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I M M U N O L O G Y

Self-supervised learning of T cell receptor sequences 
exposes core properties for T cell membership
Romi Goldner Kabeli, Sarit Zevin†, Avital Abargel, Alona Zilberberg, Sol Efroni*

The T cell receptor (TCR) repertoire is an extraordinarily diverse collection of TCRs essential for maintaining the 
body’s homeostasis and response to threats. In this study, we compiled an extensive dataset of more than 4200 bulk 
TCR repertoire samples, encompassing 221,176,713 sequences, alongside 6,159,652 single-cell TCR sequences 
from over 400 samples. From this dataset, we then selected a representative subset of 5 million bulk sequences 
and 4.2 million single-cell sequences to train two specialized Transformer-based language models for bulk (CVC) 
and single-cell (scCVC) TCR repertoires, respectively. We show that these models successfully capture TCR core 
qualities, such as sharing, gene composition, and single-cell properties. These qualities are emergent in the 
encoded TCR latent space and enable classification into TCR-based qualities such as public sequences. These models 
demonstrate the potential of Transformer-based language models in TCR downstream applications.

INTRODUCTION
Many of the tasks of the immune system involve T cells (1, 2). T cells 
kill infected host cells, detect foreign proteins, activate other im-
mune cells, and regulate immunity. The required specific interaction 
with a wide variety of antigens leads for a need of a large number of 
T cells, each with its own pattern recognition means (3, 4). This 
pattern recognition is mediated through the T cell receptor (TCR). 
The TCR is made of amino acids, and the collection of TCRs makes 
up the T cell repertoire (1, 5). Most TCRs consist of α and β chains. 
Each TCR is antigen relevant, and the interaction is dominated by 
the third complementarity-determining region (CDR3) of the α and 
β chains. The CDR3 sequence itself, averaging 16 amino acids in 
length, is generated by the extensively studied V(D)J recombination, 
involving a semi-random rearrangement of multiple V, (in β) D, and 
J gene segments (1, 5–7). The studied sequences are obtained from 
either RNA or DNA using either bulk sequencing or, more recently, 
single-cell sequencing technologies. While bulk RNA sequencing 
currently allows for the processing of a larger population of cells, 
single-cell technologies offer higher resolutions and the tandem 
exploration of α and β, enabling the exploration of cell-specific 
characteristics (8).

CDR3 sequences were long thought to be unique to each indi-
vidual, referred to as “private” sequences, but over the past two 
decades, and especially since high-throughput sequencing has become 
available, it has been shown that many CDR3 sequences are shared 
between individuals. These sequences are called “public” sequences 
(9–11). The vast potential diversity of CDR3 sequences, estimated at 
approximately 1018 unique combinations (12), might intuitively 
suggest that the occurrence of public sequences would be statisti-
cally rare. However, closer examination reveals that such sequences 
are actually a predictable consequence of the mechanisms driving 
TCR diversity (13). The identification of public and private sequences 
within the CDR3 region may offer insights into the molecular un-
derpinnings of TCR usage patterns and their distribution across in-
dividuals.

Progress in computing power and computational tools greatly 
improved the ability to analyze and research sequential data. This is 
evident in natural language processing (NLP) in general and, within 
the scope of this work, in the use of language models (specifically 
Transformers), to study sequential data such as DNA and proteins, 
leading to promising results (3, 14–18). The language used to study 
these types of sequences is that of either nucleotides, with their 
4-letter representation, or amino acids and their 20-letter represen-
tation. In this context, two types of Transformers—encoders and 
decoders—are of interest. Encoder-based models aim at producing 
meaningful embeddings out of their inputs, while decoder-based 
models are used mainly for generation. BERT is an encoder-based 
Transformer that has been shown to be effective with sequential 
data, such as DNA (17) and proteins (19). Regardless of the task it is 
used for, BERT trains unsupervised to learn the grammatical struc-
ture of large, unlabeled datasets.

Since CDR3 sequences are assembled from amino acids, with 
their function highly dependent on the specific order of these acids 
(1), we posit that a language model—a sequential model—might 
yield meaningful embeddings to analyze CDR3 sequence features 
(20). This study reveals that the prevalence of a sequence as public or 
private can be discerned through embeddings encoded by the 
Transformer, reflecting intrinsic sequence information. In addition, 
these embeddings facilitate the investigation of “sister” TCRβ se-
quences that couple with identical TCRα in single-cell data.

Language models have previously predicted TCR specificity (21), 
and various methods have classified private and public sequences 
(13, 22), with tools grouping sequences by editing distance (23, 24). 
Our encoder-based Transformer, CountVonCount (CVC), is trained 
on 5 million unique CDR3 TCRβ amino acid sequences—half public 
and half private. CVC stands out for its robust embeddings that 
enable unsupervised clustering, phenotypic feature delineation, and 
diverse classification tasks. Notably, when benchmarked against 
TCR-BERT and ESM-2, CVC’s embeddings show superior perform
ance in clustering and classification, highlighting its potential for 
advanced TCR sequence research.

