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Abstract
The innate immune system has been considered as an ancient system and less important than the adaptive immune system. 
However, the interest in innate immunity has grown significantly in the past few years marked by the identification of Toll-
like receptors, a member of pattern recognition receptors (PRRs). The PRRs are crucial for the identification of self- and 
non-self-antigen and play a role in the initiation of signaling events that activate the effective immune response. These 
sensor signals through interweaving signaling cascades which result in the production of interferons and cytokines as 
the effector of immune system. Ubiquitin and ubiquitin-like modifiers (UBLs) actively mediate the rapid and versatile 
regulatory processes that initiate the activation of the innate immune system cascade. The seven in absentia homolog 
(SIAH) is a potent RING finger E3 ubiquitin ligase that is known to involve in several stress responses, including hypoxia, 
oxidative stress, DNA damage stress, and inflammation. In this review, the role of SIAH will be discussed as an E3 ubiquitin 
ligase on the regulation of innate immune.
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Introduction

The innate immunity provides a first line of host 
defense against invading pathogens. The toll-like 
receptor (TLR) is one of the pattern recognition recep-
tors (PRRs) that sense pathogen-associated molecu-
lar patterns which, in turn, initiate the immediate host 
responses to restrict the pathogen infections. The 
pathogens binding with PRRs activate innate immune 
response through various signaling cascades and acti-
vate the pro-inflammatory transcription factors such 
as activator protein 1 (AP-1), nuclear factor-kappa B 
(NF-κB), and/or one or more members of the inter-
feron (IFN) regulatory factor family which, in turn, 
lead to the release of cytokines and IFNs [1,2]. In 
the meantime, adaptive immunity is initiated by the 
development of adaptive immune cells and the pro-
duction of an antibody. Given the critical balances 
of the PRR effectors to orchestrate the innate immu-
nity, they are subjected to multiple layers of positive 
and negative protein post-translational modifications 
(PTMs) [3]. Several PTMs such as phosphorylation, 
glycosylation, hydroxylation, acetylation, amidation, 
carboxylation, lipidation, sumoylation, and ubiquiti-
nation dynamically modulate the affectivity of innate 
immunity. Ubiquitination is important for many 

biological processes, including different aspects of 
immune functions [4]. Accumulating data suggest that 
the ubiquitin and ubiquitin-like proteins (UBLs) are 
emerging as the critical and versatile molecular signa-
tures for orchestrating signaling networks emanating 
from the PRRs [5-7].

Seven in absentia homolog (SIAH) protein fam-
ily is evolutionary conserved E3 ubiquitin ligases that 
subject >30 substrates of proteins to degradation [8]. 
SIAH limits its availability through self-ubiquitina-
tion and is an important regulator of pathways acti-
vated under hypoxia [9]. Under stress condition, p38 
mitogen-activated protein kinases (MAPK) and Akt 
pathways are activated and regulated the stabilization 
and activity of SIAH [10,11]. The study indicated that 
SIAH activity is regulated on infection by pathogens 
and is important for the proper immune response [12]. 
Furthermore, the research found that SIAH regulates 
tumor necrosis factor alpha (TNFα)-mediated NF-κB 
signaling pathway [13]. However, there is no paper 
that has provided an integrative review on how SIAH 
involves in the regulation of innate immune system.

In this review, we will first introduce some key 
concepts regarding the regulation of innate immunity 
by ubiquitin system and then focus on the involve-
ment of SIAH ubiquitin ligase on innate immunity 
regulation. This paper highlights the role of its E3 
ligase activity toward innate immune signaling.
An Insight to the Ubiquitin System

