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a b s t r a c t 

Severe SARS-CoV-2 infection causes systemic inflammation, cytokine storm, and hypercy- 

tokinemia due to activation of the release of pro-inflammatory cytokines that have been 

associated with case-fatality rate. The immune overreaction and cytokine storm in the in- 

fection caused by SARS-CoV-2 may be linked to NLRP3 inflammasome activation which 

has supreme importance in human innate immune response mainly against viral infec- 

tions. In SARS-CoV-2 infection, NLRP3 inflammasome activation results in the stimulation 

and synthesis of natural killer cells (NKs), NF κB, and interferon-gamma (INF- γ ), while in- 

hibiting IL-33 expression. Various effort s have identified selective inhibitors of NLRP3 in- 

flammasome. To achieve this, studies are exploring the screening of natural compounds 

and/or repurposing of clinical drugs to identify potential NLRP3 inhibitors. NLRP3 inflam- 

masome inhibitors are expected to suppress exaggerated immune reaction and cytokine 

storm-induced-organ damage in SARS-CoV-2 infection. Therefore, NLRP3 inflammasome in- 

hibitors could mitigate the immune-overreaction and hypercytokinemia in Covid-19 infec- 

tion. 

© 2022 The Author(s). Published by Elsevier B.V. on behalf of African Institute of 

Mathematical Sciences / Next Einstein Initiative. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

Introduction 

The inflammasomes are multi-protein of innate immunity responsible for the regulation of pro-inflammatory responses 

[1] . Inflammasomes enhances proteolytic cleavage and release the proinflammatory cytokines (IL-18, IL-1 β) and gasdermin- 

D which are N-terminal fragment responsible for the induction of cytokine release and pyroptosis [2] . In turn, the inflam-

masomes are activated through cytosolic pattern recognition receptors (PRRs) that are stimulated by pathogen-associated 

molecular patterns (PAMPs) from microbial pathogen and damage-associated molecular patterns (DAMPs) from host cell 

damage. The PRRs comprise leucine-rich receptors (NLRs) and nucleotide-binding domains [ 3 , 4 ]. Activation of inflamma- 

somes receptors activates caspase-1 for proteolytic cleavage of immature pro-inflammatory cytokines. Some inflammasomes 
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Fig. 1. Consequence of NLRP3 activation (adopted from Paramo et al. [7] ). 

 

 

 

 

 

 

 

are activated independently of the caspase-1 pathway, by bacterial lipopolysaccharide through caspase-11 leading to pyrop- 

tosis [5] . In brief, activation of NLRP3 inflammasomes by hypoxia, DAMPs, and PAMPs leads to proteolytic conversion to 

produce caspase-1 from pro-caspase-1 which activates the conversion of pro-IL1 β and pro-IL-18 to IL-1 β and IL-18, respec- 

tively that together induce inflammation. Likewise, caspase-1 activates Gasdermine D leading to pyroptosis. Both pyroptosis 

and inflammation increase the risk of thrombosis and other coagulopathy ( Fig. 1 ) [6] . These inflammasomes are named con-

ical inflammasomes like NLR1, NLR2, NLR3, and NLR4 [7] . NLR1 is found in the neurons, while NLR2 and NLR3 are found in

the microglia. NLR1 is activated by bacterial toxins and inhibited by Bcl-2 [8] . NLR3 is the largest one among other NLRs,

and it is regulated by PAMPs and DAMPs [9] . NLR3 is also activated by cholesterol crystals and monosodium urate, thus

explaining the role of NLRP3 inflammasome in the origin and development of atherosclerosis and gout [ 10 , 11 ]. NLRP3 in-

flammasome is inhibited by dapansutrile and diarylsulfonylurea MCC-950. NLR4 inflammasome is activated by palmitate and 

inhibited by cyclic adenosine monophosphate (cAMP) [12] . 