While the CVC model provides unique insights into public ver-
sus private status, across thousands of samples, it lacks awareness of 
TCR α-β pairing at the single-cell level. To address this limitation, 
we leveraged a large dataset of over 2 million single T cells, which 
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together provided a total of 4.2 million TCRα and TCRβ sequences. 
Using these rich single-cell data, we developed scCVC—a model 
that enables inspection of TCR features within individual T cells. 
The scCVC Transformer models the co-occurrence patterns of 
TCRα and TCRβ chains, providing a more nuanced understanding 
of TCR presentation. Moreover, the model provides insight into 
mucosal-associated invariant T (MAIT) cell status and the role of 
CDR3 sequences in encoding cell type information.

RESULTS
CVC and scCVC are based on the BERT architecture. CVC was 
trained by processing CDR3 TCRβ amino acid sequences as input, 
while scCVC was trained on the combined CDR3 TCRα and TCRβ 
sequences, according to their linked single-cell association. scCVC’s 
input is in the form of single cells, represented by their TCR (α and β) 
joined by a separator token, enabling a more comprehensive analy-
sis of TCR behavior and features. Each amino acid would be a word 
in the original BERT architecture, while the CDR3 sequences is a 
would-be sentence. The model processes each input and outputs 
their embeddings: a 768-dimensional (768D) numerical vector. The 
data collection used for training CVC includes 1590 TCRβ samples 
that translate to 91,758,698 unique CDR3 sequences (see Materials 
and Methods). Of these, 5 million CDR3 TCRβ sequences were ran-
domly selected for CVC’s unsupervised training, with a subdivision 
of 2.5 million private and 2.5 million public sequences, to avoid bias. 
As for scCVC, a collection of single-cell data was used, including 
2,120,565 single cells that total to 4,200,335 TCR sequences.

An unsupervised language model is trained by masking a certain 
percentage of the input, and it learns by predicting these masked 
items. In our case, 15% of each sequence’s amino acids were masked, 
and the model predicted the missing information, with feedback. 
Once the Transformer is trained, we produce TCR embeddings for 
further analysis. The pipeline visualizations in Fig. 1 (A and B) 
illustrate how these embeddings are used. The trained model re-
ceives amino acid CDR3 sequences to create their embeddings. We 
visualized the embedding space in 2D using Uniform Manifold 
Approximation and Projection (UMAP) (25). Each point in CVC 
represents a sequence, while each point in scCVC represents a cell. In 
the different visualizations, point color is used for the specific 
feature analyzed.

CVC identifies public sequences in an unsupervised manner
To evaluate whether CVC encodes meaningful, latent, information 
about a sequence’s biology in its embeddings, we fed the Transformer 
with 1,000,000 randomly sampled sequences to obtain their embed-
dings. Among the 1,000,000 sequences, 15% were public and 85% 
were private, keeping the original distribution of these labels across 
the entire dataset. We then visualized (UMAP) the 150,000 public 
and 850,000 private sequences. The results are shown in Fig. 2A, 
where each sequence (each point) is colored according to its public/
private label. A sequence is labeled as public when it appears in 
more than one sample in the original database. Otherwise, it is 
labeled private. From the visualized embedding space, it is apparent 
that sequences are clustered into roughly dozen groups (unsupervised), 
with public sequences clustered at the tips of each group. Later, we 
discuss the dozen groups.

We examined the distinct behavior of public sequences by evalu-
ating various thresholds used to tag a sequence as public or private. 

Our analysis with different criteria for classifying public sequences, 
based on their frequency across samples, provided consistent results, 
confirming the robustness of public sequence identification. Inde-
pendently of the chosen threshold, we sought to determine whether 
the characteristic of publicity—the extent to which a sequence is 
common in the population of samples—is inherently captured by 
the Transformer’s embeddings. We quantified the appearances of 
each sequence and analyzed the correlation between publicity and 
sequence length. Figure 2B (top right inset) illustrates that sequence 
length distribution aligns with being bell-shaped. We segmented 
these into percentiles (10, 25, 50, 75, and 90%), correlating to 
sequence lengths of 13, 14, 15, 16, and 18. Figure 2B displays the 
publicity distribution, colored by sequence length percentiles, with 
the x axis indicating the count of public appearances and the y axis 
showing the sequence count on a logarithmic scale. Consistent 
with previous findings (26), our findings indicate that sequences 
frequently found in public repertoires are generally shorter and have 
distinct characteristics that are less commonly observed in private 
sequences.

Using information from the distribution, we divided publicity 
values into 24 bins of different sizes. To demonstrate how the different 
sequences are encoded by the Transformer, we sampled sequences 
from each bin, maintaining the ratio of the complete dataset, leading 
to 1,037,748 sequences. CVC was used to create embeddings from 
the sequences, exclusively from the sequences, without considering 
samples or other features. In fig. S1, a UMAP of the embeddings is 
displayed using a color code showing the size-bin affiliation. The 
figure shows that the spectrum of publicity is associated with direc-
tionality in the embedded space. The more public a sequence is, the 
further it is from the private ones. Furthermore, in our analysis, we 
observe approximately a dozen prominent clusters, akin to those 
identified in previous observations. The clusters are not identical 
each time, which can be attributed to variations in the sampling pro-
cess. Each iteration of sampling can introduce slight differences, 
leading to observable but not exact replications of cluster forma-
tions. As an interim summary, we showed that the embeddings 
created by CVC capture, in an unsupervised manner, biological features 
that are integral to the CDR3 sequence itself.