The PTMs are required for the specific function, 
stability, degradation, and control of protein level in 
response to specific signals of the biological actions. 
Ubiquitination is one of the PTMs characterized by 
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the conjugation of the 8.6-kD protein ubiquitin to 
target proteins, a process which marks a protein for 
proteolytic degradation by proteasomes. Ubiquitin 
is prepared to bind to other proteins by the ATP-
dependent ubiquitin-activating enzyme (E1) which 
creates an active E1-bound ubiquitin and is deliv-
ered subsequently to a similar cysteine residue in the 
active site of the ubiquitin-conjugating enzyme (E2). 
Finally, a ubiquitin ligase (E3) binds to both the ubiq-
uitin-charged E2 and the substrate protein, leading to 
the binding of ubiquitin to the target protein [14,15]. 
Ubiquitinated proteins will bind to 26S proteasome 
which marked protein for degradation by a 20S cat-
alytic subunit of the proteasome (Figure-1). The pro-
tein abundance and subcellular distribution involved 
in almost every cellular process are regulated in this 
model, with an increasingly clear role in the regula-
tion of innate immunity [3,7,16,17].

There are two E1s, about 50 E2s, and >1000 E3 
enzymes encoded in the human genome [18]. The 
E3 mostly plays a role in substrate specificity [19]. 
Ubiquitin can undergo ubiquitination itself at the 
seven lysine residues (K6, K11, K27, K29, K33, K48, 
or K63), building lysine-linked polyubiquitin chains 
or the N-terminal methionine (M1), leading to 
eight homotypic and multiple-mixed polyubiquitin 
chains [20]. Alternatively, ubiquitin may be associ-
ated non-covalently with target proteins. The ubiqui-
tin attached to substrate protein can be recognized by 
ubiquitin receptors that act as sequestering factor to 
direct the ubiquitinated protein to a specific intracel-
lular site [21].

Subsequent ubiquitination can occur either as 
multi-monoubiquitination on different sites in the sub-
strate protein or polyubiquitination on one site of the 
substrate protein. The complexity of ubiquitination 
with the variation in the position, extent, and topol-
ogies of ubiquitin-ubiquitin linkages on a substrate 
protein play the roles to the diversity of downstream 
effects [22,23]. The topologies of ubiquitination have 
different implications on the subcellular response. The 
classic examples for this are substrate modification by 
four K48-linked ubiquitin units which are selectively 

degraded by the 26S proteasome as a part of protein 
turnover and homeostasis [24,25], while K63-linked 
ubiquitin chain and linear ubiquitin chain are often 
implicated in the regulation of signaling pathways and 
the activation of kinases [16,26,27].

In addition to the ubiquitination by three classes 
of enzymes (E1, E2, and E3), there is a group of 
enzymes which acts to remove the ubiquitin from the 
proteasomes by an unknown mechanism. This group 
of enzymes is called the deubiquitinating enzymes 
(DUBs), with a member of about 70 enzymes in 
human. The DUBs lead to the release of intact ubiqui-
tin for another cycle of attachment. After the deubiq-
uitination, proteins ratchet into the proteasome core 
for peptide bond hydrolysis at three distinct active 
sites [28,29]. Other ubiquitinated proteins, such as 
plasma membrane proteins, are targeted to the vacuole 
degradation, and in this type of signaling, deubiquiti-
nation is a key to proper intracellular trafficking [30].
Regulation of Innate Immunity by Ubiquitin 
System

The regulation of the innate immune system 
by ubiquitin has been intensively reviewed in sev-
eral papers [3,7,16,17,31]. In general, the ubiquitin 
and ubiquitin-like modifiers (UBLs) act by regulat-
ing the major PRR downstream. These major PRRs 
including TLRs reside in the plasma membrane and/
or endosome, NOD-like receptors (NLRs), RIG-like 
receptors (RLRs), and cytosolic DNA sensors which 
are found in the cytoplasm [32].