During acute infection, PRRs recognize PAMPs and DAMPs, either through toll-like receptors (TLRs) in the membrane 

or by nod-like receptors (NLRs) within the cytoplasm that activate NLR3 inflammasome in the macrophages [13] . IL-1 β
and IL-18 are released after NLRP3 inflammasome activation leading to stimulation of natural killer cells (NKs), NF κB, and 

interferon-gamma (INF- γ ) secretion with inhibition of IL-33 [14] . Activation of NLRP3 inflammasome is regulated by a prim-

ing progression that upregulates NLRP3 genes in response to DAMPs and PAMPs through purine sensing receptors [15] . 

DAMPs and PAMPs activate PRRs like TLRs and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) 

with subsequent stimulation of the NF κB pathway [16] . This priming contributes to macrophage activation and increases 

the expression of the IL1 β gene with post-translation modification of NLRP3 inflammasome through modulation of the ac- 

tivation of cell membrane ion channels, lysosome disruption, and mitochondrial dysfunction [17] . In addition, activation of 

NLRP3 inflammasome induces T cells pyroptosis via gasdermin D (GSDMD) dependent-activation of caspase 1, 4, 5. Also, 

GSDMD provokes IL-1 β and IL-18 release [18] . 

Covid-19 and NLRP3 inflammasome 

Covid-19 also known as Coronavirus disease has become a global challenge and is caused by a virus known as severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 is a single-strand RNA virus with similar features 

as SARS-CoV-1 and MERS-CoV-1 (Middle East respiratory syndrome-coronavirus 1) [19] . The focal targets of the virus in the 

human host are the angiotensin-converting enzyme 2 (ACE2) receptors that are highly expressed in the lung epithelial cells, 

proximal renal tubules, brain, and heart. The infection of this virus-induced an acute host immune response, cytokine storm, 

and inflammatory reaction which leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) [20] . 

The clinical manifestation among Covid-19 patients revealed that around 85% had asymptomatic to mild cases, while 

severe and critical cases were about 10% and 5%, respectively. Severe SARS-CoV-2 infection causes ALI and ARDS with sys- 

temic inflammation, cytokine storm, and hypercytokinemia due to activation of the release of pro-inflammatory cytokines 
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Fig. 2. SARS-Co viruses and inflammasomes. 

 

 

 

 

 

IL-1 β and IL-6) that are associated with case-fatality rate [ 21 , 22 ]. Wen et al. [23] illustrated that IL-1 β producing mono-

cytes are increased with reduction in T cells in the early recovery phase in severe Covid-19 patients suggesting immune- 

dysregulations. The immune overreaction and cytokine storm during the infection may be due to activation of NLRP3 in- 

flammasome which has supreme importance in human innate immune response mainly against viral infections [24] . 

It has been reported that SARS-CoV activates NLRP3 INFs via 3a protein in lipopolysaccharide primed macrophages with 

subsequent release of IL-1 β [25] . Sun et al. [26] reported that down-regulation of ACE2 during SARS-CoV infection with

an elevation of angiotensin II (AngII) might cause AngII-dependent NLRP3 inflammasome activation. In addition, the acti- 

vated NLRP3 inflammasome drive AngII to cause proliferation of vascular smooth muscle cells and vascular remodeling [27] . 

Moreover, plasma and bronchoalveolar fluid of patients with MERS-CoV-1 and SARS-CoV infections have higher IL-1 β con- 

centrations which correlated with the development of ALI, ARDS, and poor clinical outcomes [28] . Similarly, a high IL-1 β
level is associated with ALI in influenza infection [29] . Therefore, IL-1 β receptor antagonists may attenuate respiratory viral 

infection induced-ALI since NLRP3 inflammasome and IL-1 β are involved in the pathogenesis of viral complications [30] . 

The interaction between the ACE2 receptor and SARS-CoV-2 leads to direct activation of NLRP3 inflammasome or in- 

directly through DAMPs and PAMPs from injured and apoptotic type II alveolar cells that activate lung macrophages [31] .

Besides, SARS-CoV-2 activate lung macrophage to release IL-1 β and TNF- α that organize a feedback loop for NLRP3 inflam- 

masome activation and immune cell recruitments through the generation of DAMPs and PAMPs [32] . 

