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Purpose: This study evaluates the performance of 2 processing methods, that is, 
principal component analysis-based denoising and Wiener deconvolution, to en-
hance the quality of phosphorus 3D chemical shift imaging data.
Methods: Principal component analysis-based denoising increases the SNR while 
maintaining spectral information. Wiener deconvolution reduces the FWHM of the 
voxel point spread function, which is increased by Hamming filtering or Hamming-
weighted acquisition. The proposed methods are evaluated using simulated and in 
vivo 3D phosphorus chemical shift imaging data by 1) visual inspection of the spatial 
signal distribution; 2) SNR calculation of the PCr peak; and 3) fitting of metabolite 
basis functions.
Results: With the optimal order of processing steps, we show that the effective SNR 
of in vivo phosphorus 3D chemical shift imaging data can be increased. In simula-
tions, we show we can preserve phosphorus-containing metabolite peaks that had 
an SNR < 1 before denoising. Furthermore, using Wiener deconvolution, we were 
able to reduce the FWHM of the voxel point spread function with only partially rein-
troducing Gibb-ringing artifacts while maintaining the SNR. After data processing, 
fitting of the phosphorus-containing metabolite signals improved.
Conclusion: In this study, we have shown that principal component analysis-based 
denoising in combination with regularized Wiener deconvolution allows increas-
ing the effective spectral SNR of in vivo phosphorus 3D chemical shift imaging 
data, with reduction of the FWHM of the voxel point spread function. Processing 
increased the effective SNR by at least threefold compared to Hamming weighted ac-
quired data and minimized voxel bleeding. With these methods, fitting of metabolite 
amplitudes became more robust with decreased fitting residuals.
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1 |  INTRODUCTION

Phosphorus (31P) MRS allows to noninvasively measure 
phosphorus-containing metabolites and membrane phos-
pholipid metabolites and derivatives.1,2 In recent years, 
31P chemical shift imaging (CSI) has been shown useful 
in a variety of applications and organs such as the brain,3-5 
heart,6,7 liver,8,9 muscle,10,11 and lung.12 However, in vivo 
concentrations of observable phosphorus-containing me-
tabolites are in the millimolar range, and 31P has a low gy-
romagnetic ratio and thus low intrinsic sensitivity. This can 
make it challenging to obtain an adequate SNR in clinically 
feasible scan times.13 Higher field strengths (7T) can be 
used to mitigate the low SNR in 31P MRS acquisitions.14,15 
In combination with an integrated 31P bore coil,8,16,17 pro-
viding a homogeneous B+

1
 field, and multi-channel phased 

array receive coils,8,17 this allows optimal sensitivity 
throughout the organ(s) of interest. Moreover, short TRs 
and Ernst-angle excitation can be used to maximize the 
number of samples for a given acquisition time and thus 
also enabling acquisitions with a large FOV.13

Despite these improvements, scan times generally are 
still long, typically between 10 min and 20 min, with typ-
ical nominal voxels sizes of 2 to 4 cm. Long scan times 
reduce patient comfort, increase motion artifacts, and 
limit clinical translation. Furthermore, low-resolution ac-
quisitions cause Gibbs-ringing or so-called signal bleed-
ing. This is typically mitigated using a Hamming filter or 
performing Hamming-weighted acquisition of k-space.18 
However, Hamming filters cause an increase of the FWHM 
of the voxel point spread function (PSF), thereby extend-
ing the PSF beyond the nominal voxel size. This results in 
blurring; as such, not all signal originates from the desired 
or intended spatial location.

Furthermore, fitting spectra, similar to many inverse 
problems in MRI and MRS, is an ill-posed problem with 
many degrees of freedom.19 This means that small pertur-
bations of the signal can have a large effect on the fitting 
results. Therefore, both spectral- and time-domain fitting 
methods are often strongly regularized20 or need user-  
defined prior knowledge.21 Despite regularization and prior 
knowledge, the accuracy and precision of fitted metabolite 
concentrations are influenced by noise in 1H22-24 and 31P25 
MRS for metabolite SNR levels below 30. Therefore, low 
SNR is seen as a challenge and pitfall for the quantifica-
tion of many 31P metabolites.26 To overcome this, various 
denoising methods have been proposed, that is, spectral ap-
odization27 or signal decomposition.28-30 However, none of 
such methods take advantage of the abundance of spectral 
information of CSI data.

Although a variety of methods for optimal 31P CSI ac-
quisition exist,13 only a few methods have been proposed 
for optimizing 31P CSI data processing.1,31 Most are aimed 

to optimize coil combinations in the absence of reliable coil 
sensitivity.32,33 For CSI datasets with a large number of vox-
els, such as 3D 31P CSI with a high spatial resolution and/or 
a large FOV, commonly used MRI processing techniques, for 
example, from Diffusion tensor imaging or fMRI, that are 
aimed to enhance data quality, may be applicable.

In this study, we propose 2 methods new to CSI data pro-
cessing to enhance data quality after acquisition and coil 
combination. First, the use of principal component analysis 
(PCA)-based denoising,34,35 a technique commonly used in 
diffusion imaging,36 to enhance the effective SNR. Second, 
the use of regularized Wiener deconvolution, proposed in 
fMRI processing,37,38 to reduce the increased FWHM of the 
voxel PSF caused by the Hamming filter without introducing 
Gibbs ringing.39,40 The denoising and deconvolution methods 
are applied both to simulated and in vivo acquired 3D 31P CSI 
data to evaluate the effects of denoising and deconvolution on 
data quality and metabolite amplitude-fitting performance.

2 |  METHODS

For this study, all simulations, processing, and fitting are 
performed using the open-source toolbox QMRITools for 
Mathematica.41-43 The proposed processing pipeline for 3D 
CSI data comprises 2, for MRS, novel processing steps, that 
is, PCA denoising and deconvolution, which are explained 
below. To evaluate the processing steps, we used simulated 
and in vivo 3D CSI data.