The classical example of ubiquitin-related TLR 
signaling regulation is the involvement of TNF recep-
tor-associated factor (TRAF). TLR activation, except 
for TLR3, initiates the recruitment of adaptor protein 
MyD88, IRAK4, and IRAK1 through its toll-inter-
leukin 1 receptor (TIR) homology domain. In turn, 
IRAK4 activates IRAK-1 through phosphorylation, 
resulting in dissociation of the IRAKs from MyD88 
and interacts with an E3 ligase TRAF6. Subsequently, 
TRAF6 forms lysine 63 (K63)-linked polyubiqui-
tin chains which further activates the transform-
ing growth factor-β-activated kinase 1 (TAK1). The 

Figure-1: Ubiquitination process. The COOH-terminal of ubiquitin is activated through its high-energy thioester bound 
to a cysteine chain on E1. This reaction proceeds through a covalent AMP-ubiquitin intermediate, which requires ATP. 
The activated ubiquitin on E1 is the transferred to the cysteine on E2, which binds to E3 molecules. The E3 component 
will bind to specific degrons in substrates and form polyubiquitin chain linked to a lysine residue of the substrate. This 
polyubiquitin is recognized by a specific receptor in the 26S proteasome leading to substrate degradation into peptides. 
The deubiquitinating enzymes lead to the release of intact ubiquitin for another cycle of attachment (Figure prepared by 
Ferbian Milas Siswanto).
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activated TAK-1 induces an inflammatory response 
by phosphorylating the Iκβ kinase (IKK) complex and 
the MAPK, which lead to the activation of NF-κB and 
AP-1, respectively [31].

The NLR families, NOD1 and NOD2, play a role 
as a detector of bacterial cell wall peptidoglycan com-
ponents. The activation of NLRs, analogous to the 
TLR3, recruits adaptor protein receptor-interacting 
kinase 1 (RIP1), leading to K63-linked polyubiquiti-
nation of RIP1, which is important for the recruitment 
and activation of TAK1 and IKK [33]. The regulation 
of RLR family receptor by ubiquitin has been well 
documented. For instance, there are at least four E3 
ligases which have been identified to regulate the 
availability and the activity of cytosolic sensor reti-
noic acid-inducible gene-1 (RIG-1). The Riplet and 
TRIM25 positively regulate RIG-1, and in contrast, 
the RNF125 and LUBAC inhibit the functional activ-
ity of RIG-1 [34]. Since the activation of RIG-1 by 
microbial RNA leads to the initiation of Type  I IFN 
and NF-κB signaling pathway, the regulations of 
RIG-1 by ubiquitin and UBLs lead to the modulation 
of pro-inflammatory pathways.
Family of SIAH Ubiquitin Ligase

In 1990, seven-in-absentia (SINA) was first iden-
tified as a causative gene of small eye phenotype in the 
mutant of Drosophila melanogaster [35]. The SINA 
protein is localized in the nuclei of several precursor 
cells including R7 [36]. Studies of Drosophila R7 
photoreceptor development have illustrated the means 
by which signal transduction events regulate cell fate 
decisions in a multicellular organization. 3 years later, 
SIAH was identified as a mammalian homolog of 
SINA in a study using mice [37] and later found to 
be a highly evolutionarily conserved family of RING 
domain E3 ligases [38]. SINA/SIAH proteins origi-
nated early in metazoan evolution. The phylogenetic 
analysis indicates that invertebrate SINA is an ortho-
log to the three vertebrate SIAH families [38]. The 
human SIAH family consists of SIAH1 and SIAH2 

and later found the SIAH3 [39], all of which are the 
product of separate genes, with apparently distinct but 
overlapping functions. The mammalian SIAH1 pos-
sesses three isoforms called isoform 2 and isoform 3. 
The isoform 2 exhibits an additional 31 amino acid in 
its N-terminal, while the isoform 3 or SIAH1S is the 
splicing variant of canonical SIAH1. In mice, there 
are two forms of SIAH1 encoded by different genes, 
called the SIAH1a and 1b which are differed at only 
six residues.
Structure and Function of SIAH

