genes, which included 2,034 core genes and
1,267 flexible genes. The number of core genes is estimated to stabilize at 2,060, while the size of the pangenome is
estimated to increase by 16 genes with every additional strain sequenced in the future. Within each strain 16.7–29.4% of the
genome belonged to the flexible gene pool. Between any two strains 0.4–19.5% of the genomes were different. The
genomic differences were occasionally greater for strains of the same serotypes than strains of different serotypes.
Furthermore, 171 genomic islands were identified. Cumulatively, 777 strain-specific genes were found on these islands and
represented 61% of the flexible gene pool.

Conclusions/Significance: Substantial genomic differences were detected among A. actinomycetemcomitans strains.
Genomic islands account for more than half of the flexible genes. The phenotype and virulence of A. actinomycetemco-
mitans may not be defined by any single strain. Moreover, the genomic variation within each clonal lineage of A.
actinomycetemcomitans (as defined by serotype grouping) may be greater than between clonal lineages. The large genomic
data set in this study will be useful to further examine the molecular basis of variable virulence among A.
actinomycetemcomitans strains.
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Introduction

Gram-negative Aggregatibacter actinomycetemcomitans is assumed to

be the primary etiologic agent of localized aggressive periodontitis

[1] and has also been implicated in chronic periodontitis and

severe non-oral infections [2]. The bacterium has a complex

lifecycle. It is acquired through transmission from infected

individuals [3,4], and may initially colonize oral mucosa possibly

as a facultative intracellular pathogen [5,6]. The bacterium moves

from the initial oral colonization site to subgingival crevices and

competes with other bacteria in the niche. Successful establish-

ment of persistent colonization in subgingival crevices by A.

actinomycetemcomitans may lead to periodontal destruction and

development of periodontitis in susceptible individuals [7,8]. To

initiate a new cycle, the bacterium is transmitted by saliva to a new

host [4].

The virulence potential of A. actinomycetemcomitans appears to

vary among strains. Specific serotypes/clonal types of A.

actinomycetemcomitans have been reported to be over-represented in

periodontitis [9,10]. Subjects infected by strains of serotype b JP2

clone (defined by a 530-bp deletion in the promoter region of the

leukotoxin operon) were shown to be at a higher risk of exhibiting

progressing periodontal disease or developing aggressive peri-

odontitis than by strains of ‘‘non-JP2 clones’’ [7,11]. The within-

species variable virulence may be attributed to strain-to-strain

variation in genome content and regulation of virulence gene

expressions [12,13]. Comparative genomics of A. actinomycetemco-

mitans strains may yield insight to the molecular basis of such

variation.

The complete genome sequence of A. actinomycetemcomitans

serotype b strain HK1651 has been available since 2002 (http://

www.genome.ou.edu/act.html). The genome sequences of a
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serotype a strain D7S-1 and serotype c strain D11S-1 were

recently published by our laboratory [14,15]. In the present study,

the genome sequences of an additional 11 A. actinomycetemcomitans

strains were generated de novo, and combined with the three

available genome sequences for comparative genomic analysis.

The protein-coding genes of the genomes were compared among

strains to determine the size of the core and flexible gene pools, the

pangenome, the gain/loss of putative virulence determinants, and

to identify genomic islands within each strain. The results

demonstrated substantial differences in genomic content that

included functionally undefined genes, well-established virulence

determinants and newly identified genomic islands among the 14

A. actinomycetemcomitans strains.

Results and Discussion

Genome sequencing, gene finding and annotation
Table 1 provides a summary of the 11 strains sequenced in this

study as well as the three previously sequenced strains of A.

actinomycetemcomitans. These strains were recovered from the

subgingival plaque of non-cohabiting individuals with different

periodontal disease diagnoses (periodontally healthy, gingivitis,

chronic periodontitis, and aggressive periodontitis), and included a

strain of JP2 clone (HK1651).

The % G+C of the genomes is in the range of 43.9–44.9 as

expected for the species. Individual genomes varied in size from

2.02 to 2.38 Mb (mean6S.D: 2.1760.12 Mb). Excluding RNA

genes, individual genomes contained 2,442–2,880 protein-coding

genes. The numbers of protein-coding genes represent an upper

limit since they were identified by a combination of different

approaches and included genes that were relatively short (100–

200 bp). Also, the results included genes that may belong to

plasmids or phages. Overall, the genomic variations in size or the

numbers of protein-coding genes were ,20% between any two

strains.