2.1 | Processing pipeline

The proposed processing pipeline comprises 3 steps—
Hamming filter (HA), deconvolution (DC), and denoising 
(DN)—that can be applied in any order, although HA always 
precedes DC. Hamming-filtering can be done either in the 
acquisition using a Hamming-weighted k-space acquisition 
(H) or by applying a Hamming-kernel to an equally weighted 
k-space acquisition (E). This operation is done in k-space 
for each FID sample. The PCA-denoising34,35 removes noise 
from the spectra while maintaining the signal even if this sig-
nal is below the noise floor. Although the underlying SNR 
of the acquired k-space points cannot be changed and thus 
remain constant, the effective SNR of the reconstructed spec-
tra can be increased because the noise part of the signal is 
removed. This operation is performed in image space on a 
spatial patch of spectra, as is explained later. Finally, regu-
larized Wiener deconvolution39,40 is applied to reduce the 
FWHM of the PSF, which is increased by the Hamming filter 
while minimizing the reintroduction of the Gibbs-ringing ar-
tifacts. This operation is performed in image space for each 
spectral point and is also explained later.
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2.2 | PCA denoising

The PCA denoising algorithm is shown schematically in 
Figure 1 and is based on the work by Veraart et al.34,35 This 
method uses principal component analysis to remove noise 

components from the signal, which can be automatically 
be identified using the Marchenco-Pastur distribution. The 
algorithm convolves the data with a box kernel of at least 
5 × 5 × 5 voxels (see Figure 1A), but larger kernels can be 
used. For each voxel location, this local 5 × 5 × 5 patch 

F I G U R E  1  Schematic representation of the PCA denoising algorithm. (A) Conversion of an image patch to a signal matrix M. (B) SVD of the 
signal matrix M. (C) Finding the eigenvalues that lie within the Marchenco-Pastur distribution and set those to 0. (D) Reconstruction of the image 
patch using the denoised signal matrix M′. PCA, principal component analysis; SVD, singular value decomposition
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is transformed into a matrix M, for which each row repre-
sents a voxel location and each column represents a loca-
tion along the spectral domain. The spectra contain both 
a real and imaginary part, which are concatenated in the 
columns of M (see Figure 1A). For a spectrum with 256 
samples, this local data matrix M of the 5 × 5 × 5 patch 

thus has dimensions 125 × 512. For optimal performance, 
the matrix M needs to be large; therefore, it works best 
on 3D CSI data for which a 3D patch is used. However, 
the method can also work in 2D using a larger patch (eg,   
9 × 9) or for dynamic single voxel spectra for which ample 
dynamics are acquired.

F I G U R E  2  Schematic representation of the deconvolution algorithm. (A) Applying the Hamming filter to the data to reduce Gibbs-ringing 
artifacts but increasing the voxel PSF. (B) Zero-padding of data to increase the spatial resolution by a factor 2. (C) Obtaining the absolute PSF 
from a zero-padded Hamming filter for regularized Wiener deconvolution of the magnitude data. (D) Reapplying the phase to the deconvolved 
magnitude data and truncation of k-space to obtain the final deconvolved images in the original resolution. PSF, point spread function
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Next, a singular value decomposition of the matrix M 
is performed, as is shown in Figure 1B. If the noise level is 
constant among all elements of M and the matrix would only 
contain noise values, the eigenvalues of the SVD are de-
scribed by the Marchenko-Pastur Distribution.44 However, 
when the matrix also contains signal, the eigenvalues will 
contain both noise- and signal-carrying eigenvalues (see 
Figure 1C). For denoising, all eigenvalues that fall within 
the Marchenko-Pastur are set to 0, and the “noise-free” sig-
nal matrix M′ can be reconstructed. The key advantage of 
this method is that there is no need for prior information 
about the signal or noise value. A detailed explanation of 
how to estimate the threshold for the relevant signal carrying 
eigenvalues is given in the original work by Veraart et al.35

In the final stage, the full denoised data are reconstructed 
from all the denoised patches. In the original methods by 
Veraart et al, only the center voxel of the reconstructed patch 
is the noise-free data at that location. However, except for 
the border and corner voxels, each voxel is visited 125 times 
by the kernel; therefore, the final voxel value here is the av-
erage of each of the maximal 125 denoised patches.

2.3 | Deconvolution

Image or data deconvolution can be used to restore the origi-
nal signal from distorted data.39,40 Deconvolution of 3D CSI 
data can be used to revert the increase of the FWHM of the 
voxel PSF caused by the Hamming filter. However, when 
data are deconvolved using a kernel that matches the blur-
ring, all noise and Gibbs ringing artifacts are also restored. 
Therefore, we proposed to use regularized Wiener deconvo-
lution of the absolute signal to decrease the FWHM of voxel 
PSF while minimizing the reintroduction artifacts and noise, 
as is schematically shown in Figure 2.

The deconvolution is a spatial operation and thus has to be 
performed on each spectral point in the spectral domain; that 
is, for 3D CSI data that contains spectra with 256 samples, 256 
individual 3D deconvolutions are performed. The increase of 
the FWHM of the PSF as a result of the Hamming-filtering 
is shown in Figure 2A. To revert this operation, for each 3D 
volume at every point of the spectral domain the following 
steps are performed: First, the 3D CSI data are zero-padded to 
double the spatial resolution (see Figure 2B). Next, the mag-
nitude and phase data are reconstructed. Because we want 
to maintain the phase of the spectra and assume the phase 
of each spectral point is spatially smooth, we do not have to 
deconvolve the phase but only the magnitude data. To obtain 
the PSF with which the magnitude data are blurred, the ap-
plied Hamming filter (or k-space weighting) is zero-padded   
and converted to the image domain (see Figure 2C).   
Then, the blurred magnitude data are restored with the mag-
nitude of this PSF using a regularized Wiener deconvolution. 
To obtain the restored complex data, the phase of the data 

is added back to the deconvolved magnitude data. Finally, 
the k-space is truncated such that the data retains its original 
resolution, as is shown in Figure 2D.

2.4 | Simulation

To evaluate the best order of the proposed processing steps, 
we simulated 2 datasets: the first consists of a spherical 
phantom with a hole and a rod that is rotated over 3 axes to 
avoid x, y, and z symmetry (as shown in Figure 3A); and the 
second only has signal in a 2 × 2 × 2 cm3 region. The data 
were simulated with a FOV of 240 × 320 × 320 mm3, which 
would be similar to a normal in vivo 31P CSI FOV for body 
and extremities applications yet assumes high resolution (2 ×   
2 × 2 mm3) isotropic voxels resulting in a matrix size of   
120 × 160 × 160. For each voxel within the phantom, spectra 
were simulated based on typical muscle metabolite concen-
trations. The spectra were simulated using scalar coupling 
(J-coupling) simulations of basis spectra for each metabolite 
based on methods presented in FID-A.45

The simulated metabolites and their concentrations 
used for the spectra in every voxel are listed in Supporting 
Information Table S1. The spectra were simulated with the 
following parameters— sequence: pulse acquire; number of 
samples: 256; bandwidth: 5000 Hz; TE: 0 ms; field strength: 
7 Tesla; linewidth: 50 Hz; line-shape: Voigt. Next, complex 
normally distributed noise was added to the data such that the 
PCr peak would have an absolute SNR of 20 if 6 NSA would 
be used (ie, PCr magnitude = 1000; noise σ = 122.5, SNR of 
PCr for a single spectrum: 8.16).