Up to date, SARS-CoV-2 infection may induce local pulmonary inflammatory microenvironment by inducing TNF- α and 

IL-1 β , release that mutually participate into pulmonary vascular endothelial injury and development of pulmonary edema 

[33] . TNF- α and IL-1 β activate the release of IL-6 from the NLRP3 inflammasome which disrupts the alveolar-capillary unit, 

with subsequent respiratory failure and systemic inflammatory storm. Cell membrane TNF- α in Covid-19 patients activates 

TLR4 which increases the sensitivity of the NLRP3 inflammasome [34] . 

Genomic analysis of SARS-CoV illustrated that ion channel proteins like E protein, open reading frame 3a (ORF3a), and 

ORF8a required for virulence and replication, act as NLRP3 inflammasome agonist for the release of IL-1 β [35] . These ion

channel proteins are also found in SARS-CoV-2 and participate in the induction of cellular organelle stress, production of free 

radicals, and oxidative stress via NF- κB and caspase-1 activation. ORF8a is involved in SARS-CoV-2 pathogenesis and viru- 

lence through suppression of interferon from virally-infected cells [36] . It has been shown, that memeantine and gliclazide 

are potent SARS-CoV-2 E protein inhibitors ( Fig. 2 ) [37] . Moreover, genetic variation in the host NLRP3 inflammasome may

affect the binding with the viral protein of SARS-CoV-2. [38] . 

During SARS-CoV-2 infections, NLRP3 inflammasome has been noted to have a potential interaction myeloid differentia- 

tion primary response 88 (MYD88). Activated TLR4 and high IL-1 β levels stimulate NF- κB through cytoplasmic MYD88 or 

through caspase-8, which led to IL-1 β synthesis and the stimulation of NLRP3 inflammasome ( Fig. 3 ) [39] . 

During the recovery phase, NLRP3 inflammasome cytokines are decreased with the compensatory immunosuppressive 

phase which is characterized by IL-10 elevation and polarization of anti-inflammatory macrophage (M2). In this phase fi- 

broblasts and platelets are recruited and deposited in the lung extracellular matrix with fibrosis and collagen formation, a 

hallmark of ARDS [40] . 
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Fig. 3. Role of MYD88 in activating NF- κB (adopted from Zhang et al. [39] ). 

 

 

 

 

NLRP3 inflammasome inhibitors in SARS-CoV-2 infection 

Aberrant hyperactivation of NLRP3 inflammasome during SARS-CoV-1, MERS-CoV, SARS-CoV-2, and other respiratory viral 

infections is associated with ALI and ARDS development due to pro-inflammatory cytokines release and cytokine storm 

development [41] . 

Several studies showed that the inhibitors of NLRP3 inflammasome either naturally or by the repurposing of clinically 

approved drugs. Juliana et al. [42] recently reported that both a natural product parthenolide, and synthetic Bay 11-7082 are 

potent inhibitors of NLRP3 inflammasome ATPase, independent of NF- κB signaling. Similarly, oridonin which is the active 

ingredient of Rabdosia rubescens has an anti-inflammatory effect by inhibiting cysteine 279 of the NLRP3 inflammasome, 

thus making it an effective agent against NLRP3-driven inflammatory disorders. [43] . 

In addition, mefenamic acid and flufenamic acid which are members of the non-steroidal anti-inflammatory drugs 

(NSAID), are non-selective inhibitors of cyclooxygenase enzyme, and they also suppress the activity of NLRP3 inflammasome 

via inhibition of membrane volume anion chloride channel [44] . Recently, mefenamic acid was observed as an effective 

therapeutic option against SARS-CoV-2 infection-associated hyperinflammation by inhibiting NLRP3 inflammasome with re- 

duction of viral entry through inhibition of transmembrane protease serine 2 (TMPRSS2) [45] . The animal model study by

Zhou et al. [46] demonstrated that a low dose of aspirin inhibits endothelial injury through suppression of the synthesis 

and activation of NLRP3 inflammasome. Furthermore, in a multi-center cohort study, aspirin was independently linked with 

a low risk of admission into intensive care unit, mechanical ventilation, and mortality in patients with Covid-19 pneumo- 

nia [47] . Moreover, indomethacin attenuated acute pancreatitis in mice through inhibition of NLRP3 inflammasome [48] . 