The sequence quality of the 11 A. actinomycetemcomitans genomes

was high (see Table S1 for detail of sequence quality). The depths

of the genome sequencing were 166 to 436. The percentage of

Q39 (ie, the percentage of bases with a quality score of less than or

equal to 39 which is equivalent to an error rate of approximately 1

in 10,000 bases) was less than 1% in 11 of the 12 genomes, and

only 1.6% in the remaining genome.

A total of 33,626 predicted genes were found in the genomes of

14 A. actinomycetemcomitans strains and grouped into 3,338

homologous gene clusters. Gene members within each homolo-

gous gene cluster showed at least 75% DNA sequence similarity to

the cluster representative sequence (the longest member) suggest-

ing meaningful homologous gene grouping result (see Figure S1).

The homologous gene clusters data used in this study can be

accessed by using our online tool, which can be found at http://

expression.washington.edu/genetable/script/gene_table_viewer.

A more detailed description of our homologous gene grouping

method as well as our web tool for browsing through the

homologous gene cluster data will be presented in a separate

paper.

Two approaches were employed in this study to overcome

possible sequencing errors, missed sequences and fragmented

genes expected in the draft genomes. First, the gene clusters were

analyzed instead of the individual genes. By using this approach

the split genes were recognized and assigned to the same gene

clusters. Second, the representative gene sequences of each gene

cluster were used to search for homologs in the genomes. To

validate our approaches, we analyzed the gene prediction results

using the complete genomes of strains D7S-1 and D11S-1 and the

unfinished genomes (ie, contigs derived from 454 sequencing) of

the strains. Using the unfinished genomes would have missed a

total of three out of 5,237 genes between these strains (Table 2).

Our approaches also avoided common sequencing errors

involving polynucleotides. As an example we identified a

sequencing error in ltxC of strain D7S-1, which missed a ‘‘T’’ at

the end of a poly-T track at the nucleotide coordinates 601,187–

601,190 (sequencing data not shown). Importantly, the gene was

correctly identified in spite of the sequencing error.

Phylogenetic analysis of A. actinomycetemcomitans and
closely related species

The sequences of 25 housekeeping genes (a total length of

17,840 bp) (Table S2) common to Aggregatibacter actinomycetemcomi-

tans and related species (Aggregatibacter aphrophilus, Haemophilus

influenzae, Haemophilus somnus, Haemophilus ducreyi 35000HP, and

Mannheimia haemolytica) were used for phylogenetic analysis. The

results are shown in Figure 1. Strains of serotypes a, d, e and f

(except serotype e strain SC1083) formed a group, while serotypes

b and c strains formed a separate group. The serotype e strain

SC1083 appeared to be equally distinct from the two major A.

actinomycetemcomitans groups. To the best of our knowledge, this is

the first study that used the sequences of a large number of

housekeeping genes for phylogenetic analysis of major serotypes of

A. actinomycetemcomitans. The results are in agreement with previous

studies that used limited numbers of genetic markers or genome

alignment for phylogenetic analysis of A. actinomycetemcomitans

[16,17,18,19]. The data suggest a major evolutionary division

between the group of serotypes a, d, e and f strains and the group

of serotypes b and c strains.

The heterogeneity within the serotype e strains of A.

actinomycetemcomitans found in our study has been suggested

previously. Dogan et al. [20] distinguished three groups of

serotype e strains by AP-PCR typing and by sugar fermentation

profiling or two genotypes based on the restriction analysis of the

apaH amplification product. Also, two groups of serotype e strains

of A. actinomycetemcomitans were identified (e and e9) based on 16S

rRNA gene sequence similarity and amplified fragment length

polymorphism typing [21]. In this study, strain SC1083 could be

assigned to the serotype e9 and the strain SCC393 to the

conventional serotype e group based on the signature sequences of

the 16S rRNA genes described by Reijden et al. [21]. It is

tempting to speculate that each subtype of serotype e strains may

represent a distinct clonal lineage. Additional serotype e strains of

both subtypes should be examined to verify this possibility.