To mimic signal averaging, 35 individual datasets were cre-
ated with unique noise realization. After the noisy high-resolu-
tion phantom was created in image space, it was transformed to 
k-space and truncated to a resolution of 12 × 16 × 16 voxels with 
a resolution of 2 × 2 × 2 cm3 (see Figure 3B). In Figure 3C, it can 
be seen that the low-resolution dataset contains the typical Gibbs-
ringing artifacts that are expected in low-resolution 3D data. 
Two datasets were then generated: the first with equal k-space 
weighting (Sim-E) using 6 signal averages and the second using 
35 signal averages but with Hamming k-space weighting (Sim-
H). Thus, for the latter dataset, only the center k-pace point has 
35 averages. These numbers were chosen such that both datasets 
contain a similar amount of sampled k-space points (~18500). To 
obtain a Hamming-weighted k-space, the acquisitions were added 
in k-space and not averaged. An example spectrum for each of the 
2 datasets is shown in Supporting Information Figure S1.

2.5 | MRS experiments

To evaluate the proposed processing pipeline, 2 separate in 
vivo 3D CSI datasets of the upper legs (male subject, 39 years 
of age) were acquired during 1 scan session: the first with 
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an equally weighted k-space and the other with a Hamming 
weighted k-space. Data acquisition was according to the in-
stitutional guidelines and with approval from the local eth-
ics committee. For this, we used a 7 Tesla Philips scanner 
equipped with a 31P bore coil for transmitting and a 16-chan-
nel 31P receive array8,16,17 with 8 1H Tx/Rx antennas for pro-
ton imaging.46 On top of the middle of the left leg, a falcon 
tube containing polyphosphoric acid (20 ppm, 0.97 M) was 
placed. Data were acquired with a 3D pulse acquire CSI ac-
quisition with the following imaging parameters: FOV: 400 ×   
240 × 240 mm3; voxel size 2 × 2 × 2 cm3; flip angle 15°; 
number of samples 256; bandwidth 5000 Hz; TE: 0.48 ms; 
TR: 60 ms. B0 shimming was done using image-based shim-
ming using an acquired proton B0 map.47 To allow for opti-
mal B0 shimming, the phases of the transmit elements were 
calibrated using image-based B1 shimming.48,49 For the first 
dataset, an equal-weighted k-space was acquired with 4 signal 
averages (Data-E); and for the second dataset, a Hamming-
weighted k-space was acquired with 24 signal averages for 

the center k-space point (Data-H). The scan times were 11 min 
51 s (11520 k-space points) and 12 min 27 s (12370 k-space 
points), respectively. Data analysis was performed on both 
datasets; therefore, all results are labeled with either Data-E 
or Data-H, indicating the use of either the equally weighted or 
Hamming weighted data.

The 16-channel data were reconstructed using Roemer 
equal noise reconstruction50,51 in which the coil sensitivity 
data were estimated by dividing the complex coil data by the 
sum of squares reconstruction of the coil data. Additionally, 
the data were also reconstructed using whitened singu-
lar-value decomposition (WSVD) reconstruction,32,33 the 
results for which are shown in the Supporting Information.

2.6 | Data processing

To evaluate the optimal order of the processing steps ex-
plained earlier, different processing pipelines for each of the 

F I G U R E  3  Schematic overview of the data simulation. (A) High resolution (120 × 160 × 160 voxels) spherical 3D phantom and the simulated 
spectrum that is used for each voxel. Supporting Information Table S1 lists the absolute peak amplitudes and effective SNR of each metabolite. (B) 
Downsampling of the high-resolution phantom to typical 31P CSI resolution of 12 × 16 × 16 voxels. (C) The signal profile of the center slice of the 
simulated phantom at the original and downsampled resolution. 31P, phosphorus; CSI, chemical shift imaging
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2 different types of datasets, that is, equally and Hamming 
weighted k-space, were evaluated. For the equally 
weighted k-space data (Sim/Data-E), 3 pipelines were in-
vestigated: 1) Hamming filtering followed by deconvolu-
tion and denoising (HA+DC+DN), 2) Hamming filtering 
followed by denoising and deconvolution (HA+DN+DC), 
and 3) denoising followed by Hamming filtering and de-
convolution (DN+HA+DC). For the Hamming-weighted 
k-space data (Sim/Data-H), 2 pipelines were investigated 
as the Hamming filtering can be omitted because it is part 
of the acquisition: 1) deconvolution followed by denoising 
(DC+DN), and 2) denoising followed by deconvolution 
(DN+DC).

2.7 | Spectral fitting and visualization

To evaluate the performance of the proposed processing, we fit 
the simulated and acquired MRS spectra to evaluate the magni-
tudes of the individual metabolites. The spectral fitting was done 
by fitting basis-spectra generated by J-coupling simulations 
without considering relaxation parameters—similar to FID-A 
(version 1.2)45—to the spectra analogous to other software tools 
such as LCModel, Tarquin (version 4.3.10), and Osprey.20,52-54 
The fitting procedure is done simultaneously in the time and 
frequency domain. This means that we obtain the fitting error 
in the spectral domain using apodized and zero-filled spectra27 
as well as in the time domain using the raw FID signal. The 
summed fitting error is then minimized during the fitting pro-
cedure. During fitting, the amplitude, line shape, linewidth, and 
peak shift of each metabolite, as well as a common value for the 
zeroth and first order phases, were optimized. The fitting error 
was defined as the sum of real and imaginary RMS error in both 
the spectral (range 10 to −20 ppm) and time domain. The used 
basis-spectra are polyphosphoric acid (which was used in the 
phantom), polyphosphoric acid, phosphoethanolamine, phos-
phocholine (PC), intra- and extracellular free phosphate (Piex, 
Piin), glycerophosphoethanolamine, glycerophosphocholine, 
PCr, adenosine triphosphate (ATP-γ, ATP-α, ATP-β), nicotina-
mide adenine dinucleotide phosphate, and uridine diphosphate.