Sequence length, convergent recombination, and publicity
As previously shown, different CDR3 sequence lengths display varying 
degrees of publicity. Our analysis aimed to ascertain whether this 
variation in publicity is captured within the transformed embeddings’ 
latent space. Figure 2C demonstrates the bell-shaped distribution of 
sequence lengths, which corresponds to the full dataset distribution. 
From this, we sampled 1,050,000 sequences, maintaining the pro-
portion across different length percentiles for the embedding pro-
cess using CVC. Panels D and E of Fig. 2 respectively depict sequence 
length percentiles and public/private status in the same UMAP 
space. These two figures show that the embeddings form roughly a 
dozen clusters, each containing sequences from all percentiles, 
suggesting a gradient from larger to smaller percentiles as noted in 
Fig.  2B. Further, when we compare this gradient with the public/
private status in Fig. 2E, we find that public sequences predominantly 
reside within the lower to mid percentiles, whereas private sequences 
are more common in the higher percentiles. This pattern aligns with 
the correlation between sequence length and publicity observed in 
fig. S1, indicating the CVC-created embeddings’ sensitivity to sequence 
length variations.
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Fig. 1. Using CVC and scCVC to embed TCR sequences. A schematic representation of the processes used for constructing and applying the Transformers for bulk and 
single-cell TCR repertoires. (A) The bulk (CVC) model uses a representative subset of 5 million TCRβ sequences out of over 92 million available for self-supervised learning 
in the BERT framework, resulting in a 768D embedding for each sequence. (B) The single-cell (scCVC) model uses data from over 2 million single T cells, encompassing a 
curated subset of 4.2 million TCR sequences, with the higher sequence count reflecting instances of cells expressing multiple variants of TCRα and TCRβ chains. Sequences 
from the same cell are concatenated using a separator token “|,” facilitating the Transformer to learn a joint representation, and subsequently producing a 768D embedding 
for each joint sequence (refer to Materials and Methods for details).
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Fig. 2. TCR publicity in CVC space and its association with sequence length and convergent recombination. For all panels in this figure, CVC was used to create the 
embeddings of CDR3 TCRβ sequences, followed by dimensionality reduction for visualization (using UMAP). (A) UMAP of the embeddings of 1,000,000 TCRβ sequences 
colored according to their public/private label. Yellow points represent private sequences, while blue points represent public sequences. (B) public appearance distribution 
of the sequences in the dataset, colored according to sequence length percentiles, displayed in the upper right corner. The percentiles are 10, 25, 50, 75, and 90% corre-
sponding to lengths 13, 14, 15, 16, and 18. (C) Sequence length distribution of 1,050,000 TCRβ sequences colored by sequence length percentiles: 10, 25, 50, 75, and 90%, 
which corresponded to amino acid length of 13, 14, 15, 16, and18, respectively. For (D and E), we created embeddings for the sequences used to generate (C). Both UMAP 
representations display the same latent space for the embeddings, colored initially (D) according to the sequence length percentiles and then (E) according to the private/
public label of each sequence, showing the association between sequence length and sequences’ sharing status. For (F and G), we created embeddings for 536,932 TCRβ 
sequences. Both UMAP representations display the same latent space for the embeddings, colored initially (F) according to public/private status and then (G) according 
to their convergent recombination ranges. We show five convergent recombination ranges. From each range, we included a set of sequences according to their distribution 
in the dataset: 0 to 100 with 500,000 sequences, 100 to 200 with 30,799 sequences, 200 to 300 with 4574 sequences, 300 to 400 with 1132 sequences, and 400 and above 
with 427 sequences. It is easy to see that the Transformer captures publicity and convergent recombination simultaneously in latent space.
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Beyond sequence length, public sequences frequently exhibit 
convergent recombination (CR), where diverse nucleotide sequences 
encode identical amino acid sequences (11, 27), suggesting function-
al convergence among public sequences across individuals. We cat-
egorized sequences into five CR frequency groups and visualized a 
subsample of 536,932 sequences, revealing a clear correlation: 
Sequences with higher CR levels are predominantly public (Fig. 2, 
F and G). This finding supports our embeddings’ ability to capture 
not only sequences’ identity but also their immunological relevance. 
To further explore the relationship between CR and the TCR’s structural 
components, we analyzed CR patterns across different J genes. 
Figure S5 (A and B) shows the percentage of sequences with CR 
levels above certain thresholds for each J gene, highlighting that 
some J genes may be associated with higher rates of CR. This subset 
correlates with those J genes documented as more prevalent in the 
general population (27). The implication of this correlation may sug-
gest a selective advantage for these J genes in the immune repertoire, 
contributing to their higher representation and potential public nature 
in T cell responses.

The CVC produced embeddings space stratifies  
by J gene affiliation
2D dimensionality reduction of the embedded representation shows 
an intriguing partition into 12 to 13 large clusters. As a reminder, 
the embeddings were created unsupervised; that is, CDR3s were not 
tagged with any labels during self-supervision and were therefore 
not associated with their origin J gene.