Size of the core genome, flexible gene pool, and
pangenome

Counting protein-coding genes only, the size of the pangenome

(the total unique genes of the 14 strains) was 3,301 genes, which

included 2,034 core genes (genes found in all strains) and 1,267

flexible genes (present in some but not all 14 strains). The data was

used to further assess the size of the core gene pool and the

pangenome by mathematical modeling (Figure 2). The core gene

pool approached 2,060 genes and the addition of new strains for

analysis beyond the 14 examined strains was not expected to

significantly affect its size (Figure 2A). The pangenome of A.

actinomycetemcomitans was found to be open-ended (Figure 2C).

Sixteen new genes are estimated to be added to the pangenome for

each additional strain sequenced (Figure 2B).

The distribution patterns of the flexible genes (subgrouped

based on the numbers of strains sharing the genes) in individual

strains are illustrated in Figure S2. Within each strain 16.7–29.4%
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of the genome belonged to the flexible gene pool. Figure 3 shows

the functional classification of core and flexible genes by COG

super-functional (Figure 3A) or functional category (Figure 3B). As

expected, the vast majority of genes making up the core genome

belonged to the groups of housekeeping functions. As is common

in most bacteria, about one-fourth of the shared genes were

assigned to the category of poorly characterized proteins,

suggesting that many aspects of basic A. actinomycetemcomitans

biology still need to be explored. Genes associated with

housekeeping functions were also found within the flexible gene

pool but less well-represented there, whereas poorly characterized

genes comprised the majority of the flexible pool; 951 out of 1,267

(75%) flexible genes were classified as poorly characterized

(Figure 3A). One hundred and sixty-seven of the remaining 316

flexible genes (53%) are associated with mobile and extrachromo-

somal elements.

In this study the core genome of A. actinomycetemcomitans accounts

for 70.6% to 83.3% of any single genome. The sizes of the core

genome or the flexible gene pool of A. actinomycetemcomitans are not

unusual in comparison to other bacterial species. Welch et al. [22]

examined three strains of Escherichia coli and showed that less than

40% of the genomes were shared. Presumably the size of the core

genome will be even smaller with additional E. coli strains included

for comparison. In a study of 12 Procholorococcus isolates, the size of

the core genome approached 1,250 genes, or from 40% to 67% of

the genomes of individual isolates. Among Streptococcus agalactiae

strains 80% of the genome of any strain was shared [23].

Genome comparison among A. actinomycetemcomitans
strains

Figure 4 provides a summary of strain-to-strain comparisons of

protein-coding genes of the genomes. Depending on the pair of

strains compared and the direction of the comparison, the

percentage of genes present in one genome but not in another

ranged from 0.4% to 19.5%. Two groups of strains were

recognized based on the similarity matrix. One group was formed

by the strains of serotypes a, d, e (except strain SC1083) and f. The

other group was formed by the strains of serotypes b and c. The

serotype e strain SC1083 did not seem to follow the pattern. Two-

way hierarchical clustering analysis of the flexible genes also

illustrated the same patterns of two major groups and the

distinctiveness of strain SC1083 (Figure 5). The segregation in

the pattern of genomic variation among strains mirrored that

found in phylogenetic analysis using housekeeping genes (Figure 1).

The natural population of A. actinomycetemcomitans is clonal, with

each serotype representing a distinct clone lineage [18]. However,

the extent of the genomic variation within individual clonal

lineages has not previously been known. In this study multiple

strains of each of the serotypes a, b, c and e were available for

comparison. The strain-to-strain variations in genome content

were 0.4–11.9% for serotype a strains, 10.5–16% for serotype e

strains, 1.8–6.3% for serotype b strains, and 1.6–9.5% for serotype

c strains (Figure 4). The variations between serotypes a and e were

1.2–19.5%, and between serotypes b and c were 3.0–12.3%.

Therefore, the genomic variation within each serotype in some

instances may be as great as that between serotypes, suggesting

that phenotypic variation (including virulence potentials) of A.

actinomycetemcomitans strains cannot be expected to comply with the

serotype group.

Strain HK1651 belongs to the JP2 clone, which comprises

strains marked by the 530-bp deletion of the leukotoxin promoter

and are clonally identical based on multilocus enzyme analysis

[24,25,26,27]. The term ‘‘non-JP2 clones’’ has been loosely

applied to all serotypes of A. actinomycetemcomitans strains that do

not have the characteristic 530-bp deletion [7]. The present study

has clearly demonstrated significant variation of the genome

content among strains of different serotypes. Comparison of

genetically restricted JP2 clone to genetically diverse ‘‘non-JP2

clones’’ is not informative. Here we propose that the terms ‘‘JP2’’

and ‘‘non-JP2’’ should apply only to serotype b strains for a

meaningful comparison of the closely related group of bacteria

with or without the particular genetic marker.