For visualization of the fitted spectra, the spectra were 
corrected for the zeroth and first order phase based on fit-
ted values, and the missing FID points due to the TE delay 
were extrapolated using a Hankel matrix SVD algorithm.55 
All spectra shown in this manuscript were apodized using a 
Hanning window and zero-padded by a factor 2.

2.8 | Evaluation of processing

To evaluate the performance of each pipeline on the simu-
lated and in vivo data, we performed 3 analyses: 1) vis-
ual inspection of the spatial signal distribution; 2) SNR 

calculation of the absolute PCr peak; and 3) fitting error 
of metabolite basis functions. Visual inspection was per-
formed by looking at the spatial signal distribution of the 
absolute integrated spectral signal and by looking at the 
spectra quality (all authors performed the evaluation; ex-
perience varies from little to over 10 years). To evaluate 
the effective SNR and fitting of metabolites, 500 voxels 
with the highest absolute signal amplitude over all data-
sets were selected from each processed dataset. For the 
effective SNR calculation, the noise SD σ was estimated 
from the complex first and last 20 samples of each spec-
trum, which are assumed to only contain noise. The sig-
nal S was defined as the mean maximal absolute signal of 
the 500 selected voxels, and thus the effective SNR was 
defined as SNR = √2 S/ σ. For these same 500 voxels, 
the metabolite basis-spectra were fitted to the spectra and 
normalized to the PCr amplitude. For the simulations, 
these fitted relative magnitudes were then compared to the 
known simulated values. For each metabolite, the relative 
error was calculated. Ideally the relative error has zero 
mean, meaning high accuracy, and a low SD, meaning 
high precision. Additionally, for all metabolites combined 
the mean, median, maximum, and minimum absolute error 
were computed, for which low values indicate a good over-
all accuracy and low SD a good overall precision. Here, 
we use the absolute error overall to reveal best and worst 
cases, for which a negative and positive bias is equally 
bad. For the in vivo data, fitted metabolite maps relative 
to the mean amplitude of the ATP peaks were created rela-
tive to the mean ATP amplitude per voxel, expressed as a 
percentage.

3 |  RESULTS

The current implementation of the proposed processing steps 
resulted in an average computation time of approximately   
5 s and 15 s for the deconvolution and PCA denoising, re-
spectively. These times were obtained for a 20 × 12 × 12 
voxel dataset, with 256 spectral samples using a single core 
of an Intel Core i7 6820HQ 2.70GHz processor (Intel, Santa 
Clara, CA, USA).

3.1 | Simulations

Using simulations each step of the processing was evaluated 
by visual inspection, evaluation of the point spread function, 
SNR calculation, and fitting. For the visual inspection of the 
spherical phantom, we selected 2 voxels, 1 voxel in the mid-
dle of the phantom containing signal and 1 voxel in between 
the rod and the outer sphere of the phantom, which should 
not contain signal.
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F I G U R E  4  Results of the evaluated processing pipelines on the Sim-E weighted data. Each subfigure shows magnitude images of the mean 
spectral signal and the signal profile of the center slice of the simulated data. Below, it shows 2 example spectra all scaled relative to the same 
maximum amplitude. In red a spectrum is shown of the center voxel that should contain maximal signal and in green a voxel located in between 2 
signal regions, which should show little to no signal. Abbreviations: Sim-E, Simulated equal
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3.2 | Visual inspection

The effect of the processing order of the simulated spectra 
is shown in Figure 4 and Supporting Information Figure S2. 
Applying a Hamming filter or using Hamming-weighted   
k-space acquisition increases the effective SNR but blurs the 
image (see Supporting Information Figure S2B, and F). All 
processing pipeline orders provide similar results; however, 
Sim-E DN+HA+DC (see Figure 4C) and Sim-H DN+DC 
give the best SNR. After deconvolution, one can appreciate 
that the blurring is almost completely reverted. The maxi-
mal absolute amplitudes of PCr peaks in the green spectrum 
in Figure 4C is only 12% of the PCr peak shown in the red 
spectrum.

3.3 | Point spread function

The effect of processing on the PSF of the single voxel 
phantom is shown in Figure 5. The simulated voxel size, 
defined as the volume at the half maximum of the signal, 
was 8 cm3 for the high-resolution data, which increased to 
10.0 cm3 after downscaling, that is, an increase of 250%. 
Before and after denoising, the characteristic Gibbs ringing 

due to the low spatial resolution can be seen. After apply-
ing a Hamming filter (similar to Hamming weighted k-space 
acquisition), the Gibbs ringing was removed; however, the 
effective voxel size was increased to 30.5 cm3, that is, an in-
crease of 281%. After deconvolution, the effective voxel size 
was reduced to 18.9 cm3, resulting in an increase of the voxel 
size of only 136% compared to the original data. Compared 
to the raw data without the addition of noise, Hamming filter-
ing (HA) reduced the maximum amplitude of Gibbs ringing 
by 98% and 78% for the real and imaginary part of the signal, 
respectively. Consecutively applying hamming filtering and 
deconvolution (HA+DC) reduces the maximum amplitude of 
Gibbs by 55% and 72% for the real and imaginary part of the 
signal, respectively. The regularization factor for the Wiener 
deconvolution was set to 0.01, which was the optimal bal-
ance between reducing the PSF and minimizing voxel bleed-
ing (See Supporting Information Figure S3).

3.4 | SNR evaluation

The mean effective SNR of the PCr peak for the 500 voxels 
with the maximal signal is reported in Table 1, and SNR maps 
are shown in Supporting Information Figure S4. Hamming 

F I G U R E  5  Results of the single voxel simulation to illustrate the effects of processing on the FWHM of the PSF and the Gibbs ringing. The 
signals are shown as a cross-section through the voxel of the 3D CSI data at the spectral location of the PCr peak. The real and imaginary signals of 
the Raw, HA, and HA+DC data are shown in 2D (left column) and 1D (right column). DC, deconvolution; HA, Hamming filter
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filtering of the equal-weighted k-space data increases the 
effective SNR of the PCr peak from 21 to 66, whereas the 
Hamming-weighted k-space resulted in an SNR of 97. For 
both the equal and Hamming-weighted k-space acquisition, 
the largest SNR gain was obtained when first applying the 
PCA denoising, resulting in an effective SNR of 301 and 
303, respectively. For the PCA, denoised equal-weighted 
k-space acquisition followed by the Hamming filter, an ef-
fective SNR of 463 was obtained. After deconvolution, the 
effective SNR for the PCA denoised equal k-space weighting 
was 440 and for the Hamming-weighted k-space 297. This is 
an approximate SNR gain of four- and threefold compared 
to the raw Hamming-weighted k-space data, respectively. 
The additional effects of apodization on SNR before and 
after using the proposed pipeline are shown in the Supporting 
Information Table S2.