Thus, indomethacin might be effective for mild Covid-19 by its anti-inflammatory and antiviral activities, while abating the 

progression of cytokine storm through modulation of the activity of NLRP3 inflammasome [ 49 , 50 ]. 

However, omega-3 fatty acids have anti-inflammatory activities through inhibition of NLRP3 inflammasome and sub- 

sequent reduction in the release of IL-1 β and caspase-1 activation. The omega-3 fatty acids are mediated by the down- 

streaming of the scaffold protein β-arrestin-2 in mice [51] . Weil et al. [52] , illustrated that the beneficial effect of omega-3

fatty acids against SARS-CoV-2 infection-induced-inflammatory changes is mediated through a reduction in the activity of 

NLRP3 inflammasome. However, prolonged uses of omega-3 fatty acids makes the cell membrane vulnerable and susceptible 

to ROS and other free radicals that may increase the risk of paradoxical oxidative stress, which is a component in the origin

and development of SARS-CoV-2 infection [53] . 

Glyburide is an oral hypoglycemic drug from sulfonylurea group and it has been widely used in managing type 2 diabetes

mellitus (T2DM) [54] . Glyburide inhibits the activation of NLRP3 inflammasome and IL-1 β release in RNA virus-infected cells 

[55] . 
4 
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Table 1 

the relevance of NLRP3 inflammasome inhibitors in Covid-19 

NLRP3 inhibitors The mechanisms References Relevance in Covid-19 Refs. 

Natural products 

Parthenolide Inhibits NLRP3 inflammasome ATPase 42 Cytokine storm inhibition 43 

Oridonin Inhibits NLRP3 inflammasome cysteine 

279 

43 Cytokine storm inhibition 43 

Resveratrol Inhibits NLRP3 inflammasome 66 Inhibition of autophagy, cytokine storm, ACE2 

upregulation 

67 

NSAIDs 

Mefenamic acid Inhibits NLRP3 inflammasome via 

membrane volume anion chloride channel 

suppression 

44 Reduction of viral entry through inhibition of 

transmembrane protease serine 2 (TMPRSS2) 

45 

Aspirin Inhibits NLRP3 inflammasome 46 Reduction in patient’s mortality rate with Covid-19 

pneumonia 

47 

Indomethacin Inhibits NLRP3 inflammasome 48 Anti-inflammatory and antiviral activities 

49,50 

Anti-diabetic drugs 

Glyburide Inhibition of NLRP3 inflammasome 55 Anti-inflammatory and antiviral activities with 

upregulation of ACE2 58,59 

Metformin Inhibition of NLRP3 inflammasome, block 

caspase-1 and GSDMD-N 

57 Inhibition of cytokine storm and upregulation of 

ACE2 

61 

Lipid-lowering drugs 

Pioglitazone Inhibition of NLRP3 inflammasome 60 Anti-inflammatory effects 52 

Omega-3 fatty acids Inhibition of NLRP3 inflammasome 

through down-streaming of scaffold 

protein β-arrestin-2 

51 Reduced death in Covid-19 patients by 30%. 

Statins Inhibits NLRP3 inflammasome, Regulation 

of molecular platform of ATP signaling, 

cathepsin-B, lysosomal function, blocking 

of pregnane x receptors (PXR). 

69-72 Inhibits pro-inflammatory cytokines release so as to 

reduce Covid-19 severity 

73 

Other s 

Tranilast Prevents the assembly and activation of 

NLRP3 inflammasome 

62 Inhibits pro-inflammatory cytokines release so as to 

reduce 

63 

Colchicine Inhibits NLRP3 inflammasome, neutrophil 

recruitments and adhesion molecules 

64 Covid-19 severity 65 
Besides, metformin a first-line drug in the management of T2DM acts through activation of AMP-activated protein kinase 

(AMPK) and blocking of mitochondrial complex I [56] . Metformin inhibits NLRP3 inflammasome through AMPK activation 

and autophagy with mTOR pathway inhibition in dilated cardiomyopathy. Also, metformin blocks caspase-1 and GSDMD-N 

that correlate with the NLRP3 inflammasome activation [57] . Different studies reported the beneficial effect of metformin 

therapy against SARS-CoV-2 infection by inhibiting viral replication, ACE2 phosphorylation dependent-inhibition of viral en- 

try, and amelioration of associated cytokine activation [ 58 , 59 ]. 