Identification of genomic islands among A.
actinomycetemcomitans strains

A total of 171 genomic islands were found among the 14 A.

actinomycetemcomitans strains (Table 1). Some of these islands

resembled phage or plasmid sequences. Cumulatively 777 strain-

specific genes were found on these islands and represented 61% of

the flexible gene pool and showed similar COG distribution

pattern with the flexible gene pool.

On average 26.7% of the variable genes found on the genomic

islands in each genome (in comparison to 8.5% of the core genes)

displayed atypical nucleotide composition of at least two standard

deviations from the mean values in one of three base composition

values (%G+C, genome signature and codon bias) [28] (see Table S3

for the list of genomic islands, genes and base composition analysis).

Evidently nearly all genomic islands identified in this study were

novel. The functions of these islands remain to be elucidated.

The occurrence of each genomic island among the 14 strains is

provided in Table S4. On average each of the 171 islands was

found in 3.1 strains. Only one island was found to occur in more

than 10 strains. While the presence of the ‘‘strain-specific regions’’

in the genomes can be interpreted as genomic islands, or

alternatively as deletions (in the strains that do not have the

‘‘strain-specific regions’’), the latter could be ruled out based on the

distribution patterns of these islands among strains. It is less likely

that a majority of the A. actinomycetemcomitans strains would have

independently suffered a deletion in identical genomic regions.

Genomic islands may be identified by base composition analysis

as well as by phylogenetic approaches [29]. No single method is

considered optimal or universally accepted as the best approach

for identification of genomic islands. For example, base compo-

sition analysis may not identify ancient genomic islands due to

amelioration of the horizontally acquired genes over time [30]. In

this study, comparative genomics has the advantage of directly

identifying strain-specific DNA regions as putative genomic

islands. Prior to this study, there was limited information about

the genomic islands of A. actinomycetemcomitans. Eight genomic

islands have been identified in strain HK1651 (http://www.

oralgen.lanl.gov/_index.html), including four islands also identi-

fied independently in this study. Among the remaining four islands

three were species-specific genomic islands (ie, present in all

Table 2. Comparison of gene identification in complete and
draft genomes of A. actinomycetemcomitans strains D7S-1 and
D11S-1.

Strains D7S-1 D11S-1

Draft genome total length (bp)* 2,203,297 2,169,704

Complete genome total length (bp) 2,308,328 2,222,842

Total protein-coding genes in draft genome 2,579 2,655

Total protein-coding genes in complete genome 2,581 2,656

*106 large contigs for D7S-1 and 199 large contigs for D11S-1.
doi:10.1371/journal.pone.0022420.t002
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examined strains; the islands of tight adherence gene cluster,

leukotoxin gene cluster and LOS biosynthesis enzyme) and one

was too small (cytolethal distending toxin gene cluster, ,5 kb) to

be categorized as a genomic island in this study. Finally, this study

also identified 32 DNA regions that have many features of

genomic islands (Table S5). For example, each has one or more

flexible genes with atypical base compositions characterized by 1

standard deviation from the mean values, and carries mobile

elements and genes encoding phage proteins.

Variable presence of virulence determinants in A.
actinomycetemcomitans strains

It is known that the ,2.4 kb cdtABC operon of A. actinomyce-

temcomitans resides on a genomic island [31]. In this study a

homologous ,14 kb cdtABC-carrying genomic island (here

designated as cdt-island) was identified in five A. actinomycetemcomi-

tans strains based on its presence in a finished genome or its clear

delineation within single contigs of the unfinished genomes. These

strains were serotype a strains D7S-1 and D17P3, serotype d strain

I63B, serotype e strain SCC393, and serotype f strain D18P1. The

presence of the cdt-island in serotype a strain H5P1 was undefined

because it was distributed in three different contigs. While the

cdtABC operon was also found in the serotype b and c strains in this

study, no apparent genomic island was associated with the operon.

Instead, a ,5 kb homologous region that carried the ,2.4 kb cdt

operon was found among the serotype b and serotype c strains.