3.5 | Spectra fitting

For each of the simulated datasets, 500 spectra were fit-
ted, and the relative error compared to the defined me-
tabolite amplitudes are reported in Table 2 and Supporting 
Information Table S3. The lowest mean error per me-
tabolite is mostly present in Sim-H DN+DC and Sim-
H. However, for Sim-H we have seen that the data are 
blurred. The mean, median, minimum, and maximal ab-
solute errors for all metabolites are also listed in Table 2 
and Supporting Information Table S3. For each of these 
measures, Sim-H DN +DC shows the best fitting re-
sults. However, these results were only marginally bet-
ter than the results obtained with Sim-E DN+HA+DC. 
As expected, the metabolites with the smallest simu-
lated amplitudes showed the highest fitting errors but are 

considerably improved after processing; that is, the fitting 
error of phosphoethanolamine goes from 131% in Sim-E 
to 0.1% in Sim-E DN+HA+DC. Furthermore, when evalu-
ating the relative errors per metabolite Sim-H and Sim-H, 
DC+DC are very similar, whereas Sim-E has slightly bet-
ter accuracy but overall lower precision compared to Sim-
H: DC+DC. This is even more apparent when looking 
at the mean, median, maximum, and minimum absolute 
errors, which are lower after processing. Furthermore, in 
Table 2 it can be seen that adding denoising to Hamming 
filtering or Hamming weighted acquisition decreases the 
fitting error compared to only using Hamming filtering or 
Hamming weighted acquisition. By adding the Wiener de-
convolution, the fitting error slightly increases; however, 
this considerably reduces the voxel PSF, resulting in better 
signal localization.

3.6 | MRS experiments

All results shown here are for data reconstructed with Roemer 
coil combination. Each of these results was also obtained 
for data with WSVD coil combination and is presented in 
Supporting Information. For the visual inspection, we selected 
2 example voxels, 1 in the muscle tissue at the back of the leg 
where a high signal is expected and 1 in the bone where no well-
resolved phosphorus-containing metabolite peaks are expected.

3.7 | Visual inspection

The effect of processing of the acquired data are shown in 
Figure 6 and Supporting Information Figure S5. Similar to 
the results of the simulated data processing increased the SNR 

T A B L E  1  Effective spectral SNR of the PCr peak after each processing step for simulated and in vivo data

Data Equal k-space (NSA = 6; k-space points = 18432) Data Hamming k-space (NSA = 35; k-space points = 18592)

Raw 1 Step 2 Steps 3 Steps Raw 1 Step 2 Steps

A. Simulated data

Raw: 21 HA: 66 HA+DC: 52 HA+DC+DN: 118 Raw: 97 DC: 91 DC+DN: 226

HA+DN: 403 HA+DN+DC: 94 DN: 303 DN+DC: 297

DN: 301 DN+HA: 463 DN+HA+DC: 440

Data Equal k-space (NSA = 4; k-space points = 11520) Data Hamming k-space (NSA = 24; k-space points = 12370)

Raw 1 step 2 steps 3 steps Raw 1 step 2 steps

B. In vivo data Roemer coil combination

Raw: 23 HA: 57 HA+DC: 45 HA+DC+DN: 83 Raw: 76 DC: 83 DC+DN: 216

HA+DN: 81 HA+DN+DC: 71 DN: 218 DN+DC: 206

DN: 181 DN+HA: 226 DN+HA+DC: 209

DC, Wiener deconvolution; DN, PCA denoising; HA, Hamming filter of k-space; NSA, q number of signal averages; PCr, phosphocreatine.
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of the spectra. Furthermore, from Supporting Information 
Figure S5B and S5F, it is clear that Hamming weighting 
of the k-space increases the FWHM of the voxel PSF. This 
can especially be appreciated in the bone regions, where no 
well-resolved phosphorus-containing metabolite peaks are 
expected. For both the equal and Hamming-weighted data, 
deconvolution can restore part of this blurring, as can be seen 
in the green spectra in Figure 6. Although the results are not 
as pronounced as for the simulated data, the deconvolution 
step does increase the sharpness of the images, as is shown in 
Figure 6C. When using the WSVD coil combination, similar 
results were obtained compared with using the Roemer coil 
combination (see Supporting Information Figure S6).

3.8 | SNR evaluation

After processing the acquired data, the effective SNR in-
creased, similarly to what was shown in the simulations (see 

Table 1 and Supporting Information Figure S4). However, 
the SNR gain was not as large even though the in vivo data 
had similar SNR values as the simulated data. Hamming 
filtering and Hamming-weighted acquisition increased the 
SNR of the PCr peak from 23 to 57 and 76, respectively. 
Hamming weighted k-space acquisition results in a slightly 
higher effective SNR compared to equal-weighted k-space 
acquisition with Hamming filtering, but both have similar ef-
fective SNR after processing. The highest SNR value was ob-
tained for Data-E DN+HA+DC with an SNR value of 209, 
whereas Data-H DN+DC resulted in an SNR of 206, both an 
approximate threefold SNR increase compared to the unpro-
cessed Hamming-weighted k-space data. In the Supporting 
Information Table S4, the same results are presented for the 
WSVD coil combination. Here the initial SNR was 41, and 
the relative gain of SNR using the various processing steps 
was similar to those obtained using the Roemer coil combina-
tion. The maximal SNR obtained with the WSVD coil com-
bination was 369 for Data-H DN+DC. Spectral apodization 

T A B L E  2  Relative errors of fitting results of spectra from simulated data

Defined 
Magnitude

Relative Error Equal-Weighted Data Relative Error Hamming-Weighted Data

Sim-E [%]
Sim-E HA 
[%]

Sim-E 
DN+HA [%]

Sim-E 
DN+HA+DC[%] Sim-H [%]

Sim-H DN 
[%]

Sim-H 
DN+DC [%]

PE 17 131.0 ± 234.7 15.3 ± 82.6 4.0 ± 18.3 4.3 ± 19.8 9.1 ± 59.1 1.1 ± 14.7 −3.0 ± 19.4

PC 30 63.0 ± 134.3 16.0 ± 44.4 12.5 ± 8.3 12.5 ± 9.6 3.6 ± 30.8 −0.2 ± 10.3 −3.3 ± 13.5

Piex 39 41.8 ± 109.9 3.5 ± 39.7 −4.9 ± 14.9 −4.8 ± 15.6 2.1 ± 26.7 −1.0 ± 10.2 −2.8 ± 12.6