The SINA/SIAH E3 ubiquitin ligase family has 
divergent N-terminal 40-80 residues but highly con-
served remaining regions. These highly conserved 
domains with distinct function are RING domain, 
SIAH-type zinc fingers (SZF) domain, and SINA 
domain which consists of the substrate-binding 
site (SBS) and the dimerization (DIMER) domain 
(Figure-2). However, the SIAH3 does not contain the 
RING domain; instead, it has a histidine-rich motif 
and one ZnF instead of two [40]. The RING domain is 
the catalytic active site for the binding of E2 proteins. 
The SZF domain is a cysteine-rich region forming a 
dual zinc-finger motif, similar to zinc fingers found 
in transcription factor IIIA, suggesting its role for 
DNA binding and mediating protein-protein interac-
tion [41]. The remaining C-terminal of the SBS and 
DIMER domain recognizes the substrate protein and 
allows the DIMER of SINA/SIAH proteins [42]. The 
substrate-binding domain (SBD) contains SZF, SBS, 
and DIMER domains, which is generally responsible 
for substrate recognition and targets it for proteasomal 
degradation [40,42].

The tertiary structure of the murine SIAH1a 
SBD has been solved previously [43,44] and found 
to be structurally related to TRAF [42]. The SIAH 
dimerizes in the C-terminal regions of both mono-
mers as an S-shaped structure, formed by β-sandwich 
strands with distal zinc fingers [42]. This DIMER, 
either homodimerize or heterodimerize, is important 

Figure-2: Structure of seven in absentia homolog (SIAH). Domain architecture of human SIAH showing regions in SIAH 
protein family. Red color represents the RING domain; yellow color represents the zinc fingers, dark blue color represents 
the seven-in-absentia domain. The SIAH3 does not have a RING domain (Figure prepared by Ferbian Milas Siswanto).
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to mediate multiple binding of UBCs and allows mul-
tiple protein-protein interactions simultaneously [45]. 
SIAH proteins possess a binding groove for the rec-
ognition of specific motif inside the substrates and 
adaptor proteins, as proved by experiment in which 
the interference of this groove inhibited SIAH func-
tion in vivo [46].

The members of SIAH protein have been reported to 
regulate or at least involve in several signaling pathways 
such as hypoxia response, oxidative stress, apoptosis, 
tumor suppression, cell cycle regulation, estrogen sig-
naling, transcription regulation, DNA damage response, 
spermatogenesis, and TNFα signaling [47-49]. As an 
E3 ligase, SINA/SIAH regulates cellular response by 
interacting, modifying, and targeting a diverse of sub-
strates to ubiquitin-mediated proteasome degradation 
and, therefore, regulates protein stability, turn-over, 
subcellular localization, and other cellular functions. 
SIAH protein family binds to the substrate carrying the 
AxVxP binding motif [50]. SIAH regulates its avail-
ability through self-ubiquitination [51,52], and research 
elucidated that, under the low oxygen concentration or 
hypoxia, SIAH is stabilized dependent on p38 MAPK 
and Akt phosphorylation [10,11].
SIAH and the Innate Immune System

The potential involvement of SIAH in the reg-
ulation of the innate immune system was marked 
by the research, indicating that SIAH is structurally 
similar to the TRAF [42]. In this study, the SIAH1b 

was proved to stimulate NF-κB reporter assay under 
a normal condition with the comparable efficiency to 
the TRAF2 [42]. In contrast, wild-type  SIAH2, and 
not RING mutant, was found to physically interact 
with TRAF2, suggesting that SIAH2 targets TRAF 
for ubiquitination and degradation [13]. In this study, 
they also found that stress-induced TRAF2 downreg-
ulation is mediated by SIAH2 and that SIAH2 inhibits 
TRAF2-dependent activation of JNK and NF-κB [13]. 
The discrepancy of these results may be caused by 
different physiological functions of SIAH1b and 
SIAH2. Moreover, one experiment was conducted 
under normal condition, while another one was under 
stress-induced condition. Further study is required to 
understand the nature of the distinct role of both SIAH 
isoforms in different conditions.