The ,14 kb cdt-islands identified in this study were different

from a previously reported genomic island (designated GIY4-1) of

cdtABC operon [31] in a serotype b strain Y4. Sequence analyses of

these two types of genomic islands showed a ,4 kb region of

Figure 1. Phylogenetic tree of A. actinomycetemcomitans and related species based on housekeeping genes. The phylogenetic
relationships of A. actinomycetemcomitans, A. aphrophilus, Haemophilus spp. and M. haemolytica strains were examined with 25 housekeeping gene
(a total length of 17,840 bp) sequences. Bootstrap values (100 replicates) are given at branch points. Bar represents substitutions per site. M.
haemolytica strain PHL213 was used to root the tree. Serotype information is given for all A. actinomycetemcomitans strains. The phylogenetic tree
was constructed and drawn using PHYLIP version 3.6.
doi:10.1371/journal.pone.0022420.g001
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sequence homology that included the ,2.5 kb cdtABC and its

upstream 1.3 kb region.

Interestingly, the ,14 kb cdt-island (and the cdtABC) was either

not acquired by strain SC1083 or was deleted from the strain

during its evolution. The evidence is shown in the comparison of

the locus between SC1083 and D7S-1 (Figure 6) (see Figure S3 for

sequence confirmation). The flanking regions of the cdt-island in

D7S-1 were found as a single contiguous DNA region in SC1083

without the island. Notably a Gly-tRNA gene was identified in

both strains. Genomic islands are often associated with tRNA

genes, which may serve as a preferred integration sites [32,33].

The results also suggest that the cdt-island was acquired en bloc in

some A. actinomycetemcomitans strains.

A putative virulence factor CagE [34,35] (designated as p-

cluster 03282 in this study) was found only in two serotype b

strains HK1651 (JP2 clone) and SCC2302. The significance of the

presence or absence of CagE to the virulence of A. actinomycetemco-

mitans strains remains to be examined.

A. actinomycetemcomitans strains are known to exhibit variation in

natural competence for DNA uptake. Naturally competent A.

actinomycetemcomitans strains were identified in serotypes a, d and e

but not in serotypes b or c [36]. One possible reason for the lack of

Figure 2. Analysis of pangenome and its components in A. actinomycetemcomitans. Analysis of the size of the core genome (A) and whether
the pangenome is open or closed (B and C). The number of common genes (A), new genes (B) and size of pangenome (C) are plotted as a function of
the number of n of strains sequentially added. Circles show all different strain combinations for each n. Squares are the averages for each n. The
continuous curve in A and B represents the least-squares fit of an exponential decay function. The extrapolated A. actinomycetemcomitans core
genome size and average number of new genes are shown as dashed lines in top and middle plots respectively. Based on the curve, the core
genome size is estimated to be about 2,060 genes. For every additional strain up to 16 new genes can be added to the open pangenome.
doi:10.1371/journal.pone.0022420.g002

Figure 3. Classification of core and flexible genes in A. actinomycetemcomitans. Genes were classified by the COG super-functional category
(A) and the COG functional category (B). As expected, the core genome is better represented by genes that provide the essential cell function for the
bacterium whereas the vast majority of the variable genome is made up of poorly characterized genes. Poorly characterized genes also represented
about one third of the core genome. This suggests that more studies are still needed to understand the basic biology of this bacterial species.
doi:10.1371/journal.pone.0022420.g003
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detectable natural competence is a common insertional inactiva-

tion of a comM gene in strains of serotypes b and c [37]. In this

study we found that all serotype a strains (D7S-1, D17P3, and

H5P1) and the serotype e strain SCC393 had an intact full-length

comM gene. In contrast, the comM of serotype b and c strains

(HK1651, ANH9381, SCC1398, SCC2302, D11S-1, D17P-2),

and the serotype e strain SC1083 and serotype f strain D18P-1,

were apparently inactivated by the insertion of a genomic island

(,14–25 kb) that showed significant homology among strains.

The results again suggest that the insertional inactivation of comM

gene occurred in some clonal lineages of A. actinomycetemcomitans.

The significance of such insertional event in the evolution of A.

actinomycetemcomitans remains to be investigated.

Genome comparison between A. actinomycetemcomitans
and Aggregatibacter aphrophilus

A. aphrophilus is closely related to A. actinomycetemcomitans. While

both species belong to the HACEK group that is often associated

with nonoral infections, the former is not considered a periodontal

pathogen. A preliminary comparative genomic analysis was

performed to examine the presence of known virulence determi-

nants of A. actinomycetemcomitans in the genomes of A. aphrophilus.