Piin 78 10.4 ± 53.5 1.4 ± 17.1 0.4 ± 4.3 0.5 ± 4.9 0.5 ± 12.8 0.4 ± 4.4 −1.2 ± 5.9

GPE 0 - - - - - - -

GPC 64 17.4 ± 65.0 2.2 ± 21.4 −0.7 ± 5.7 −0.5 ± 6.3 0.3 ± 14.5 −0.7 ± 5.0 −2.4 ± 6.7

PCr 1000 - - - - - - -

ATP-γ 231 1.9 ± 21.9 −0.5 ± 6.7 −0.6 ± 1.4 −0.6 ± 1.7 −0.3 ± 4.8 −0.4 ± 1.6 −0.7 ± 2.2

ATP-α 290 −2.1 ± 19.6 −1.1 ± 7.3 −0.8 ± 1.9 −0.7 ± 2.0 −0.2 ± 4.9 0.2 ± 1.5 −0.3 ± 1.9

ATP-β 210 5.7 ± 25.1 1.1 ± 8.2 1.0 ± 2.3 1.0 ± 2.5 0.4 ± 5.6 0.2 ± 2.0 −0.3 ± 2.7

NAD 18 92.7 ± 167.1 20.7 ± 59.3 8.2 ± 14.8 8.5 ± 15.7 9.6 ± 39.2 2.1 ± 11.6 −0.1 ± 14.6

UDPG 20 61.0 ± 126.5 6.9 ± 45.5 −0.1 ± 8.8 0.1 ± 10.1 3.9 ± 29.0 −0.6 ± 9.3 −4.3 ± 12.8

Mean 
abs 
error

82.4 ± 30.1 26.4 ± 9.5 7.7 ± 2.0 8.2 ± 2.2 17.7 ± 6.7 5.5 ± 1.9 7.3 ± 3.0

Median 
abs 
error

55.2 ± 23.7 15.6 ± 7.4 4.9 ± 2.0 5.1 ± 2.2 10.8 ± 5.2 3.5 ± 1.6 4.8 ± 2.4

Max abs 
error

285.0 ± 162.5 91.6 ± 47.6 23.7 ± 7.2 25.4 ± 8.0 62.1 ± 34.5 18.1 ± 7.9 23.0 ± 11.3

Min abs 
error

5.2 ± 5.0 1.7 ± 1.5 0.5 ± 0.4 0.6 ± 0.5 1.1 ± 1.0 0.4 ± 0.4 0.5 ± 0.5

Note: The simulated amplitudes of the metabolites are listed in the second column. For each processing pipeline, the relative error of each metabolite amplitude after 
fitting is reported in the consecutive columns. In the bottom 4 rows, the mean, median, maximum, and minimum absolute errors overall metabolites are reported.
Abbreviations: ATP-β, ATP-γ, ATP-α, adenosine triphosphate; GPC, glycerophosphocholine; GPE, glycerophosphoethanolamine; NAD, nicotinamide adenine 
dinucleotide phosphate; PC, phosphocholine; PE, phosphoethanolamine; Piex, extracellular free phosphate; Piin, intracellular free phosphate; sim-E, simulated-equal; 
sim-H, simulated-hamming; UDPG, uridine diphosphate.
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F I G U R E  6  Results of the evaluated processing pipelines on the equal (Data-E) weighted in vivo CSI data of the upper legs using Roemer coil 
combination. Each subfigure shows magnitude images of the mean spectral signal and the signal profile of the center slice of the acquired data. 
Below, it shows two example spectra all scaled relative to the same maximum amplitude. In red a spectrum is shown of muscle data that should 
contain maximal signal and in green a voxel located in the bone, which should show little to no signal. The reported SNR values are those of the 
PCr peak
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is used during the fitting procedure, therefore, the effects of 
apodization on the effective SNR before and after using the 
proposed pipeline are shown in the Supporting Information 
Table S5.

3.9 | Spectral fitting

Fitting results of a single measured spectrum before and after 
processing are shown in Figure 7. It is clear that the lowest 
SNR data (Data-E) also results in the least convincing fit-
ting results with a residual error of −0.6% ± 6.7% relative 
to the maximal signal of the PCr peak. Hamming-weighting 
of the k-space increases the SNR and as a result also allows 
for more robust spectra fitting, reducing the residual error 
to −0.0% ± 2.3% and −0.2% ± 1.8% for Data-E HA and 
Data-H, respectively. After full processing, the residual error 
is decreased even further to 0.0% ± 1.1% and −0.1% ± 1.1% 
for Data-E DN+HA+DC and Data-H DN+DC, respectively. 

Improved fitting is especially clear for metabolites with low 
concentrations, as is shown in insets shown in Figure 7.

Figure 8 shows the fitted metabolite amplitudes relative 
to the mean fitted ATP amplitudes. Due to the relatively low 
SNR of Data-E, it can be seen that the fitting results are poor-
est because the metabolite maps are very inhomogeneous and 
noisy. Especially for the low-concentration metabolites such 
as PC, nicotinamide adenine dinucleotide phosphate, and Pi, 
the processing improved the homogeneity of the metabolite 
maps. After full processing, the fitted metabolite maps of 
Data-E and Data-H are comparable. For example, the PC/
ATP ratio for Data-H is 8.5 (2.0 - 18.6)%, but after process-
ing (Data-H DN+DC) the ratio is 5.6 (1.3 - 11)%, which is 
comparable to DataE DN+HA+DC for which the ratio is 7.2 
(1.3 - 16)%.

Although the maximal SNR for the WSVD coil combi-
nation was higher than the Roemer coil combination, the fit-
ting results were similar with slightly lower residual errors 
for the Roemer coil combination (see Supporting Information 

F I G U R E  7  Fits of a single voxel (red voxel of Figure 6) spectrum before and after processing. The panels show the real measured and fitted 
spectra, and real residual errors. The mean and SD of the residual errors are reported in the percentage of the PCr amplitude
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Figure S7). The metabolite maps and distribution maps are 
also very similar between both coil combination methods 
(see Supporting Information Figure S8).