Next, a study using comparative genomic RNA 
interference screening showed that RNAi-mediated 
inhibition of SIAH1 caused a decrease in the produc-
tion of putative antimicrobial genes in Pseudomonas 
aeruginosa-exposed nematode Caenorhabditis ele-
gans. Furthermore, RNAi-mediated inhibition of 
SIAH1a in murine macrophages affected LPS-induced 
cytokine production [53]. Alper et al. found that 
SIAH-1 links to mammalian SARM ortholog, TIR-1, 
which is a member of the MyD88 family known as an 
adaptor protein in TLR signaling of the nematode and 
mammalian innate immune response [53,54].

As previously discussed, the MyD88 is an adap-
tor protein of TLR signaling and responsible for the 

Figure-3: Role of SIAH on innate immune regulation. The receptors are shown in red, adaptor proteins in blue, the E3 
ligases in yellow, kinases in green, and transcription factors in brown. Abbreviations: TLR: Toll-like receptor; MyD88: Myeloid 
differentiation factor 88; MyD88: Myeloid differentiation factor 88; TRAF: TNFR-associated factor; UBE2d2: Ubiquitin-
conjugating enzyme E2 D2; TAK1: TGFβ-activated kinase 1; TRIF: TIR-domain-containing adapter-inducing-interferon; 
RIP: Receptor-interacting protein; TNFR: Tumor necrosis factor receptor; TRADD: TNFR-associated death domain; Triad, 
“two ring fingers and DRIL;” SIAH: Seven in absentia homologue; MAPK: Mitogen-activated protein kinase; AP-1: Activator 
protein 1; IKK: Iκβ kinase; Iκβα: Inhibitor κβα; NFκβ: Nuclear factor κβ (Figure prepared by Ferbian Milas Siswanto).
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activation of NF-κB and AP-1 [31]. Several studies 
proved that there is a physical interaction between 
SIAH1 and MyD88 family in both C. elegans and 
human using yeast two-hybrid and co-immunopre-
cipitation method [54-56]. Another research found 
that SIAH1 interacts with the E2-conjugating enzyme 
Ube2d2, which is an important enzyme for TRAF6 
polyubiquitination [57].

The interaction of SIAH with proteins involved 
in innate immune response suggests that SIAH activ-
ity has an immunosuppressive effect (Figure-3). 
Therefore, the downregulation of SIAH on infection 
by pathogens is important for the proper immune 
response. For instance, the latent membrane protein 1 
of Epstein–Barr virus treatment in B lymphoma cells 
decreases SIAH-1 mRNA and protein levels [12]. 
This will allow the proper activation of downstream 
innate immune response.

To date, research on SIAH function in innate 
immune regulation remains focused on TRAF-2-
related TNFα signaling. Despite already proven inter-
action between SIAH-MyD88 and SIAH-Ube2d2, the 
implication of this regulation on downstream signal-
ing is remained to be investigated. It is also fascinat-
ing to investigate the possible interaction of SIAH on 
other innate immune effectors, such as RIG-1, IFI16, 
and AIM2 signaling.
Conclusion and Future Directions

The regulation of the innate immune system by 
ubiquitin mechanism has been widely recognized. 
However, the role of E3 ubiquitin ligase SIAH in 
the innate immunity network remains underdevel-
oped. Besides the well-established role of SIAH in 
the hypoxic response, DNA damage, Ras signaling, 
and estrogen signaling, the involvement of SIAH 
E3 ubiquitin ligase activity on the PTMs of PRR 
effectors requires further attention. Finally, there is 
growing evidence on the effect of stress on immuno-
suppression. Many researches provide evidence that 
the immune system is suppressed under stress condition 
such as overtraining [58-59], hypoxia stress [60,61], 
heat stress [62], and oxidative stress [63,64]. Taken 
together with the previously established role of SIAH 
in stress-induced condition, it is important to under-
stand the possible role of SIAH on the innate immunity 
suppression under stress conditions such as overtrain-
ing, hypoxia, and oxidative stress.
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