As Fig. 3 (A and B) shows, the J gene region of the TCR gene lies 
within the CDR3 region and is of 13 types: J1:1 to J1:6 and J2:1 to 
J2:7 (28). To show a substantial amount of J gene tags on a UMAP, 
we used the ImmuneCODE database (29), which includes millions 
of TCR sequences from more than 1400 individuals, with high-
quality information about the V and J gene sources of each CDR3 
sequence. We randomly selected 7 million sequences. The distribu-
tion of the J genes is shown in Fig. 3C, with TCRBJ02 to TCRBJ04 
and TCRBJ02 to TCRBJ06 showing the lowest frequency in the 
dataset, while the rest of the J genes differ slightly in their frequency. To 
level the representation, we downsampled to 9% of the sequences from 
each of the J genes except for TCRBJ02 to TCRBJ04 and TCRBJ02 to 
TCRBJ06, for which all available sequences have been used.

Given that J gene–associated clustering has been observed in the 
embedding space, we aimed to evaluate the reproducibility of this 
phenomenon using an additional dataset. We used the aforementioned 
dataset, which encompasses data not previously analyzed in our 
work. The UMAP visualizations, annotated by public/private labels, 
support our initial findings as demonstrated in Fig. 3D. This consistency 
validates the patterns we observed with our baseline dataset. To fur-
ther explore whether the spatial stratification in the embedding 
space is related to specific J genes, we applied the CVC model to the 
sequences and reduced their dimensionality using UMAP, coloring 
each point to correspond with its J gene. Results are shown in 
Fig. 3E. The apparent color coding of the different clusters reveals 
that the embedding space stratifies CDR3 sequences according to 
their J genes. This influence likely stems from the fact that the J segment 
constitutes a substantial portion of the sequence, which could ex-
plain its notable presence within the clusters.

When contrasting with other related language models like TCR-
BERT and ESM-2, distinct clustering patterns emerge. As demon-
strated in fig. S7, the J gene–driven stratification is pronounced in 

CVC’s visualization but is less discernible with TCR-BERT and 
ESM-2 embeddings. This distinction suggests that task-specific Trans-
former models like CVC are adept at capturing biologically perti-
nent features, potentially overshadowed in more generalized models. 
A comprehensive comparison is elaborated in the Supplementary 
Materials (fig. S7, A to F), reinforcing the specialized capabilities of 
CVC in TCR sequence analysis.

The fraction of the J segment within each cluster, indicating the 
extent to which the J segment is represented in the sequences, may 
teach us more of this behavior. Our fraction plot (fig. S6A) reveals 
consistent J segment proportions across different J gene types, 
suggesting uniformity in sequence length (fig. S6B). Supporting this 
are sequence logos (fig. S6, C to O) that visualize the prevalence of 
specific motifs at the CDR3 J segment junctions.

The clear importance of J genes in embeddings space led us to 
query the role of V genes. To do this, we again used the Immune-
CODE dataset, this time focusing on V gene available information. 
A total of 65 V genes, from TCRBV1 to TCRBV30, were represented 
in the data. Roughly 2% of sequences from each type were used; 
their embeddings were calculated and charted in fig.  S2A. We 
created fig. S2B to see whether the V genes are associated with the 
public status of sequences. The red line in the figure is at the 50% 
mark, meaning that any bars over that threshold are for V genes 
with a greater than 50% chance of being public.

On the basis of the V genes of those bars, we generated fig. S2 
(C and D), which displays the embedding space with the corre-
sponding V gene and public/private labels. In fig. S2C, all clusters 
contain all types of V genes in which the sequences are grouped 
together by the different types. Regarding the publicity of these 
genes, we see that the same behavior occurs (fig. S2D), but with a 
larger presence of the public sequences. This combines to show that 
embeddings also link to show similarities between sequences with 
the same V gene, which has been demonstrated in similar related 
research (30).

Supervised classification using CVC
With clinical applications aiming to control specific TCR sequences 
in patients, the use of embeddings to expose sequence-based infor-
mation that associates a TCR with its population-level quantities 
may greatly benefit clinical TCR uses. To determine whether these 
embeddings could be used to tag sequences as public or private, 
we randomly selected 200,000 sequences, 100,000 from each type 
(public/private), and produced embedding vectors (768D) through 
CVC. We then used these data (tabular, 200,000 × 768, label 0/1) for 
supervised binary classification. We tried multiple classification 
algorithms and eventually focused on three: LDA, xgBoost, and a 
deep neural network (DNN) (see details in Materials and Methods, 
in table S1—DOME Report, and in Fig. 4A for the DNN architec-
ture), which showed areas under the curve (AUCs) (over test set) of 
0.89, 0.89, and 0.9, respectively. The models provided an accuracy 
of 81.5, 80.635, and 81.7%.

To learn about the added information content provided by the 
transformed model, we used machine learning over a one-hot repre-
sentation of the CDR3 sequences. In this approach, we represent 
each amino acid using a 20D binary vector. Each vector with 19 zeros 
and one is placed at the index of the specific amino acid. To main-
tain an equal length for all sequences in the dataset, we set all one-
hot transformations to be the length of the longest sequence (LS), 
while shorter sequences were padded with zeros. This led to a 
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200,000 × LS × 20 table as the algorithm’s input. Using these data, 
we achieved an AUC of 0.76, 0.81, and 0.8, respectively. The accuracy 
of the models was 69.98, 73.75, and 72.7%. xgBoost did better here, 
but only by a small margin. The receiver operating characteristic 
(ROC) curve can be seen below in Fig. 4B. To place our model within 
the landscape of existing Transformer-related architectures, we per-
formed the same binary classification task using embeddings from 
the models TCR-BERT and ESM-2. As fig. S8A indicates, CVC 
showed superior results compared with these two Transformers. 
These differences demonstrate the importance of the latent space for 
classifying the sequences as public or private, with a substantial 
increase in AUC and accuracy when using CVC.