4 |  DISCUSSION

In this study, we implemented 2 methods for enhancing SNR 
and reverting the increase of the FWHM of the voxel PSF caused 
by Hamming-filtering of the spatial k-space and applied these to 
simulated and in vivo acquired 3D 31P CSI data. Hamming fil-
tering increases the effective SNR and reduces voxel bleeding 
but also substantially increases the FWHM of the voxel PSF. 
We have shown that the PCA denoising algorithm enhances the 
SNR in the spectral domain threefold for in vivo data of the 
upper leg muscles compared to Hamming-weighted CSI data. 

Furthermore, regularized Wiener deconvolution decreased the 
FWHM of the voxel PSF while maintaining the SNR and still 
minimizing Gibbs ringing artifacts.

4.1 | PCA denoising

PCA-based denoising was previously developed for diffu-
sion data of the brain34,35 and has since found its way to other 
applications such as muscle diffusion data.41 Here, we have 
shown the ability to enhance the SNR of 3D 31P CSI data. 
However, the method is not limited to 3D data. The only 
requirement is that a large matrix, with spatially relatively 
homogeneous noise and signal, can be constructed. As such, 
it can also be applied to 2D CSI data, for example, using a 
kernel of 7 × 7 or 9 × 9, as long as the matrix is large. It can 

F I G U R E  8  Fitting results of the equal and Hamming weighted data using Roemer coil combination before and after processing 
represented as metabolite maps. The metabolite maps are calculated relative to the ATP amplitude in the respective voxel and expressed as a 
percentage. The metabolites shown are PE, PC, the sum of the intra- and extracellular free Pi, GPC, PCr, NAD, and UDPG. Above each panel, 
the mean amplitude and its range relative to the ATP amplitude (as a percentage) is reported for the entire muscle volume. ATP, adenosine 
triphosphate; GPC, glycerophosphocholine; NAD, nicotinamide adenine dinucleotide phosphate; PC, phosphocholine; PCr, phosphocreatine; PE, 
phosphoethanolamine; Pi, phosphate; UDPG, uridine diphosphate
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even be extended to dynamically acquired single voxel data 
if the number of dynamics is large. An example of dynamic 
single voxel denoising using 150 dynamics is shown in the 
Supporting Information Figure S9.

In the PCA denoising algorithm, only the eigenvalues of 
the PCA decomposition which describe random noise that fall 
within the Marchenco-Pastur distribution are eliminated. This 
means that constant signals below the noise floor are maintained 
after denoising. This is shown in the simulations presented in 
this study in which some of the simulated metabolites had SNR 
values smaller than 1 but could still be resolved and fitted after 
denoising. This affirms that the method does not eliminate small 
signals from the data due to denoising. Another advantage is 
that no prior information about the signal or the noise variance 
is needed. The PCA denoising method has similarities to other 
methods that use signal decomposition to separate desired sig-
nals from the noise, for example, WSVD for optimal coil com-
bination33; Tensor Rank truncation-Image enhancement31; or 
stable, linear, time-frequency denoising.56

Denoising performed better on simulated data than on 
in vivo measured data, with an approximate SNR gain of 
5 and 3 compared to Hamming weighted k-space data, 
respectively. This is probably because the simulated data 
contained identical spectra for all voxels with no spatial 
phase variations, no peak shifting, or changing line shapes. 
For the in vivo data, WSVD reconstruction of Hamming-
weighted k-space with DN+DC resulted in the highest 
absolute SNR of 369. But overall we found a similar perfor-
mance of the denoising algorithm for equal- and Hamming-
weighted acquisitions and for Roemer and WSVD coil 
combinations. In practice, a Hamming-weighted acquisi-
tion provides the highest flexibility for optimizing the scan 
time, and for our data, Roemer coil combination resulted in 
the most homogeneous signal reconstruction. Furthermore, 
equal-weighted k-space data with Hamming filtering has 
around 30% less effective SNR compared to the Hamming 
weighted k-space data; however, after processing both have 
the same effective SNR.

4.2 | Deconvolution

Spatial Hamming-filters are commonly applied to CSI k-
space data to reduce voxel bleeding and enhance SNR, but 
they increase the FWHM of the voxel PSF. Here, we pro-
posed to use regularized Wiener deconvolution to revert the 
enlargement of the voxel PSF induced by the Hamming filter, 
without introducing Gibbs ringing or decreasing the SNR. 
Wiener deconvolution is widely used to enhance signals from 
recorded data and has been used for fMRI processing37,38 and 
MRI image enhancement.39,40

Because we can assume that the spatial phase of an MR 
image or CSI data set is smooth, we proposed to perform the 

deconvolution in the spatial domain for each absolute spec-
tral point. Before we performed the deconvolution, data were 
up-sampled by a factor 2 in the spatial domain. This allowed 
for a better definition of the voxel PSF and to better pre-
vent the reintroduction of Gibbs-ringing artifacts. A similar 
up-sampling approach was used in the work by Haupt et al, 
in which the used iterative k-space extrapolation to reduce 
lipid artifacts.57 The regularization of the Wiener deconvolu-
tion is used to prevent noise enhancement and Gibbs ringing 
enhancement after deconvolution. Without regularization, 
noise is enhanced and Gibbs-ringing is restored. However, 
if there is too much regularization, the FWHM of the PSF 
is not reduced. The regularization was optimized empirically 
(0.01) using the simulated data using various regularization 
factors at different SNR and by evaluating at which regular-
ization factor there was a correct balance between reduction 
of the FWHM of the PSF and minimization of Gibbs ringing. 
Because the deconvolution only takes seconds, this optimi-
zation can be done quickly. With this optimal factor, for both 
the simulated and in vivo data, deconvolution slightly de-
creased the SNR while still reducing the effective voxel size.

The effect of deconvolution is best appreciated in the SNR 
shown in Supporting Information Figure S4. From these maps, 
it is clear that Hamming-filtering or Hamming-weighted acquisi-
tion enhances the SNR. However, the definition of the bone is less 
clear. This is resolved by deconvolution, after which the anatomi-
cal structures are better distinguished without reducing the SNR.