The homologs of fimbrial gene cluster [38,39], aae [40] and emaA

[41] were found in both A. aphrophilus and A. actinomycetemcomitans.

However, leukotoxin operon, cdtABC operon or kat (for catalase)

[42] were found in A. actinomycetemcomitans (except in strain SC1083

which does not have cdtABC) but not A. aphrophilus. It is premature

to conclude that the presence or absence of these virulence

determinants accounts for the distinctions in their periodontal

virulence potentials. Nevertheless, comparative genomics of closely

related oral haemophili may be a valid approach to examine the

etiopathogenesis of A. actinomycetemcomitans-associated periodontal

disease.

Finally, the strain-dependent genomic differences have impli-

cations in applications such as microarray design for A.

actinomycetemcomitans. With such genomic variation, a microarray

created based on the genome content of a single strain will not

provide comprehensive information if applied to a strain, or strains

with significant differences in genome content. We have applied

the information obtained in this study and designed a pangenome

microarray for A. actinomycetemcomitans (accessible through https://

earray.chem.agilent.com/earray/ under ‘‘Published Designs’’ by

species ‘‘Na’’. or alternatively, https://earray.chem.agilent.com/

earray/showPublishPageForLogin.do?action = showPublishResults

ForLoginPage&species = Na under ‘‘aa_array.100315’’), and success-

fully tested on clinical isolates for genome content analysis and for

transcriptome analysis (manuscripts in preparation).

Materials and Methods

Bacteria and genome sequences
Eleven clinical strains of A. actinomycetemcomitans (2, 3, 2, 1, 2, 1

strains of serotypes a, b, c, d, e, and f, respectively) were selected

for whole genome sequencing. These strains were cultivated from

Figure 4. Pair-wise genomic comparisons among A. actinomycetemcomitans strains. A heat map of the genome variation among 14 A.
actinomycetemcomitans strains is shown. The numbers in the box show the % of protein-coding genes found in one genome (left) but not another.
The data are organized by serotypes; a (D17P3, D7S-1, and H5P-1), d (I63B), e (SC1083), e (SCC393), f (D18P1), b (HK1651, ANH9381, SCC1398, I23C), c
(D11S-1, D17P2, SCC2302). The patterns of genome similarity mirror those found in phylogenetic analysis by 16S rRNA gene sequences or 25
housekeeping genes shown in Figures 1 and 2. The numbers in parenthesis on the left of the map indicate the numbers of protein-coding genes.
doi:10.1371/journal.pone.0022420.g004
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subgingival plaque of 11 noncohabiting individuals with different

periodontal disease diagnoses. All strains were verified as A.

actinomycetemcomitans by a 16S rDNA-based PCR assay and their

serotypes were determined as described previously [36,43,44,45].

A. aphrophilus ATCC 33389 (purchased from ATCC) was also

sequenced. The genome sequencing was performed using 454

pyrosequencing technology [46] and run on a Genome Sequencer

FLX Instrument (Software 1.0.53) following the manufacturer’s

instruction (Hoffmann-La Roche Ltd). The raw data were assembled

using the Newbler Assembler Software (Genome Sequencer 20,

Version 1.0.53), with default parameters. The Newbler Metrics of

454 sequencing and Genbank accession numbers are provided in

Table S1. The Genbank accession numbers are; ADOA00000000

(D17P-3), AEJK00000000 (H5P1), ADOC00000000 (ANH9381),

AEJQ00000000 (i23C), AEJP00000000 (SCC1398), AEJR00000000

(SCC2302), ADOB00000000 (D17P-2), AEJL00000000 (I63B),

AEJN00000000 (SCC393), AEJM00000000 (SC1083), AEJO-

00000000 (D18P-1) and AEWB00000000 (A. aphrophilus ATCC

33389).