To see whether the embeddings created by CVC could be used to 
classify a sequence’s J gene without previous knowledge of the com-
position of the TCR sequences, and only the CDR3 representation 
in embedding space, we used the same set of algorithms used before: 
xgBoost, LDA, and a modified DNN (Fig. 4A), both on the embed-
dings and on the one-hot representation of the sequences. Figure 4C 
displays the accuracies for the DNN, while the other methods 
appear in fig. S3. All methods did well in predicting the J gene of a 
sequence when it is represented by the embeddings, but also quite 
well when the sequences are represented by one-hot encoding. In a 
similar manner to the comparison previously done with other Trans-
former models, CVC achieved the highest accuracy, as shown in 
fig. S8B, surpassing the results of TC-Bert and ESM-2.

Co-occurrence of TCRα and TCRβ and publicity in 
single-cell data
Single-cell immune profiling provides us with the knowledge of 
which TCRα and TCRβ chains are expressed in the same cell, allow-
ing exploration of their co-occurrence and possible functional 
implications. To investigate this, we analyzed two distinct examples: (i) the 
study of MAIT cells and (ii) the analysis of TRB sister sequences. 
MAIT cells are a unique type of T cell identifiable by their α chain’s 
specific J and V genes TRAV1-2 joined with TRAJ33/20/12. Using 
single-cell data, we tagged MAIT cells with this V/J information 
(available at the data source). Figure 5 (A and B) shows that MAIT 
cells do not cluster, neither in the single-cell embedding space 
(scCVC) nor in TCRβ space (CVC). This behavior indicates that 
unique transcriptional and functional characteristics of MAIT cells 
are driven primarily by their TCRα. To investigate the publicity of 
MAIT, we used the TCRβ embeddings at our disposal to classify 
MAIT cells as public or private according to their TCRβ sequences. 
We used a DNN classifier like the one described earlier, and as can 
be seen in Fig. 5C, roughly 60% of the MAIT cells were classified as 
public. Given the demonstrated success in classifying public se-
quences with CVC embeddings, and the fact that many MAIT cells 
were public, we explored whether MAIT cells could be classified as 
such, using only their TCRβ CDR3 (using CVC embeddings) or 
only their TCRα CDR3 (scCVC embeddings), without any informa-
tion about V or J genes. As Fig. 5 (D and E) shows, we were able to 

Fig. 3. J gene clustering in embedding space. (A) The structure of the CDR3 region of the RNA transcript of a TCRβ chain. (B) Structure of the DNA used to produce TCRβ 
chains before recombination, consisting of the variable (V), joining (J), constant (C), and diversity (D) regions. Segment from each region, together with deletion/addition/
replacement of nucleotides, generates the TCR through the process of VDJ recombination. The red marked areas are the J genes, J1:1-6 and J2:1-7. (C) Bar plot representation 
of the number of CDR3 sequences, in our dataset, according to their use of J genes. All the sequences of TCRBJ02-04 and TCRBJ02-06 were taken and 9% of sequences 
from each of the remaining J gene types were randomly selected to create the represented embedding space and to provide meaningful representations for the visualization 
of all J genes. We colored the embedding space by the corresponding public/private label of each sequence (D) and by the different J gene types (E). We can see a 
near-perfect segmentation of the latent space according to J gene association.
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achieve an AUC of 0.71 for β-based classification and an AUC of 
0.83 for α-based classification. These results demonstrate that infor-
mation about the cell type is strongly encoded into the CDR3 se-
quence, and by translating this sequence into the Transformer-based 
embeddings, without any gene information, we can effectively clas-
sify MAIT cells. The differences in accuracy between the α-based 
and the β-based classifications are expected, as the tagging itself is 

α-based. It is unexpected to find that β sequences hold relevant 
information about the MAIT status of the cell.

In addition to MAIT cells, we used single-cell data to analyze 
single T cells to identify tenets of co-occurrences between different 
TCRβ chains and the same TCRα chain in different cells. That is, we 
studied TCRβ sequences appearing in different cells that share 
the same TCRα sequences. We refer to these β sequences as TCRβ 

Fig. 4. CVC embeddings for supervised classification tasks. (A) We used DNNs, xgBoost, and LDA for the task of binary classification of sequences for their public/private 
status, and DNN alone for the task of multi-class classification of the J gene of each sequence. In all cases, input is the embeddings of each sequence, produced by CVC. 
(B) ROC of the LDA, xgBoost, and DNN classifiers trained over the task of binary classification of public and private sequences. Each algorithm was applied twice, using the 
embeddings created by CVC and using one-hot encoding. As shown in the figure, classifiers over embeddings achieved higher scores compared to the one-hot representation: 
AUC of 0.89, 0.89, and 0.9 compared to 0.76, 0.81, and 0.8, respectively. (C) Multi-class classification results of J gene type prediction using DNN on both the embeddings 
and one-hot vector representation of the sequences. The network was applied three times, and average result accuracies were 98.57% on the embeddings and 90.44% 
using one-hot encoding. All results are for the test set (previously unseen data); see code for details.
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sisters. Using single-cell data (see Materials and Methods and Data 
and materials availability), TCRβ sisters were analyzed, and their 
embeddings were generated using CVC. To see whether these TCRβ 
sisters occupy a contained area in embedding space, we measured 
distances between sister TCRβs and compared these distances with 
the measured distances between sister TCRβs and random TCRβ 
sequences. We also projected the TCRβ sequences onto a 2D UMAP 
plot. As Fig. 5F indicates, the distances within and without the TRB 
sisters showed no substantial difference. The same phenomenon can 
be seen in fig.  S4 (A to C), which shows TCRβ sisters scattered 
throughout the embedding space. These results indicate the diversity 
within sister TCRβ sequences.