In addition, pioglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR- γ ) agonist ameliorated diabetic 

nephropathy through inhibition of NLRP3 inflammasome [60] . Pioglitazone and other PPAR- γ agonists may have a potential 

role in the management of Covid-19-associated cytokine storm through inhibition of pro-inflammatory cytokines synthesis, 

NF- κB signaling, and NLRP3 inflammasome [61] . 

Furthermore, a NF- κB signaling inhibitor tranilast is an effective anti-inflammatory drug used in the management of 

asthma. Tranilast prevents the assembly and activation of NLRP3 inflammasome as well as inhibition of the release of pro- 

inflammatory cytokines [62] . A review study reveals that tranilast may reduce Covid-19 severity during clinical trials [63] . 

Colchicine which is an alkaloid derivative drug has a marked anti-inflammatory effect by inhibiting NLRP3 inflammasome, 

neutrophil recruitments, and adhesion molecules. Colchicine is widely used in the management of acute gout, familial med- 

itation fever, pericarditis, and other inflammatory disorders [64] . In Covid-19, high neutrophil recruitment is correlated with 

disease severity; thereby colchicine may reduce Covid-19 severity through inhibition of NLRP3 inflammasome, neutrophil 

recruitments, adhesion molecules, and release of pro-inflammatory cytokines [65] . 

Polyphenolic resveratrol indirectly inhibits NLRP3 inflammasome, through suppression of mitochondrial damage and in- 

duction of autophagy [66] . Thus, resveratrol may serve as adjuvant therapy in severe Covid-19 patients via mitigation of 

NLRP3 inflammasome induced inflammation and augmentation of cell autophagy [67] . In addition, resveratrol upregulates 

the expression of ACE2 receptors with significant inhibition of pro-inflammatory cytokines [68] . 

Lipid-lowering drugs may affect NLRP3 inflammasome activity and decrease complications related to inflammatory dis- 

orders regardless of lipid profile. Parsamanesh et al. [69] found that statins have anti-inflammatory and immunomodulatory 

effects through regulation of the activity of NLRP3 inflammasome. Statins regulate the molecular platform of lysosomal func- 

tion, ATP signaling, cathepsin-B, and K 

+ ion efflux that contribute to the NLRP3 inflammasome activation. Notably, in vitro 

studies revealed that statins inhibit NLRP3 inflammasome activity due to atherogenic stimuli through blocking of pregnane 
5
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x receptors (PXR) [70] . However, separate studies reported that statins therapy is linked with NLRP3 inflammasome activa- 

tion, caspase-1, IL-1 β release that collectively contribute to the induction of T2DM [71] . Koushki et al. [72] demonstrated

that statins may exert a stimulatory or inhibitory effect on the NLRP3 inflammasome depending on their chemical structure 

and pharmacokinetic profile. Lipophilic statins like atorvastatin and simvastatin exert more effect on the TLR4/MYD88/NF- κB 

signaling and NLRP3 inflammasome compared with hydrophilic statins like rousovastatin. Therefore, all statins inhibit the 

activity of NLRP3 inflammasome except simvastatin which might have a stimulatory effect on NLRP3 INFs. 

Furthermore, a systematic review on statins usage in Covid-19 patients showed that drug use is correlated with reduced 

death rate and severe cases in Covid-19 patients by 30%. Therefore, statins therapy is suggested to be an effective therapy

against moderate-severe Covid-19 [73] . 

Therefore, NLRP3 inflammasome inhibitors play an essential role in the mitigation of immune-overaction and hypercy- 

tokinemia in Covid-19 ( Table 1 ). 
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