Gene prediction and annotation
In addition to the 11 A. actinomycetemcomitans strains sequenced in

this study, the genome sequences of three previously sequenced A.

actinomycetemcomitans strains [14,15] (http://www.genome.ou.edu/

act.html), A. aphrophilus strain NJ 8700 [47] and ATCC 33389

were included in the analysis. The sequences were processed by

our in-house pipeline for gene prediction and annotation as

described previously [14,15]. Briefly, Glimmer3 [48], Exonerate

[49], and tRNAscan SE tools [50] were used to predict protein-,

rRNA- and tRNA-coding genes, respectively. All protein-coding

genes were annotated by BLAST searching against Genbank non-

redundant protein sequence database (Blastp with E-Value cutoff

of 1e-6). The description of the best BLAST hit was then used as

an annotation for that gene. Each protein sequence was also

BLAST searched against the Clusters of Orthologous Groups of

proteins (COGs) database [51] and a COG identification number

was assigned to each gene if the best BlastP hit exhibits at least

80% sequence coverage in both query and hit sequences and at

least 30% protein sequence identity. Because our genome

sequence data were produced using the 454 pyrosequencing

technology, which tends to produce insertion/deletion (indel)

nucleotide polymorphism in homopolymer stretches, protein-

coding genes were further analyzed to identify putative frameshift

mutations using BLAST Extend-Repraze (http://ber.sourceforge.

net/). Additionally, BLAST hits of each protein-coding gene were

analyzed to identify cases where indels in homopolymer stretch

have caused a potentially correct stop codon to be out of frame

and created a predicted gene that was a fusion between two genes,

which was then corrected manually.

Identification and grouping of homologous genes
In order to analyze genes across multiple genomes, we created a

method to identify and group genes that were homologous to one

another. Initially, each gene from all genomes was treated as an

independent gene cluster (defined as a collection of homologous

genes) of one gene. The number of gene clusters at this initial step

was therefore equal to the total number of predicted genes from all

genomes. A representative gene sequence of each cluster, which

we defined as the longest member, was then used to search all

genomes to identify other homologous genes. Four different modes

of sequence comparison were employed for identification of

homologous genes (ie, belonging to the same gene clusters): (i)

comparison of a representative gene DNA sequence to all gene

DNA sequences database using BlastN, (ii) comparison of a

representative gene DNA sequence to all genome sequences

database using BlastN, (iii) comparison of a representative Protein

sequence to all gene Protein sequences database using BlastP, (iv)

comparison of a representative Protein sequence to all translated

genome Protein sequences database using TBlastN.

Figure 5. Two-way hierarchical clustering of the variable gene
profiles of A. actinomycetemcomitans strains. Columns represent A.
actinomycetemcomitans genomes. Rows represent genes. Red and black
color cells represent presence or absence of genes in a particular
genome respectively. Clustering result shows a similar grouping of A.
actinomycetemcomitans strains as phylogenetic analysis where strains
from serotype a, d, e and f (excluding strain SC1083) form a group and
strains from serotype b and c form another group. Image truncated for
brevity.
doi:10.1371/journal.pone.0022420.g005
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For i) and iii), significant BLAST hits that had e-values of less

than 1e-6 and exhibited at least 50% sequence identity and 50%

sequence coverage between query and hit sequences were

considered homologous to the query representative sequence.

Similarly, for ii) and iv), significant BLAST hits that showed at

least 50% sequence identity and 50% sequence coverage between

the query representative sequence and the sequence in the genome

were considered homologous. Any genes found within these

homologous genomic regions were automatically considered as

homologs to the query representative sequence. This representa-

tive gene versus genome sequence comparisons allowed us to

identify and group genes that may have been predicted

inconsistently in different genomes due to factors such as

differences in sequence quality (especially near the ends of a

contig), frameshift mutations, and the incomplete nature of

genome sequences. Specifically, these factors could cause a gene

prediction program to call fragmented genes instead of a full

length version or a significantly shorter gene relative to homologs

found in other genomes. Genes that showed homology to the

representative sequence by any of the four comparison modes

were then removed from their clusters and added to the cluster

that was the origin of the representative sequence. For ii) and iv), if

a homologous genomic region was found but no gene was

predicted in that region, a note for that particular genome was

added to the cluster. This allowed us to differentiate a true missing

gene from an artifact in gene prediction result. This homologous

gene grouping process was iterated for all non-empty clusters until

no change was found in the gene cluster membership after a whole

round of comparison had been carried out. Finally, manual

inspection was performed to further group genes that are obviously

homologous but were not grouped together by our criteria.