DISCUSSION
Our understanding of the immune system’s versatility and its ability 
to perform its multitude of responsibilities is intricately linked to the 
specificity of TCRs, particularly within the CDR3 region. While 

TCRBuilder (31) and other structural NLP-based modeling tools 
(21, 32, 33) clarify parts of TCR functionality, translating the sequence 
of amino acids directly into functional insights remains challenging. 
Here, we introduced Transformer language models—CVC, trained on 
bulk TCRβ sequences, and scCVC, trained on single-cell TCRα and TCRβ 
presentation in isolated T cells. These models unveil underlying patterns 
in CDR3 sequences, informing of previously hidden associations.

These models detect spatial separations in latent Transformer 
space between public and private TCR sequences and manifest self-
organized clusters indicative of J gene usage. Intriguingly, we 
observed certain J genes exhibiting higher CR, hinting at selective 
pressures in the immune system’s evolution that merit further inves-
tigation. Moreover, our model is able to classify public and private 
TCR sequences and to multi-class label J gene types. The utility of 
such classification tasks is also demonstrated in their ability to iden-
tify specialized T cell types, including MAIT cells, showcasing the 
potential of these tools to parse the complex parts of the T cell pheno-
type domain with precision.

Fig. 5. MAIT cells and TCRβ sister sequences in CVC and scCVC embedding space. The 10x Genomics single-cell lung cancer dataset was used to examine the distribu-
tion of MAIT cells in the embedding space. MAIT cell barcodes were labeled according to their TRA J and V genes: TRAV1-2 combined with TRAJ33/20/12, enabling the 
labeling of corresponding TRB sequences by MAIT barcodes. (A) UMAP visualization of MAIT and non-MAIT single-cell embeddings generated using scCVC. (B) UMAP vi-
sualization of MAIT and non-MAIT TRB sequences produced by CVC. In both cases, we see that the MAIT cells did not cluster together. Eight 10x Genomics single-cell da-
tasets were combined for a more comprehensive analysis. (C) Publicity distribution for 2508 MAIT and 2508 non-MAIT cells, revealing that over 60% of MAIT cells are 
public. (D) DNN architecture used for binary classification of MAIT cells, with embeddings as input. (E) Results were evaluated using three types of embeddings: TRA only, 
TRB only, and TRA combined with TRB. ROC AUC values were 0.83, 0.71, and 0.76, respectively. (F) Using 100,000 single-cell sequences from the single-cell database (see 
Data and materials availability), TRB sequences coexpressed with the same TRA sequence, i.e., TRB sister sequences (see text), were grouped together. UMAP visualization 
of the embedding space for these cells highlights TRB sister sequences belonging to TRA CAVMDSNYQLIW, CAVSGSQGNLIF, and CALNPRGNKLTF (fig. S4, A to C, respec-
tively), showing that they do not cluster together. The mean distance between them was calculated and compared to the distance between them and the rest of the 
(random) sequences, revealing no difference in mean distance.
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An additional layer of complexity was addressed by analyzing 
TCRβ sister sequences using our scCVC model. By examining the 
co-occurrence of different TCRβ chains within the context of shared 
TCRα sequences across single T cells, this study follows the diversity 
and the potential functional interplay between sister chains. Despite 
the common TCRα linkage, TCRβ sisters demonstrate a high degree 
of diversity, occupying varied regions within the embedding space. 
This finding may assist in tracing the recombination mechanisms at 
the core of these unique cell subsets.

Other language models have been used to explore the TCR. Comparing 
the results of CVC against one such model, TCR-BERT, which is 
similarly trained on CDR3 sequences, or ESM-2, which is more gen-
eralized, we see that our task-specific Transformer models demon-
strated superior capabilities in clustering and in classifying. This 
shows the contrast between models fine-tuned for specific biological 
and general models. The clear distinction in performance is a testament 
to the benefit of CVC’s architecture, which is adept at capturing the 
subtle complexities of TCR specificity.

Future work and future uses build on our ability to scale these 
models. We believe that such work could increase both parameter 
numbers and the number of sequences the model would be trained 
on (34). Improvement in single-cell technology may provide com-
putational tools with the data needed to not only better our under-
standing of immune cell biology but also catalyze the development 
of innovative T cell–based therapies (35–37). Insights into public 
and private TCR distinctions may pave innovative pathways for cancer 
immunotherapies by identifying public TCRs that target common 
tumor antigens across patients. This transition from measured biology 
to latent mathematical space, and back into clinical implementation, 
has the potential to improve health.