4.3 | Spectral apodization and fitting

In spectral processing, commonly, spectra are apodized and 
zero-padded in the time domain for better visualization and 
to enhance fitting performance in the spectral domain.27 This 
was also done in this study, as stated in the method section. 
Similar to the spatial Hamming-filter, spectral apodization in-
creases SNR. As expected, spectral apodization increased the 
SNR; but in general, the relative SNR gains were similar with 
and without spectral apodization. However, in some cases, apo-
dization even slightly decreased the SNR. This is most likely 
due to the increased linewidth of the PCr peak because we used 
the maximal absolute signal intensity for the SNR calculations. 
The effect of processing of fitting performance depends on the 
method used27,58 and whether the fitting is done in the time or 
frequency domain or a combination of both.59 However, for 
signal fitting a higher effective SNR is generally beneficial.27,58

4.4 | Study implications

Exciting developments in CSI acquisition13 and hardware8,16,17 
on ultrahigh field MRI scanners14,15 are enabling faster CSI 
measurements with an increasing FOV and higher spatial 
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resolution. Therefore, CSI is getting closer to conventional 
MR imaging methods and processing methods used in the 
imaging field also become applicable to CSI, as was demon-
strated in this study. Although in this study, we used 31P CSI 
data, the methods presented are not limited to 31P and can be 
used for other nuclei such as 1H, 2H, and 13C. Of course, the 
feasibility of other applications needs to be investigated.

5 |  CONCLUSION

In this study, we have shown that PCA-based denoising in 
combination with regularized Wiener deconvolution al-
lows increasing the effective spectral SNR of in vivo 31P 3D 
CSI data, with a reduction of the FWHM of the voxel PSF. 
Processing increased the effective SNR by at least threefold 
compared to Hamming weighted acquired data and mini-
mized voxel bleeding. With these methods, fitting of metab-
olite amplitudes became more robust with decreased fitting 
residuals.
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rithm is available in QMRITools/ReconstructionTools as 
DenoiseCSIData. For the deconvolution, we used the build-
in Mathematica function ListDeconvolve. The deconvolution 
method is available in the QMRITools/ReconstructionTools 
toolbox as DeconvolveCSIdata. The spectra and basis func-
tions were simulated using scalar coupling (J-coupling) 
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

FIGURE S1 Simulation of the equal and Hamming-weighted 
k-space data using 6 and 35 signal averages, respectively, to-
gether with example spectra
FIGURE S2 Results of the evaluated processing pipelines on 
the simulated equal (data-E) and Hamming (data-H) weighted 
data. The left column shows magnitude images of the mean 
spectral signal and the signal profile of the center slice of the 
simulated data. On the right, it shows two example spectra 
all scaled relative to the same maximum amplitude. In red 
a spectrum is shown of the center voxel that should contain 
maximal signal and in green a voxel located in between two 
signal regions which should show little to no signal. The re-
ported SNR values are those of the PCr peak
FIGURE S3 The effect of the regularization factor of the 
Wiener deconvolution on the voxel point spread function 
and Gibbs ringing. Increasing the regularization increases 
the voxel PSF and decreases the Gibbs ringing. The choice 
for regularization was made such that the voxel point spread 
function was reduced by half while only 50% of the Gibbs 
ringing was reintroduced
FIGURE S4 SNR maps of the simulated (Sim) and in-vivo 
data (Data) before and after processing for the equal (E) and 
Hamming (H) weighted k-space data. The SNR values per 
voxel are those of the largest spectral peak of each voxel. Note 
that the SNR scales for the Sim/Data E and H are lower than 
the scales of the processed data DN+HA+DC and DN+DC
FIGURE S5 Results of the evaluated processing pipelines 
on the equal (data-E) and Hamming weighted (data-H) in 
vivo CSI data of the upper legs using Roemer equal noise 
coil combination. The left column shows magnitude images 
of the mean spectral signal and the signal profile of the center 
slice of the acquired data. On the right, it shows two example 
spectra all scaled relative to the same maximum amplitude. 
In red a spectrum is shown of muscle data that should con-
tain maximal signal and in green a voxel located in the bone 
which should show little to no signal. The reported SNR val-
ues are those of the PCr peak
FIGURE S6 Results of the evaluated processing pipelines 
on the in vivo CSI data of the upper legs using WSVD coil 
combination. The left column shows magnitude images of 
the mean spectral signal and the signal profile of the center 
slice of the acquired data. On the right, it shows two example 
spectra all scaled relative to the same maximum amplitude. 
In red a spectrum is shown of muscle data that should con-
tain maximal signal and in green a voxel located in the bone 
which should show little to no signal. The reported SNR val-
ues are those of the PCr peak
FIGURE S7 Fits of a single voxel (red voxel of Supporting 
Information Figure S6) spectrum before and after processing 

using data reconstructed with WSVD coil combination. The 
panels show the real measured and fitted spectra, and real re-
sidual errors. The mean and standard deviation of the residual 
errors are reported in the percentage of the PCr amplitude
FIGURE S8 Fitting results of the equal and Hamming 
weighted data using WSVD coil combination before and after 
processing represented as metabolite maps. The metabolite 
maps are calculated relative to the ATP amplitude in the re-
spective voxel and expressed as a percentage. The metabo-
lites shown are phosphoethanolamine (PE), phosphocholine 
(PC), the sum of the intra- and extracellular free phosphate 
(Pi), glycerophosphocholine (GPC), phosphocreatine (PCr), 
nicotinamide adenine dinucleotide phosphate (NAD), and 
uridine diphosphate (UDPG). Above each panel, the mean 
relative amplitude and its range in percent relative to the ATP 
amplitude are reported for the entire muscle volume
FIGURE S9 Denoising of dynamic single voxel data. 
Spectra were acquired using a single coil loop during a biceps 
 exercise protocol (30 s rest, 360 s incremental exercise, 410 s   
recovery) without localization. The acquisition parameters 
were: FA = 28 degrees; TR = 0.5 s; TE = 0.3 ms; NSA = 1; 
1600 dynamics; bandwidth= 5000 Hz; Number of samples =   
512
TABLE S1 Simulated metabolite concentrations and their 
respective SNR values
TABLE S2 Effective spectral SNR of the PCr peak after each 
processing step after spectral apodization and zero padding 
for simulated data
TABLE S3 Relative errors of fitting results of spectra from 
simulated data. The simulated amplitudes of the metabolites 
are listed in the second column. For each processing pipeline, 
the relative error of each metabolite amplitude after fitting is 
reported in the consecutive columns. In the bottom 4 rows, 
the mean, median, maximum, and minimum absolute errors 
overall metabolites are reported
TABLE S4 Effective spectral SNR of the PCr peak after each 
processing step for in-vivo data using WSVD reconstruction
TABLE S5 Effective spectral SNR of the PCr peak after each 
processing step after spectral apodization and zero padding 
for simulated and in-vivo data
NOTEBOOK 1. Mathematica notebook with simulations 
and data processing scripts
NOTEBOOK 2. Mathematica notebook that generates all 
figures for this manuscript
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