Phylogenetic analysis
Twenty-five housekeeping genes, most of which coded for 30S

and 50S ribosomal subunit proteins (see Table S2), common to 14

A. actinomycetemcomitans strains, two A. aphrophilus strains, and

Haemophilus influenzae 028NP, H. influenzae Rd, H. influenzae PittGG,

H. influenzae PittEE, Haemophilus somnus 129PT, H. somnus 2336,

Haemophilus ducreyi 35000HP, and Mannheimia haemolytica PHL213,

were selected for analysis. The nucleotide sequences of individual

genes were aligned using ClustalW version 2 with default

parameters [52]. Gaps were removed from all alignment results,

which in turn were concatenated to produce a single alignment (a

total length of 17,840 bp) in PHYLIP format. PHYLIP program

version 3.6 was used to construct the tree using the maximum

likelihood method (dnaml) (http://evolution.genetics.washington.

edu/phylip/getme.html) [53]. A bootstrap analysis was carried out

to test the reliability of the tree. Finally the DRAWGRAM

software (part of the PHYLIP package) was used to draw the tree.

Identification of genomic islands
Initially, three different base composition analyses: namely,

G+C content, dinucleotide bias (also known as genomic signature),

and codon bias were performed for predicted genes in each

genome. The methods established by Karlin [47] were used to

calculate the dinucleotide and codon bias values for each coding

sequence. The mean and standard deviation for each of these base

composition values were calculated. Genomic islands of at least

5 kb in length were then identified by a step-wise process. First,

regions of at least 1 kb containing a gene not shared by all strains

were identified. The variable regions were then merged if they

were within 5 kb of each other. Finally, the resulting regions of at

least 5 kb that contain at least one gene that displays atypical base

composition (as characterized by at least 2 standard deviations in

any of the three base composition values) were considered as

genomic islands.

Estimation of the size of the core genome and the
pangenome of 14 A. actinomycetemcomitans strains

The core genome and the pangenome were estimated based on

a method described by Tettelin et al. [23]. In brief, all possible

combinations of sequential inclusion of up to 14 strains were

simulated and a regression analysis was used to fit an exponential

decaying function to the amount of conserved genes and of strain-

specific genes. This allowed us to estimate and extrapolate the size

of the core genome and the pangenome if additional A.

actinomycetemcomitans strains were available for genome sequencing

and analysis.

Figure 6. Genetic comparison between A. actinomycetemcomitans strains with or without the cdt-island. Comparison of the genetic locus
of the cdt-island in strain D7S-1 and the comparable locus in strain SC1083. The homologous sulfatase and Gly-rRNA between strains are colored in
dark blue and red, respectively. Several genes encoding hypothetical proteins and other proteins in the cdt-island of strain D7S-1 are not indicated in
the map (see Table S3 for a full list of genes on the island). The comparison shows that strain SC1083 is missing the ,14 kb cdt-island.
doi:10.1371/journal.pone.0022420.g006
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Figure S1 DNA sequence similarity within gene clus-
ters. Histogram shows the distribution of percent DNA sequence

similarity between genes and their corresponding gene cluster

representatives. Seventy-six percent of the genes showed 95–100%

sequence similarity to their cluster representative sequences. No

genes showed less than 75% DNA sequence similarity to their

cluster representatives.

(DOCX)

Figure S2 Distribution patterns of core and flexible
genes in A. actinomycetemcomitans strains. This figure

shows cumulative percentage of genes (y-axis) that are found in

different number of the 14 A. actinomycetemcomitans genomes studied.

The genes are color coded based on the numbers of genomes that

share the genes (see right side of the figure for the color coding).

This analysis shows that about 20% or less of the genes in each A.

actinomycetemcomitans genome constitute a variable gene pool.

(DOCX)

Figure S3 Sequence confirmation of the deletion of cdt-
island in strain SC1083. See Figure 6 for the genetic map.

Two primers (underlined) annealing to sulfatase and Gly-tRNA

were used to amplify a 660 bp DNA fragment for sequencing. The

result is identical to the sequencing information of SC1083 from

pyrosequencing. The intergenic region is indicated with lower case

letters, and the ends of the flanking genes indicated by the upper

case letters.

(DOCX)

Table S1 Newbler Metrics of 454 sequencing of 11 A.

actinomycetemcomitans strains and the A. aphrophilus strain ATCC

33389.

(DOCX)

Table S2 List of genes of A. actinomycetemcomitans for phylogenetic

analysis.
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Table S3 List of genomic islands and their gene content in A.

actinomycetemcomitans strains.
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Table S4 The distribution of individual genomic islands among

A. actinomycetemcomitans strains.
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Table S5 Additional DNA regions with atypical base composi-

tion among A. actinomycetemcomitans strains.
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