MATERIALS AND METHODS
Bulk sequencing data
The dataset we collected for model training (CVC) includes infor-
mation from 34 published papers. All included papers report T cell 
repertoire sequencing from bulk RNA (in contrast with single-cell 
data). The library preparation has been done using multiple methods, 
as well as the sequencing itself. All samples are human samples. 
While some of these papers reported α-chain sequencing, as well 
as β-chain sequencing, we only included β-chain sequencing in the 
training dataset. Further, as we were only interested in the sequences 
themselves, we did not refer in our analyses to any metadata (such as 
tissue type). These metadata may be the subject of future work.

Out of each of the papers, tables, FASTQ files, or any form of col-
lection was stripped down to two items: TCR sequence and sample 
identification. These were aggregated to a larger table. The collection 
finally included 4217 samples that held 221,176,713 sequences.

Single-cell sequencing data
The single-cell dataset we collected for model training (scCVC) and 
analysis includes information from 31 published experiments. All in-
cluded papers report T cell repertoire from single-cell RNA sequenc-
ing. The library preparation has been done using multiple methods, as 
well as the sequencing itself. All samples are human samples. As we were 
mainly interested in the sequences themselves, of both α- and β-
chain types, we did not refer in our analyses to additional metadata.

Out of each experiment, tables, FASTQ files, or any form of 
collection was stripped down to three items: TCR sequence, sample 

identification, and unique cell identification. These were aggregated 
to a larger table. The collection finally included 458 samples that 
held 6,159,652 sequences.

Language models: CVC and scCVC
Both CVC and scCVC are language models based on the BERT 
model architecture (38), a language model that has been shown to 
have state-of-the-art results on different NLP-related tasks. They 
were implemented in Python using PyTorch (39) and the Trans-
former libraries (40). The models use a mechanism called attention 
to learn complex interactions within the input sequence, and in our 
case the interactions and correlations between the amino acids. This 
allows, after some training, to understand the grammar of the amino 
acid language in an unsupervised manner.

The difference between the two models is mainly in the number 
of training samples each model was trained on, the input sequences 
themselves, and how they were presented during training:

1) CVC was trained on 5 million CDR3 TCRβ sequences, with an 
internal split of 2.5 private and 2.5 public sequences. The input was 
individual CDR3 TCRβ sequences taken from the bulk-sequencing 
data mentioned above. The training was achieved by using the mask-
ing technique: 15% of each sequences’ amino acids were masked, 
and the model had to predict them.

2) scCVC was trained on 2,120,565 single cells (consisting of 
4,200,335 TCRα and TCRβ sequences) from the previously mentioned 
single-cell sequencing data. The input consisted of single cells repre-
sented by a concatenated representation of the CDR3 that belong to 
them, joined by a separator token. The training process was achieved 
by first generating a random permutation of the sequences that 
constitute the single cells and then using the masking technique: 
15% of each sequences’ amino acids were masked, and the model 
had to predict them. The randomization of sequence order was used 
to ensure that the model did not assign any importance to a particu-
lar order.

The hyperparameters that were used were the following, having 
most kept equal to the default BERT values: hidden representation 
dimensionality: 768; intermediate representation dimensionality: 
1536; number of attention heads: 12; number of Transformer layers: 
12; batch size: 1024; training epochs: 50; learning rate: 5 × 10−5; 
maximum positional embedding: 64; optimizer: Adam; loss: NLL 
(negative log likelihood); approximately 86 million parameters.

Because of the large computational needs, the models were 
trained (separately) on the Google Cloud Platform with the NVIDIA 
Tesla A100 GPU and 120 GB of memory. With this hardware, it took 
about 6 days to train. Adding parallelization of eight GPUs decreased 
the training time to about 2 days.

Once the training was complete, each model was ready to be 
used for embedding creation. The inputs of CVC were CDR3 TCRβ 
sequences, and the inputs of scCVC were either individual CDR3 
sequences of both chain types or single cells, in the format explained 
above. The lengths (L) differed. Each sequence was then padded 
with a prefix token, C, and a suffix token, S. The padded input gets 
passed to an embedding layer that transposed each amino acid token 
into a 768D vector. Along with position embeddings, all the embedded 
tokens were passed into a set of 12 layers that created the whole 
sequence embedding matrix with dimensions of (L + 2) × 768. This 
matrix was then reduced to be of dimension 1 × 768 by calculating 
the mean of its embeddings. The method for dimensionality reduc-
tion could be changed, but the mean was set as the default method. 



Goldner Kabeli et al., Sci. Adv. 10, eadk4670 (2024)     26 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

10 of 14

This final embedding representation could then be used in various 
downstream tasks like the ones we present below.

Benchmarking—implementation details of protein 
language models
For the benchmarking process, we used two prominent protein 
language models: TCR-BERT and ESM-2. The TCR-BERT model is 
tailored for TCR sequences, while ESM-2 is a generic protein model 
that has demonstrated broad capabilities in sequence representation.

TCR-BERT: The TCR-BERT model, derived from the original 
BERT architecture, is designed specifically for TCR sequences. 
Using the HuggingFace Transformer library, the “wukevin/tcr-bert-
mlm-only” version of TCR-BERT includes a base architecture of 
12 Transformer layers, each with 12 self-attention heads, and pro-
duces embeddings of 768D. The model was trained for 50 epochs 
with a learning rate of 5 × 10−5 and comprises approximately 
58 million parameters, making it particularly suited for analyzing 
TCRβ sequences and ensuring its relevance for comparison with our 
CVC model.

ESM-2: We chose the 150 million parameter variants of ESM-2 
models for its scale compatibility with other models in parameter 
count and embedding dimensions. The “facebook/esm2_t30_150M_
UR50D” model, also implemented via the HuggingFace Transformer 
library, features 30 Transformer layers and 20 attention heads, and 
creates 640D embeddings. This structure provides a balance be-
tween efficiency and the ability to capture complex sequence in-
formation. It was trained over 500,000 epochs with a learning rate of 
4 × 10−4 and a weight decay of 0.01.

A benchmarking set comprising 400,000 TCRβ sequences was 
extracted from our extensive database to evaluate the performance 
of these models. The sequences were processed through TCR-BERT 
and ESM-2 to generate embeddings, which were then benchmarked 
against those produced by our CVC model.

The benchmarking analysis was conducted under uniform com-
putational settings to ensure equitable conditions, and both models 
followed identical preprocessing protocols to maintain consistency 
in the evaluation. Results are presented in figs. S7 and S8.

Downstream clustering (UMAP)
CVC outputs embeddings with dimension of 768. To view these 
high-dimensional embeddings on a 2D plot, dimensionality reduc-
tion had to take place. UMAP (25) was used in this case, after the 
application of principal components analysis (41). The scanpy package 
(42) was used to apply this technique with the receiving of an 
AnnData object consisting of the embeddings and dimensionality 
reduction coordinates. We also tried t-distributed Stochastic Neighbor 
Embedding (t-SNE), but results were clearer and faster using UMAP.

Classification models
According to the guidelines of the recent DOME standard (43) for 
reporting results of supervised machine learning, we included, in 
addition to the description here in Materials and Methods, a supple-
mentary table that carefully follows the DOME standard. This can 
be found in table S1—DOME Report.
Input data presentation
For each of the models described below, the input was either the 
embeddings created by CVC or the one-hot encoding representation 
of the sequences. The one-hot encoding representation transformed 
each amino acid to a 1 × 20D one-hot vector.

LDA
The LDA algorithm is a supervised dimensionality reduction technique 
that was used here to classify both the public/private label and the J 
gene of a given sequence. The python package that was used to apply 
this algorithm was sklearn (44). It was used with its default hyper-
parameters. Hyperparameter tuning did not improve results.
xgBoost
The xgBoost algorithm is a well-known classification algorithm that 
gives high-accuracy results when applied on tabular data. Here, we 
used it in a supervised manner to classify both the public/private 
label and the J gene of a given sequence. The sklearn package was 
again used for this algorithm with default hyperparameters. Changing 
the parameters did not give better results.
Deep neural network
The classification tasks the DNN was applied on were to predict 
the public/private label, MAIT cell label, and the J gene of a given  
sequence.

Predicting public/private label and MAIT cells
For this task, the best results were achieved by using a simple three-
layer network with dimensions of 128, 32, and 1. The nonlinear 
function was ReLU for the first two layers and sigmoid for the last, 
with a learning rate of 1 × 10−5, the Adam optimizer, and binary 
cross entropy loss. For public/private classification, a batch size of 
1024 and 150 epochs was used, as opposed to a batch size of 256 and 
80 epochs for classifying MAIT cells.

Predicting J gene
For this task, the best results were achieved by using a simple three-
layer network with dimensions of 64, 32, and 13 (13 types of J genes). 
The nonlinear function was ReLU, with a learning rate of 1 × 10−5, 
the Adam optimizer, batch size of 1024, cross entropy loss, and 
80 epochs. Adding dropout and batch normalization did not improve 
the results.

Supplementary Materials
This PDF file includes:
Figs. S1 to S8
Tables S1 to S3
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which left us with 4,200,335 TCRα and TCRβ sequences. These translate to 2,120,565 cells. 
ImmuneCODE database: This database includes millions of TCR sequences that come from 
patients who were exposed to or infected with SARS-CoV-2. It includes over 1400 different 
subjects. In this research, it was specifically used to distinguish the embedding space with the 
V and J genes. To do so, 17 million sequences were randomly extracted from it and used for 
both tasks. This database is freely available (29) and is planned to be used in further research. 
10x Genomics dataset: 10x Genomics offers many different single-cell datasets that can be 
used for different research investigations. Overall, we used six datasets in this research: NSCLC 
tumor dataset, 20,000 bone marrow mononuclear cells, PBMCs of a healthy donor, 10,000 
human PBMCs (https://www.10xgenomics.com/resources/datasets/10-k-human-pbm-cs-5-v-
2-0-chromium-x-2-standard-6-1-0), CD8+ T cells of healthy donor 1, and CD8+ of healthy donor 

2. These were chosen on the basis of the number of cells they contained and not for any 
specific reason. The NSCLC tumor datasets, which were used for immune profiling, consist of 
about 3643 cells. This and the rest of the datasets, 20,000 bone marrow mononuclear cells, 
PBMCs, and CD8+ T cells, were used for MAIT cell classification. These datasets contain 19,737, 
6037, 14,632, 123,862, and 191,643 cells, respectively. More information and the datasets 
themselves can be found in the 10x Genomics website.
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